inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ni2Sr(PO4)2·2H2O

aLaboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V-Agdal, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
*Correspondence e-mail: mohamedsaadi82@gmail.com

(Received 19 October 2010; accepted 3 November 2010; online 27 November 2010)

The title compound, dinickel(II) strontium bis­[ortho­phosphate(V)] dihydrate, was obtained under hydro­thermal conditions. The crystal structure consists of linear chains 1[NiO2/2(OH2)2/2O2/1] of edge-sharing NiO6 octa­hedra ([\overline{1}] symmetry) running parallel to [010]. Adjacent chains are linked to each other through PO4 tetra­hedra (m symmetry) and arranged in such a way to build layers parallel to (001). The three-dimensional framework is accomplished by stacking of adjacent layers that are held together by SrO8 polyhedra (2/m symmetry). Two types of O—H⋯O hydrogen bonds involving the water mol­ecule are present, viz. one very strong hydrogen bond perpendicular to the layers and weak trifurcated hydrogen bonds parallel to the layers.

Related literature

For catalytic properties of phosphates, see: Cheetham et al. (1999[Cheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 111, 3466-3492.]); Clearfield (1988[Clearfield, A. (1988). Chem. Rev. 88, 125-148.]). The crystal structure of anhydrous Ni2Sr(PO4)2 has been reported by El Bali et al. (1993[El Bali, B., Boukhari, A., Aride, J. & Abraham, F. (1993). J. Solid State Chem. 104, 453-459.]). For crystal structures of some hydrous orthophosphates of divalent cations, see: Assani et al. (2010[Assani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i44.]); Effenberger (1999[Effenberger, H. (1999). J. Solid State Chem. 142, 6-13.]); Lee et al. (2008[Lee, Y. H., Clegg, J. K., Lindoy, L. F., Lu, G. Q. M., Park, Y.-C. & Kim, Y. (2008). Acta Cryst. E64, i67-i68.]); Britvin et al. (2002[Britvin, S. N., Ferraris, G., Ivaldi, G., Bogdanova, A. N. & Chukanov, N. V. (2002). Neues Jahrb. Mineral. Monatsh. 4, 160-168.]); Stock (2002[Stock, N. (2002). Z. Naturforsch. Teil B, 57, 187-192.]); Yakubovich et al. (2001[Yakubovich, O. V., Massa, W., Liferovich, R. P. & McCammon, C. A. (2001). Can. Mineral. 39, 1317-1324.]). For bond-valence analysis, see: Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

Experimental

Crystal data
  • Ni2Sr(PO4)2·2H2O

  • Mr = 431.01

  • Monoclinic, C 2/m

  • a = 8.8877 (3) Å

  • b = 6.0457 (3) Å

  • c = 7.3776 (3) Å

  • β = 114.173 (2)°

  • V = 361.66 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 12.99 mm−1

  • T = 296 K

  • 0.20 × 0.10 × 0.07 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.229, Tmax = 0.403

  • 2376 measured reflections

  • 454 independent reflections

  • 439 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.019

  • wR(F2) = 0.052

  • S = 1.12

  • 454 reflections

  • 49 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.69 e Å−3

Table 1
Selected bond lengths (Å)

Sr1—O1i 2.626 (2)
Sr1—O2 2.636 (3)
Sr1—O3 2.797 (3)
Ni1—O4 2.0285 (19)
Ni1—O1ii 2.0499 (19)
Ni1—O3 2.0895 (18)
P1—O2 1.517 (3)
P1—O1 1.539 (2)
P1—O3 1.564 (3)
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z]; (ii) -x+2, y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O4iii 0.85 (6) 2.23 (7) 2.951 (4) 143 (7)
O4—H1⋯O1iv 0.85 (6) 2.28 (4) 2.784 (3) 118 (4)
O4—H1⋯O1v 0.85 (6) 2.28 (4) 2.784 (3) 118 (4)
O4—H2⋯O2vi 0.85 (3) 1.67 (3) 2.511 (4) 169 (9)
Symmetry codes: (iii) -x+1, -y+1, -z+1; (iv) [-x+{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+1]; (vi) x, y, z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia,1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Metal based phosphates continue to be interesting materials due to their remarkable variety of structures, associated with outstanding properties in widespread applications such as catalysis and ion-exchangers (Cheetham et al., 1999; Clearfield, 1988).

Our focus of investigation is associated with mixed divalent orthophosphates with general formula (M,M')3(PO4)2.nH2O (Assani et al., 2010). This family of phosphates goes along with a diversity of structures, depending on the size difference of the (various) divalent cations (Effenberger, 1999) and on the degree of hydratation (Yakubovich et al., 2001; Lee et al., 2008), ranging from 0.5 H2O in the manganese phosphate Mn3(PO4)2.0.5H2O (Stock, 2002) to 22 H2O in the case of Mg3(PO4)2.22H2O (Britvin et al., 2002). A topological comparison with their corresponding anhydrous phosphates clearly reveals substantial differences in their structural set-up.

By means of the hydrothermal method, we have synthesized a the hydrous strontium nickel phosphate, Ni2Sr(PO4)2. 2H2O, representing a novel structure type. A partial three-dimensional plot of the crystal structure of the title compound is represented in Fig. 1, illustrating the connection of the metal-oxygen polyhedra. The network is built up from three different types of polyhedra more or less distorted, viz. SrO8 polyhedra (2/m symmetry) with distances ranging from 2.636 (2) Å to 2.797 (3) Å, NiO6 octahedra (1 symmetry) and PO4 tetrahedra (m symmetry). Edge-sharing NiO6 octahedra form an infinite chain 1[NiO2/2(OH2)2/2O2/1] running parallel to [010], as shown in Fig. 2. Adjacent chains are connected by PO4 tetrahedra and weak trifurcated hydrogen bonds (O4–H1···(O4,O1)) to build up layers parallel to (001). These layers are in turn linked by sheets of Sr2+ cations and by very strong hydrogen bond (O4–H2···O2) as shown in Fig. 2 and Table 2.

Bond valence sum calculations (Brown & Altermatt, 1985) for Ni2+, Sr2+ and P5+ ions are as expected, viz. 2.03, 1.83 and 4.93 valence units, respectively. The values of the bond valence sums calculated for all oxygen atoms are: 1.83, 1.56 and 1.93 for O1, O2 and O3, respectively. The low bond valence sum of O2 indicates that it is considerably undersaturated and thus acts as an acceptor with a very short H-bond (Table 2).

It is particularly interesting to compare the crystal structures of this compound with that of its corresponding anhydrous phosphate (El Bali et al., 1993). Indeed, both structures can be described by the stacking of two-dimensional layers connected to each other by Sr2+ ions. However, we can note the following important differences: The presence of NiO5 polyhedra in the anhydrous phase and a different space group (P1) and lattice parameters. Moreover, due to the lower symmetry, the polyhedra are more distorted in the anhydrous phase.

Related literature top

For catalytic properties of phosphates, see: Cheetham et al. (1999); Clearfield (1988). The crystal structure of anhydrous Ni2Sr(PO4)2 has been reported by El Bali et al. (1993). For crystal structures of some hydrous orthophosphates of divalent cations, see: Assani et al. (2010); Effenberger (1999); Lee et al. (2008); Britvin et al. (2002); Stock (2002); Yakubovich et al. (2001). For bond-valence analysis, see: Brown & Altermatt (1985).

Experimental top

A typical hydrothermal synthesis has allowed to isolate the title compound from the reaction mixture of strontium carbonate (SrCO3; 0.0738 g), metallic nickel (Ni; 0.0881 g) and 85 wt% phosphoric acid (H3PO4; 0,10 ml) and water (H2O; 10 ml). The hydrothermal reaction was performed in a 23 ml Teflon-lined autoclave under autogeneous pressure at 468 K for two days. The product was filtered off, washed with deionized water and air dried. The resulting product consists of parallelepipedic turquoise crystals besides some gray powder.

Refinement top

All O-bound H atoms were initially located in a difference map and refined with O—H (0.85) distance restraints and a common Uiso for both H atoms for the water molecule.

Structure description top

Metal based phosphates continue to be interesting materials due to their remarkable variety of structures, associated with outstanding properties in widespread applications such as catalysis and ion-exchangers (Cheetham et al., 1999; Clearfield, 1988).

Our focus of investigation is associated with mixed divalent orthophosphates with general formula (M,M')3(PO4)2.nH2O (Assani et al., 2010). This family of phosphates goes along with a diversity of structures, depending on the size difference of the (various) divalent cations (Effenberger, 1999) and on the degree of hydratation (Yakubovich et al., 2001; Lee et al., 2008), ranging from 0.5 H2O in the manganese phosphate Mn3(PO4)2.0.5H2O (Stock, 2002) to 22 H2O in the case of Mg3(PO4)2.22H2O (Britvin et al., 2002). A topological comparison with their corresponding anhydrous phosphates clearly reveals substantial differences in their structural set-up.

By means of the hydrothermal method, we have synthesized a the hydrous strontium nickel phosphate, Ni2Sr(PO4)2. 2H2O, representing a novel structure type. A partial three-dimensional plot of the crystal structure of the title compound is represented in Fig. 1, illustrating the connection of the metal-oxygen polyhedra. The network is built up from three different types of polyhedra more or less distorted, viz. SrO8 polyhedra (2/m symmetry) with distances ranging from 2.636 (2) Å to 2.797 (3) Å, NiO6 octahedra (1 symmetry) and PO4 tetrahedra (m symmetry). Edge-sharing NiO6 octahedra form an infinite chain 1[NiO2/2(OH2)2/2O2/1] running parallel to [010], as shown in Fig. 2. Adjacent chains are connected by PO4 tetrahedra and weak trifurcated hydrogen bonds (O4–H1···(O4,O1)) to build up layers parallel to (001). These layers are in turn linked by sheets of Sr2+ cations and by very strong hydrogen bond (O4–H2···O2) as shown in Fig. 2 and Table 2.

Bond valence sum calculations (Brown & Altermatt, 1985) for Ni2+, Sr2+ and P5+ ions are as expected, viz. 2.03, 1.83 and 4.93 valence units, respectively. The values of the bond valence sums calculated for all oxygen atoms are: 1.83, 1.56 and 1.93 for O1, O2 and O3, respectively. The low bond valence sum of O2 indicates that it is considerably undersaturated and thus acts as an acceptor with a very short H-bond (Table 2).

It is particularly interesting to compare the crystal structures of this compound with that of its corresponding anhydrous phosphate (El Bali et al., 1993). Indeed, both structures can be described by the stacking of two-dimensional layers connected to each other by Sr2+ ions. However, we can note the following important differences: The presence of NiO5 polyhedra in the anhydrous phase and a different space group (P1) and lattice parameters. Moreover, due to the lower symmetry, the polyhedra are more distorted in the anhydrous phase.

For catalytic properties of phosphates, see: Cheetham et al. (1999); Clearfield (1988). The crystal structure of anhydrous Ni2Sr(PO4)2 has been reported by El Bali et al. (1993). For crystal structures of some hydrous orthophosphates of divalent cations, see: Assani et al. (2010); Effenberger (1999); Lee et al. (2008); Britvin et al. (2002); Stock (2002); Yakubovich et al. (2001). For bond-valence analysis, see: Brown & Altermatt (1985).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Partial plot of Ni2Sr(PO4)2,2H2O crystal structure. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) x - 1/2, -y + 3/2, z; (ii) -x + 3/2, y - 1/2, -z; (iii) -x + 3/2, -y + 3/2, -z; (iv) x - 1/2, y - 1/2, z; (v) -x + 1, -y + 1, -z; (vi) x - 1/2, y + 1/2, z; (vii) -x + 3/2, -y + 1/2, -z; (viii) -x + 3/2, -y + 3/2, -z + 1; (ix) -x + 2, y, -z + 1; (x) x + 1/2, y + 1/2, z + 1; (xi) x, -y + 1, z; (xii) x + 1/2, y - 1/2, z; (xiii) x + 1/2, y + 1/2, z; (xiv) -x + 3/2, y - 1/2, -z + 1; (xv) -x + 2, -y + 1, -z + 1.
[Figure 2] Fig. 2. A three-dimensional polyhedral view of the crystal structure of the Ni2Sr(PO4)2.2H2O, showing the stacking of layers along the c axis and the hydrogen bonding scheme (dashed lines).
dinickel(II) strontium bis[orthophosphate(V)] dihydrate top
Crystal data top
Ni2Sr(PO4)2·2H2OF(000) = 416
Mr = 431.01Dx = 3.958 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yCell parameters from 454 reflections
a = 8.8877 (3) Åθ = 3.0–27.4°
b = 6.0457 (3) ŵ = 12.99 mm1
c = 7.3776 (3) ÅT = 296 K
β = 114.173 (2)°Parallelepiped, pale green
V = 361.66 (3) Å30.20 × 0.10 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII
diffractometer
454 independent reflections
Radiation source: fine-focus sealed tube439 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.229, Tmax = 0.403k = 77
2376 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.12 w = 1/[σ2(Fo2) + (0.0243P)2 + 1.4658P]
where P = (Fo2 + 2Fc2)/3
454 reflections(Δ/σ)max < 0.001
49 parametersΔρmax = 0.41 e Å3
3 restraintsΔρmin = 0.69 e Å3
Crystal data top
Ni2Sr(PO4)2·2H2OV = 361.66 (3) Å3
Mr = 431.01Z = 2
Monoclinic, C2/mMo Kα radiation
a = 8.8877 (3) ŵ = 12.99 mm1
b = 6.0457 (3) ÅT = 296 K
c = 7.3776 (3) Å0.20 × 0.10 × 0.07 mm
β = 114.173 (2)°
Data collection top
Bruker APEXII
diffractometer
454 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
439 reflections with I > 2σ(I)
Tmin = 0.229, Tmax = 0.403Rint = 0.028
2376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0193 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.41 e Å3
454 reflectionsΔρmin = 0.69 e Å3
49 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr10.50000.50000.00000.01385 (17)
Ni10.75000.75000.50000.00948 (17)
P10.91308 (11)0.50000.22145 (14)0.0053 (2)
O11.0211 (2)0.7094 (3)0.2739 (3)0.0110 (4)
O20.7975 (3)0.50000.0027 (4)0.0143 (6)
O30.7992 (3)0.50000.3363 (4)0.0084 (5)
O40.6779 (3)0.50000.6298 (4)0.0128 (6)
H10.577 (4)0.50000.610 (13)0.15 (4)*
H20.730 (10)0.50000.755 (4)0.15 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0089 (3)0.0253 (3)0.0071 (3)0.0000.00297 (19)0.000
Ni10.0100 (3)0.0095 (3)0.0083 (3)0.00375 (18)0.00307 (19)0.00014 (19)
P10.0045 (4)0.0055 (5)0.0059 (5)0.0000.0020 (3)0.000
O10.0090 (9)0.0104 (10)0.0116 (10)0.0040 (8)0.0021 (7)0.0013 (8)
O20.0100 (13)0.0226 (17)0.0080 (15)0.0000.0014 (11)0.000
O30.0084 (12)0.0086 (14)0.0107 (13)0.0000.0066 (10)0.000
O40.0076 (13)0.0211 (17)0.0107 (14)0.0000.0047 (11)0.000
Geometric parameters (Å, º) top
Sr1—O1i2.626 (2)Ni1—O1i2.0499 (19)
Sr1—O1ii2.626 (2)Ni1—O1vii2.0499 (19)
Sr1—O1iii2.626 (2)Ni1—O3vi2.0895 (18)
Sr1—O1iv2.626 (2)Ni1—O32.0895 (18)
Sr1—O2v2.636 (3)P1—O21.517 (3)
Sr1—O22.636 (3)P1—O1viii1.539 (2)
Sr1—O32.797 (3)P1—O11.539 (2)
Sr1—O3v2.797 (3)P1—O31.564 (3)
Ni1—O4vi2.0285 (19)O4—H10.85 (5)
Ni1—O42.0285 (19)O4—H20.85 (5)
O1i—Sr1—O1ii180.0O1i—Ni1—O1vii180.0
O1i—Sr1—O1iii96.00 (9)O4vi—Ni1—O3vi85.13 (8)
O1ii—Sr1—O1iii84.00 (9)O4—Ni1—O3vi94.87 (8)
O1i—Sr1—O1iv84.00 (9)O1i—Ni1—O3vi90.62 (9)
O1ii—Sr1—O1iv96.00 (9)O1vii—Ni1—O3vi89.38 (9)
O1iii—Sr1—O1iv180.00 (7)O4vi—Ni1—O394.87 (8)
O1i—Sr1—O2v76.18 (6)O4—Ni1—O385.13 (8)
O1ii—Sr1—O2v103.82 (6)O1i—Ni1—O389.38 (10)
O1iii—Sr1—O2v103.82 (6)O1vii—Ni1—O390.62 (9)
O1iv—Sr1—O2v76.18 (6)O3vi—Ni1—O3180.0
O1i—Sr1—O2103.82 (6)O2—P1—O1viii110.38 (10)
O1ii—Sr1—O276.18 (6)O2—P1—O1110.38 (10)
O1iii—Sr1—O276.18 (6)O1viii—P1—O1110.64 (16)
O1iv—Sr1—O2103.82 (6)O2—P1—O3105.67 (16)
O2v—Sr1—O2180.0O1viii—P1—O3109.83 (10)
O1i—Sr1—O364.85 (6)O1—P1—O3109.83 (10)
O1ii—Sr1—O3115.15 (6)P1—O1—Ni1vii127.73 (12)
O1iii—Sr1—O3115.15 (6)P1—O1—Sr1ix121.08 (11)
O1iv—Sr1—O364.85 (6)Ni1vii—O1—Sr1ix106.29 (8)
O2v—Sr1—O3126.37 (8)P1—O2—Sr1104.37 (14)
O2—Sr1—O353.63 (8)P1—O3—Ni1130.42 (7)
O1i—Sr1—O3v115.15 (6)P1—O3—Ni1x130.42 (7)
O1ii—Sr1—O3v64.85 (6)Ni1—O3—Ni1x92.66 (11)
O1iii—Sr1—O3v64.85 (6)P1—O3—Sr196.33 (13)
O1iv—Sr1—O3v115.15 (6)Ni1—O3—Sr199.48 (8)
O2v—Sr1—O3v53.63 (8)Ni1x—O3—Sr199.48 (8)
O2—Sr1—O3v126.37 (8)Ni1x—O4—Ni196.34 (12)
O3—Sr1—O3v180.00 (9)Ni1x—O4—H1116 (3)
O4vi—Ni1—O4180.0Ni1—O4—H1116 (3)
O4vi—Ni1—O1i85.80 (10)Ni1x—O4—H2112 (4)
O4—Ni1—O1i94.20 (10)Ni1—O4—H2112 (4)
O4vi—Ni1—O1vii94.20 (10)H1—O4—H2105 (8)
O4—Ni1—O1vii85.80 (10)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+3/2, y1/2, z; (iii) x+3/2, y+3/2, z; (iv) x1/2, y1/2, z; (v) x+1, y+1, z; (vi) x+3/2, y+3/2, z+1; (vii) x+2, y, z+1; (viii) x, y+1, z; (ix) x+1/2, y+1/2, z; (x) x+3/2, y1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O4xi0.85 (6)2.23 (7)2.951 (4)143 (7)
O4—H1···O1vi0.85 (6)2.28 (4)2.784 (3)118 (4)
O4—H1···O1x0.85 (6)2.28 (4)2.784 (3)118 (4)
O4—H2···O2xii0.85 (3)1.67 (3)2.511 (4)169 (9)
Symmetry codes: (vi) x+3/2, y+3/2, z+1; (x) x+3/2, y1/2, z+1; (xi) x+1, y+1, z+1; (xii) x, y, z+1.

Experimental details

Crystal data
Chemical formulaNi2Sr(PO4)2·2H2O
Mr431.01
Crystal system, space groupMonoclinic, C2/m
Temperature (K)296
a, b, c (Å)8.8877 (3), 6.0457 (3), 7.3776 (3)
β (°) 114.173 (2)
V3)361.66 (3)
Z2
Radiation typeMo Kα
µ (mm1)12.99
Crystal size (mm)0.20 × 0.10 × 0.07
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.229, 0.403
No. of measured, independent and
observed [I > 2σ(I)] reflections
2376, 454, 439
Rint0.028
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.12
No. of reflections454
No. of parameters49
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.69

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia,1997) and DIAMOND (Brandenburg, 2006), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
Sr1—O1i2.626 (2)Ni1—O32.0895 (18)
Sr1—O22.636 (3)P1—O21.517 (3)
Sr1—O32.797 (3)P1—O11.539 (2)
Ni1—O42.0285 (19)P1—O31.564 (3)
Ni1—O1ii2.0499 (19)
Symmetry codes: (i) x1/2, y+3/2, z; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O4iii0.85 (6)2.23 (7)2.951 (4)143 (7)
O4—H1···O1iv0.85 (6)2.28 (4)2.784 (3)118 (4)
O4—H1···O1v0.85 (6)2.28 (4)2.784 (3)118 (4)
O4—H2···O2vi0.85 (3)1.67 (3)2.511 (4)169 (9)
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x+3/2, y+3/2, z+1; (v) x+3/2, y1/2, z+1; (vi) x, y, z+1.
 

Acknowledgements

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray data collection.

References

First citationAssani, A., Saadi, M. & El Ammari, L. (2010). Acta Cryst. E66, i44.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBritvin, S. N., Ferraris, G., Ivaldi, G., Bogdanova, A. N. & Chukanov, N. V. (2002). Neues Jahrb. Mineral. Monatsh. 4, 160–168.  Web of Science CrossRef Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheetham, A. K., Férey, G. & Loiseau, T. (1999). Angew. Chem. Int. Ed. 111, 3466–3492.  CrossRef Google Scholar
First citationClearfield, A. (1988). Chem. Rev. 88, 125–148.  CrossRef CAS Web of Science Google Scholar
First citationEffenberger, H. (1999). J. Solid State Chem. 142, 6–13.  Web of Science CrossRef CAS Google Scholar
First citationEl Bali, B., Boukhari, A., Aride, J. & Abraham, F. (1993). J. Solid State Chem. 104, 453–459.  CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLee, Y. H., Clegg, J. K., Lindoy, L. F., Lu, G. Q. M., Park, Y.-C. & Kim, Y. (2008). Acta Cryst. E64, i67–i68.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStock, N. (2002). Z. Naturforsch. Teil B, 57, 187–192.  CAS Google Scholar
First citationYakubovich, O. V., Massa, W., Liferovich, R. P. & McCammon, C. A. (2001). Can. Mineral. 39, 1317–1324.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds