metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Bis[(1-ammonio­pentane-1,1-di­yl)di­phospho­nato-κ2O,O′]di­aqua­copper(II)

aInstitute of General and Inorganic Chemistry, NAS Ukraine, prosp. Palladina 32/34, Kyiv 03680, Ukraine
*Correspondence e-mail: complex@ionc.kiev.ua

(Received 28 October 2010; accepted 4 November 2010; online 10 November 2010)

In the title compound, [Cu(C5H14NO6P2)2(H2O)2], the CuII atom occupies a special position on an inversion centre. It exhibits a distorted octa­hedral coordination environment consisting of two O,O′-bidentate (1-ammonio­pentane-1,1-di­yl)diphospho­nate anions in the equatorial plane and two trans water mol­ecules located in axial positions. The ligand mol­ecules are coordinated to the CuII atom in their zwitterionic form via two O atoms from different phospho­nate groups, creating two six–membered chelate rings with a screw-boat conformation. The CuO6 coordination polyhedron is strongly elongated in the axial direction with 0.6 Å longer bonds than those in the equatorial plane. Intra­molecular N—H⋯O hydrogen bonding helps to stabilize the mol­ecular configuration. The presence of supra­molecular —PO(OH)⋯O(OH)P— units parallel to (100) and other O—H⋯O and N—H⋯O hydrogen bonds establish the three-dimensional set-up.

Related literature

For general background to organic diphospho­nic acids and their metal complexes, see: Eberhardt et al. (2005[Eberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci. 10, 622-626.]); Matczak-Jon & Videnova-Adrabinska (2005[Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458-2488.]). For related structures, see: Sergienko et al. (1997[Sergienko, V. S., Aleksandrov, G. G. & Afonin, E. G. (1997). Zh. Neorg. Khim. 42, 1291-1296], 1999[Sergienko, V. S., Afonin, E. G. & Aleksandrov, G. G. (1999). Koord. Khim. 25, 133-142]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C5H14NO6P2)2(H2O)2]

  • Mr = 591.80

  • Triclinic, [P \overline 1]

  • a = 5.5629 (1) Å

  • b = 10.0236 (2) Å

  • c = 10.5237 (2) Å

  • α = 69.315 (1)°

  • β = 86.666 (1)°

  • γ = 88.398 (1)°

  • V = 548.03 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 173 K

  • 0.35 × 0.15 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.648, Tmax = 0.899

  • 5322 measured reflections

  • 2277 independent reflections

  • 2104 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.064

  • S = 1.07

  • 2277 reflections

  • 168 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O4 1.9381 (12)
Cu1—O1 1.9524 (12)
Cu1—O7 2.5666 (15)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H11N⋯O3i 0.91 (2) 1.98 (3) 2.849 (2) 158 (2)
N1—H12N⋯O7ii 0.88 (2) 2.08 (3) 2.945 (2) 167 (2)
N1—H13N⋯O5i 0.89 (3) 1.99 (3) 2.849 (2) 162 (2)
O2—H2O⋯O3iii 0.79 (2) 1.79 (2) 2.5741 (18) 178 (3)
O6—H6O⋯O5iv 0.79 (2) 1.80 (2) 2.5848 (18) 176 (3)
O7—H71O⋯O4v 0.79 (2) 2.04 (2) 2.8071 (19) 165 (3)
O7—H72O⋯O2ii 0.79 (2) 2.56 (3) 3.010 (2) 118 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+2, -y+1, -z+1; (iii) -x+2, -y+1, -z; (iv) -x+2, -y, -z+1; (v) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2010[Brandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The investigation of organic diphosphonic acids and their metal complexes attracts constant interest of chemists because of their potential applications as drugs preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). Some transition metal diphosphonates can improve fixation of cementless metal implants by enhancing the extent of osteointegration (Eberhardt et al., 2005). Therefore, a detailed structural investigation of diphosphonates may help to better understand their structure-property correlations.

Several structures of copper diphosphonates have been published earlier (Sergienko et al., 1997, 1999). The present paper reports the structure of the first complex compound with (1-ammoniopentane-1,1-diyl)diphosphonic acid.

The asymmetric unit of title compound contains one half of the molecule. The CuII atom occupies a special position on a crystallographic inversion centre, which generates another half of the molecule (Fig. 1). The central CuII atom exhibits a distorted octahedral coordination geometry consisting of two O,O'-bidentantely coordinating ligand molecules in the equatorial plane and two trans water molecules, located in the axial positions. The ligand molecules are coordinated to CuII in their zwitterionic form via two O atoms from different phosphonate groups creating two six-membered chelate metalla rings with a screw-boat conformation. The CuO6 coordination polyhedron is strongly elongated in the axial direction: The Cu1—O7 bond is ~ 0.6 Å longer than the Cu1—O1 and Cu1—O4 bonds (Table 1), which is characteristic for Jahn-Teller distorted CuII complexes with an octahedral coordination (Sergienko et al., 1997). The values of the equatorial O—Cu—O angles are in the range of 80.05 (5)–99.95 (5)°, indicating a significiant deviation from the ideal values. This can be explained by the presence of a strong intramolecular hydrogen bond N1—H12···O7 (Fig. 1, Table 2), which partially influences the configuration of the molecule. The crystal structure of title compound contains supramolecular units —PO(OH)···O(OH)P— parallel to (100) that, together with strong O—H···O and N—H···O hydrogen bonds, create a three-dimensional structure (Fig. 2, Table 2).

Related literature top

For general background to organic diphosphonic acids and their metal complexes, see: Eberhardt et al. (2005); Matczak-Jon & Videnova-Adrabinska (2005). For related structures, see: Sergienko et al. (1997, 1999).

Experimental top

Light blue crystals of the title compound were obtained from the mixture of CuSO4.5H2O (0.2 mmol, 0.04995 g) and 1-aminopentane-1,1-diyldiphosphonic acid (0.4 mmol, 0.09885 g) in 5 ml of H2O, adjusted to pH ~ 4 with 0.25M NaOH. The combined solution was stored in a dark place for slow evaporation. After 20 days of staying, suitable crystals for X-ray data collection were obtained.

Refinement top

H atoms bonded to O and N atoms were located in a difference map and refined with distance restraint of 0.82 (2) Å for OH and without any restraints for NH. Other H atoms, which are bonded to C atoms, were positioned geometrically regarding to hybridization and refined using a riding model with C—H = 0.98 Å for CH3 [Uiso(H) = 1.5Ueq(C)] and C—H = 0.99 Å for CH2 [Uiso(H) = 1.2Ueq(C)].

Structure description top

The investigation of organic diphosphonic acids and their metal complexes attracts constant interest of chemists because of their potential applications as drugs preventing calcification and inhibiting bone resorption (Matczak-Jon & Videnova-Adrabinska, 2005). Some transition metal diphosphonates can improve fixation of cementless metal implants by enhancing the extent of osteointegration (Eberhardt et al., 2005). Therefore, a detailed structural investigation of diphosphonates may help to better understand their structure-property correlations.

Several structures of copper diphosphonates have been published earlier (Sergienko et al., 1997, 1999). The present paper reports the structure of the first complex compound with (1-ammoniopentane-1,1-diyl)diphosphonic acid.

The asymmetric unit of title compound contains one half of the molecule. The CuII atom occupies a special position on a crystallographic inversion centre, which generates another half of the molecule (Fig. 1). The central CuII atom exhibits a distorted octahedral coordination geometry consisting of two O,O'-bidentantely coordinating ligand molecules in the equatorial plane and two trans water molecules, located in the axial positions. The ligand molecules are coordinated to CuII in their zwitterionic form via two O atoms from different phosphonate groups creating two six-membered chelate metalla rings with a screw-boat conformation. The CuO6 coordination polyhedron is strongly elongated in the axial direction: The Cu1—O7 bond is ~ 0.6 Å longer than the Cu1—O1 and Cu1—O4 bonds (Table 1), which is characteristic for Jahn-Teller distorted CuII complexes with an octahedral coordination (Sergienko et al., 1997). The values of the equatorial O—Cu—O angles are in the range of 80.05 (5)–99.95 (5)°, indicating a significiant deviation from the ideal values. This can be explained by the presence of a strong intramolecular hydrogen bond N1—H12···O7 (Fig. 1, Table 2), which partially influences the configuration of the molecule. The crystal structure of title compound contains supramolecular units —PO(OH)···O(OH)P— parallel to (100) that, together with strong O—H···O and N—H···O hydrogen bonds, create a three-dimensional structure (Fig. 2, Table 2).

For general background to organic diphosphonic acids and their metal complexes, see: Eberhardt et al. (2005); Matczak-Jon & Videnova-Adrabinska (2005). For related structures, see: Sergienko et al. (1997, 1999).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular configuration of the title compound. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular N—H···O hydrogen bond is emphasized by dotted lines.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed down the a axis. Dashed lines indicate hydrogen bonds.
trans-Bis[(1-ammoniopentane-1,1-diyl)diphosphonato- κ2O,O']diaquacopper(II) top
Crystal data top
[Cu(C5H14NO6P2)2(H2O)2]Z = 1
Mr = 591.80F(000) = 307
Triclinic, P1Dx = 1.793 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.5629 (1) ÅCell parameters from 3621 reflections
b = 10.0236 (2) Åθ = 2.4–26.6°
c = 10.5237 (2) ŵ = 1.36 mm1
α = 69.315 (1)°T = 173 K
β = 86.666 (1)°Rod, light blue
γ = 88.398 (1)°0.35 × 0.15 × 0.08 mm
V = 548.03 (2) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2277 independent reflections
Radiation source: fine-focus sealed tube2104 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 26.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 76
Tmin = 0.648, Tmax = 0.899k = 1212
5322 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0298P)2 + 0.4491P]
where P = (Fo2 + 2Fc2)/3
2277 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.43 e Å3
4 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Cu(C5H14NO6P2)2(H2O)2]γ = 88.398 (1)°
Mr = 591.80V = 548.03 (2) Å3
Triclinic, P1Z = 1
a = 5.5629 (1) ÅMo Kα radiation
b = 10.0236 (2) ŵ = 1.36 mm1
c = 10.5237 (2) ÅT = 173 K
α = 69.315 (1)°0.35 × 0.15 × 0.08 mm
β = 86.666 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
2277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2104 reflections with I > 2σ(I)
Tmin = 0.648, Tmax = 0.899Rint = 0.019
5322 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0234 restraints
wR(F2) = 0.064H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.43 e Å3
2277 reflectionsΔρmin = 0.36 e Å3
168 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu11.00000.50000.50000.01029 (10)
P10.98580 (8)0.44423 (5)0.21486 (4)0.00887 (11)
P20.90052 (8)0.20736 (5)0.48297 (5)0.00893 (11)
N10.5396 (3)0.34163 (17)0.32262 (17)0.0112 (3)
H11N0.458 (4)0.367 (2)0.245 (3)0.017*
H12N0.539 (4)0.416 (3)0.348 (2)0.017*
H13N0.444 (4)0.274 (3)0.380 (2)0.017*
O11.0859 (2)0.49686 (13)0.31854 (12)0.0116 (3)
O20.8085 (2)0.55876 (14)0.12618 (14)0.0136 (3)
H2O0.813 (5)0.573 (3)0.0476 (18)0.040 (8)*
O31.1764 (2)0.40075 (14)0.12969 (13)0.0120 (3)
O40.8517 (2)0.31422 (13)0.55360 (13)0.0114 (3)
O51.1555 (2)0.15980 (13)0.46941 (13)0.0119 (3)
O60.7259 (2)0.08082 (14)0.55649 (14)0.0131 (3)
H6O0.767 (5)0.009 (2)0.546 (3)0.033 (8)*
C10.7927 (3)0.28852 (18)0.31004 (18)0.0098 (3)
C20.7970 (3)0.17564 (19)0.24218 (19)0.0136 (4)
H2A0.96590.14420.23490.016*
H2B0.70530.09190.30290.016*
C30.6952 (4)0.2217 (2)0.10125 (19)0.0156 (4)
H3A0.51720.21650.11030.019*
H3B0.74040.32170.04880.019*
C40.7925 (4)0.1255 (2)0.0260 (2)0.0231 (4)
H4A0.75980.02500.08310.028*
H4B0.96930.13690.01130.028*
C50.6820 (5)0.1581 (3)0.1105 (2)0.0337 (6)
H5A0.50630.15230.09730.050*
H5B0.74100.08860.15150.050*
H5C0.72750.25430.17090.050*
O71.3880 (3)0.39603 (15)0.61934 (15)0.0182 (3)
H71O1.511 (4)0.358 (3)0.610 (3)0.034 (8)*
H72O1.335 (5)0.342 (3)0.689 (2)0.045 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01286 (17)0.01044 (16)0.00899 (16)0.00195 (11)0.00097 (12)0.00526 (12)
P10.0090 (2)0.0103 (2)0.0078 (2)0.00018 (16)0.00004 (17)0.00388 (17)
P20.0094 (2)0.0088 (2)0.0089 (2)0.00008 (16)0.00038 (17)0.00345 (17)
N10.0092 (8)0.0124 (8)0.0121 (8)0.0011 (6)0.0007 (6)0.0045 (7)
O10.0125 (6)0.0135 (6)0.0099 (6)0.0031 (5)0.0013 (5)0.0055 (5)
O20.0160 (7)0.0145 (6)0.0094 (7)0.0037 (5)0.0007 (5)0.0035 (5)
O30.0106 (6)0.0161 (6)0.0098 (6)0.0010 (5)0.0003 (5)0.0057 (5)
O40.0140 (6)0.0109 (6)0.0104 (6)0.0023 (5)0.0013 (5)0.0050 (5)
O50.0105 (6)0.0105 (6)0.0151 (6)0.0001 (5)0.0013 (5)0.0050 (5)
O60.0140 (7)0.0097 (6)0.0160 (7)0.0013 (5)0.0030 (5)0.0053 (5)
C10.0082 (8)0.0114 (8)0.0109 (8)0.0000 (6)0.0000 (7)0.0051 (7)
C20.0167 (9)0.0122 (9)0.0138 (9)0.0007 (7)0.0015 (7)0.0069 (7)
C30.0182 (10)0.0168 (9)0.0138 (9)0.0000 (7)0.0043 (7)0.0075 (8)
C40.0331 (12)0.0222 (10)0.0175 (10)0.0016 (9)0.0021 (9)0.0117 (9)
C50.0554 (17)0.0308 (12)0.0196 (11)0.0073 (11)0.0052 (11)0.0137 (10)
O70.0157 (7)0.0187 (7)0.0184 (8)0.0027 (6)0.0016 (6)0.0050 (6)
Geometric parameters (Å, º) top
Cu1—O41.9381 (12)O2—H2O0.787 (17)
Cu1—O4i1.9381 (12)O6—H6O0.791 (17)
Cu1—O11.9524 (12)C1—C21.536 (2)
Cu1—O1i1.9524 (12)C2—C31.527 (3)
Cu1—O72.5666 (15)C2—H2A0.9900
Cu1—O7i2.5666 (15)C2—H2B0.9900
P1—O31.5023 (13)C3—C41.520 (3)
P1—O11.5075 (13)C3—H3A0.9900
P1—O21.5649 (13)C3—H3B0.9900
P1—C11.8594 (18)C4—C51.520 (3)
P2—O51.4986 (13)C4—H4A0.9900
P2—O41.5153 (13)C4—H4B0.9900
P2—O61.5618 (14)C5—H5A0.9800
P2—C11.8404 (18)C5—H5B0.9800
N1—C11.507 (2)C5—H5C0.9800
N1—H11N0.91 (2)O7—H71O0.791 (17)
N1—H12N0.88 (2)O7—H72O0.786 (17)
N1—H13N0.89 (3)
O4—Cu1—O4i180.0N1—C1—P2107.55 (12)
O4—Cu1—O191.21 (5)C2—C1—P2109.19 (12)
O4i—Cu1—O188.79 (5)N1—C1—P1108.41 (12)
O4—Cu1—O1i88.79 (5)C2—C1—P1112.60 (12)
O4i—Cu1—O1i91.21 (5)P2—C1—P1108.34 (9)
O1—Cu1—O1i180.0C3—C2—C1116.32 (15)
O4—Cu1—O792.80 (5)C3—C2—H2A108.2
O4i—Cu1—O787.20 (5)C1—C2—H2A108.2
O1—Cu1—O799.95 (5)C3—C2—H2B108.2
O1i—Cu1—O780.05 (5)C1—C2—H2B108.2
O3—P1—O1113.56 (7)H2A—C2—H2B107.4
O3—P1—O2112.23 (7)C4—C3—C2110.18 (16)
O1—P1—O2109.39 (7)C4—C3—H3A109.6
O3—P1—C1109.48 (8)C2—C3—H3A109.6
O1—P1—C1107.00 (8)C4—C3—H3B109.6
O2—P1—C1104.67 (8)C2—C3—H3B109.6
O5—P2—O4118.15 (7)H3A—C3—H3B108.1
O5—P2—O6113.02 (7)C3—C4—C5112.75 (18)
O4—P2—O6105.54 (7)C3—C4—H4A109.0
O5—P2—C1107.25 (8)C5—C4—H4A109.0
O4—P2—C1106.99 (8)C3—C4—H4B109.0
O6—P2—C1105.01 (8)C5—C4—H4B109.0
C1—N1—H11N114.7 (14)H4A—C4—H4B107.8
C1—N1—H12N110.8 (15)C4—C5—H5A109.5
H11N—N1—H12N107 (2)C4—C5—H5B109.5
C1—N1—H13N112.7 (15)H5A—C5—H5B109.5
H11N—N1—H13N101 (2)C4—C5—H5C109.5
H12N—N1—H13N109 (2)H5A—C5—H5C109.5
P1—O1—Cu1139.17 (8)H5B—C5—H5C109.5
P1—O2—H2O118 (2)Cu1—O7—H71O142 (2)
P2—O4—Cu1124.94 (8)Cu1—O7—H72O101 (2)
P2—O6—H6O113 (2)H71O—O7—H72O101 (3)
N1—C1—C2110.60 (15)
O3—P1—O1—Cu1148.54 (11)O5—P2—C1—P160.90 (10)
O2—P1—O1—Cu185.23 (13)O4—P2—C1—P166.79 (10)
C1—P1—O1—Cu127.63 (14)O6—P2—C1—P1178.62 (8)
O4—Cu1—O1—P135.20 (12)O3—P1—C1—N1146.05 (11)
O4i—Cu1—O1—P1144.80 (12)O1—P1—C1—N190.47 (12)
O7—Cu1—O1—P1128.25 (12)O2—P1—C1—N125.56 (13)
O5—P2—O4—Cu156.52 (11)O3—P1—C1—C223.36 (14)
O6—P2—O4—Cu1175.96 (8)O1—P1—C1—C2146.83 (12)
C1—P2—O4—Cu164.49 (11)O2—P1—C1—C297.14 (13)
O1—Cu1—O4—P219.60 (9)O3—P1—C1—P297.52 (9)
O1i—Cu1—O4—P2160.40 (9)O1—P1—C1—P225.95 (10)
O7—Cu1—O4—P280.42 (9)O2—P1—C1—P2141.98 (8)
O5—P2—C1—N1177.89 (11)N1—C1—C2—C357.4 (2)
O4—P2—C1—N150.20 (13)P2—C1—C2—C3175.60 (14)
O6—P2—C1—N161.64 (13)P1—C1—C2—C364.01 (19)
O5—P2—C1—C262.07 (14)C1—C2—C3—C4158.78 (17)
O4—P2—C1—C2170.25 (12)C2—C3—C4—C5175.28 (19)
O6—P2—C1—C258.41 (14)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O3ii0.91 (2)1.98 (3)2.849 (2)158 (2)
N1—H12N···O7i0.88 (2)2.08 (3)2.945 (2)167 (2)
N1—H13N···O5ii0.89 (3)1.99 (3)2.849 (2)162 (2)
O2—H2O···O3iii0.79 (2)1.79 (2)2.5741 (18)178 (3)
O6—H6O···O5iv0.79 (2)1.80 (2)2.5848 (18)176 (3)
O7—H71O···O4v0.79 (2)2.04 (2)2.8071 (19)165 (3)
O7—H72O···O2i0.79 (2)2.56 (3)3.010 (2)118 (3)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x1, y, z; (iii) x+2, y+1, z; (iv) x+2, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C5H14NO6P2)2(H2O)2]
Mr591.80
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.5629 (1), 10.0236 (2), 10.5237 (2)
α, β, γ (°)69.315 (1), 86.666 (1), 88.398 (1)
V3)548.03 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.35 × 0.15 × 0.08
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.648, 0.899
No. of measured, independent and
observed [I > 2σ(I)] reflections
5322, 2277, 2104
Rint0.019
(sin θ/λ)max1)0.631
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.064, 1.07
No. of reflections2277
No. of parameters168
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.36

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2010), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—O41.9381 (12)Cu1—O72.5666 (15)
Cu1—O11.9524 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H11N···O3i0.91 (2)1.98 (3)2.849 (2)158 (2)
N1—H12N···O7ii0.88 (2)2.08 (3)2.945 (2)167 (2)
N1—H13N···O5i0.89 (3)1.99 (3)2.849 (2)162 (2)
O2—H2O···O3iii0.787 (17)1.788 (18)2.5741 (18)178 (3)
O6—H6O···O5iv0.791 (17)1.795 (17)2.5848 (18)176 (3)
O7—H71O···O4v0.791 (17)2.036 (18)2.8071 (19)165 (3)
O7—H72O···O2ii0.786 (17)2.56 (3)3.010 (2)118 (3)
Symmetry codes: (i) x1, y, z; (ii) x+2, y+1, z+1; (iii) x+2, y+1, z; (iv) x+2, y, z+1; (v) x+1, y, z.
 

Acknowledgements

The authors thank the Ukraininan National Academy of Sciences for financial support of this work.

References

First citationBrandenburg, K. & Putz, H. (2010). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEberhardt, C., Schwarz, M. & Kurth, A. H. (2005). J. Orthop. Sci. 10, 622–626.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMatczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.  Web of Science CrossRef CAS Google Scholar
First citationSergienko, V. S., Afonin, E. G. & Aleksandrov, G. G. (1999). Koord. Khim. 25, 133–142  Google Scholar
First citationSergienko, V. S., Aleksandrov, G. G. & Afonin, E. G. (1997). Zh. Neorg. Khim. 42, 1291–1296  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds