inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

β-Nd2Mo4O15

aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn

(Received 4 November 2010; accepted 22 November 2010; online 27 November 2010)

The title compound, dineodymium(III) tetra­molybdate(VI), has been prepared by a flux technique and is the second polymorph of composition Nd2Mo4O15. The crystal structure is isotypic with those of Ce2Mo4O15 and Pr2Mo4O15. It features a three-dimensional network composed of distorted edge- and corner-sharing NdO7 polyhedra, NdO8 polyhedra, MoO4 tetra­hedra and MoO6 octa­hedra.

Related literature

For background to molybdates with rare earth (RE) cations, see: Borchardt & Bierstedt (1966[Borchardt, H. J. & Bierstedt, P. E. (1966). Appl. Phys. Lett. 8, 50-52.]); Ouwerkerk et al. (1982[Ouwerkerk, M., Kellendonk, F. & Blasse, G. (1982). J. Chem. Soc. Faraday Trans. 2, 603-611.]). For the α-polymorph of Nd2Mo4O15, see: Naruke & Yamase (2003[Naruke, H. & Yamase, T. (2003). J. Solid State Chem. 173, 407-417.]). Structures isotypic with β-Nd2Mo4O15 were reported for the Ce (Fallon & Gatehouse, 1982[Fallon, G. D. & Gatehouse, B. M. (1982). J. Solid State Chem. 44, 156-161.]) and Pr (Efremov et al., 1988a[Efremov, V. A., Davydova, N. N. & Trunov, V. K. (1988a). Zh. Neorg. Khim. 33, 3001-3004.]) analogues. For the crystal structures, properties and applications of other molybdates with general formula RE2Mo4O15, see: RE = La (Dubois et al., 2001[Dubois, F., Goutenoire, F., Laligant, Y., Suard, E. & Lacorre, P. (2001). J. Solid State Chem. 159, 228-233.]); Tb (Naruke & Yamase, 2001[Naruke, H. & Yamase, T. (2001). Acta Cryst. E57, i106-i108.]); La, Nd, Sm (Naruke & Yamase, 2003[Naruke, H. & Yamase, T. (2003). J. Solid State Chem. 173, 407-417.]); Ho (Efremov et al., 1988b[Efremov, V. A., Davydova, N. N., Gokhman, L. Z., Evdokimov, A. A. & Trunov, V. K. (1988b). Zh. Neorg. Khim. 33, 3005-3010.]).

Experimental

Crystal data
  • Nd2Mo4O15

  • Mr = 912.24

  • Triclinic, [P \overline 1]

  • a = 7.4000 (6) Å

  • b = 7.4992 (6) Å

  • c = 11.7291 (9) Å

  • α = 88.916 (2)°

  • β = 83.957 (1)°

  • γ = 84.196 (2)°

  • V = 643.94 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.77 mm−1

  • T = 293 K

  • 0.15 × 0.15 × 0.05 mm

Data collection
  • Bruker SMART 1K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.271, Tmax = 0.591

  • 3620 measured reflections

  • 2390 independent reflections

  • 2268 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.128

  • S = 1.05

  • 2390 reflections

  • 191 parameters

  • Δρmax = 3.38 e Å−3

  • Δρmin = −2.54 e Å−3

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2004[Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Rare-earth molybdate compounds have been intensively studied due to their diversity and excellent chemical stabilities, as well as their potential applications as laser host phosphors, or as ferroelectric and ferroelastic materials (Borchardt & Bierstedt, 1966; Ouwerkerk et al., 1982). Previous studies of the family of RE2Mo4O15 (RE is a rare earth metal cation) compounds show that they adopt different structure types, such as monoclinic La2Mo4O15 with Z = 4 (Dubois et al., 2001; Naruke & Yamase, 2003); Tb2Mo4O15 (Naruke & Yamase, 2001) and Ho2Mo4O15 (Efremov et al., 1988b) with Z = 2, or triclinic Nd2Mo4O15 (Naruke & Yamase, 2003) with Z = 3. In this paper, we present synthesis and crystal structure of the β-phase of compound Nd2Mo4O15 which is structurally different from the first (α-) Nd2Mo4O15 polymorph (Naruke & Yamase, 2003), but is isotypic with Ce2Mo4O15 (Fallon & Gatehouse, 1982) and Pr2Mo4O15 (Efremov et al., 1988a) with Z = 2.

The structure of β-Nd2Mo4O15 features a three-dimensional framework composed of distorted NdO7, NdO8, MoO4 and MoO6 polyhedra, as shown in Fig. 1. There are four crystallographically different Mo atoms in the asymmetric unit. Mo(1), Mo(2), Mo(3) atoms are surrounded by four oxygen atoms within a tetrahedral coordination, while the Mo(4) atom is surrrounded by six oxygen atoms within a considerably distorted octahedral coordination. Two adjacent Mo(4)O6 octahedra are connected through edge-sharing, forming Mo2O10 units. These Mo2O10 units are interconnected by Mo(1)O4 tetrahedra via corner-sharing to form an infinite Mo4O14 chain parallel to [100]. The distorted environments of the two Nd atoms Nd(1) and Nd(2) are different. While Nd(1) is coordinated by seven oxygen atoms, Nd(2) is coordinated by eight oxygen atoms. The Mo4O14 chains are linked perpendicularly to the chain direction into a three-dimensional framework via isolated Mo(2)O4 and Mo(3)O4 tetrahedra and by Nd(1)O7 and Nd(2)O8 polyhedra sharing edges and corners (Fig. 2) .

Related literature top

For background to molybdates with rare earth (RE) cations, see: Borchardt & Bierstedt (1966); Ouwerkerk et al. (1982). For the α-polymorph of Nd2Mo4O15, see: (Naruke & Yamase, 2003). Structures isotypic with β-Nd2Mo4O15 were reported for the Ce (Fallon & Gatehouse, 1982) and Pr (Efremov et al., 1988a) analogues. For the crystal structures, properties and applications of other molybdates with general formula RE2Mo4O15 (RE is a rare earth metal), see: RE = La (Dubois et al., 2001); Tb (Naruke & Yamase, 2001); La, Nd, Sm (Naruke & Yamase, 2003); Ho (Efremov et al., 1988b).

Experimental top

The finely ground reagents K2CO3, Nd2O3, and MoO3 were mixed in the molar ratio K: Nd: Mo = 3: 2: 6, were placed in a Pt crucible, and heated at 573 K for 4 h. The mixture was then re-ground and heated at 1273 K for 20 h, then cooled to 673 K at a rate of 3 K h-1, and finally quenched to room temperature. A few light-red crystals of the title compound with prismatic shape were obtained.

Refinement top

The highest peak in the difference electron density map equals to 3.38 e/Å3 at the distance of 0.92 Å from the Nd(1) site while the deepest hole equals to -2.54 e/Å3 at the distance of 1.22 Å from the Nd(2) site.

Structure description top

Rare-earth molybdate compounds have been intensively studied due to their diversity and excellent chemical stabilities, as well as their potential applications as laser host phosphors, or as ferroelectric and ferroelastic materials (Borchardt & Bierstedt, 1966; Ouwerkerk et al., 1982). Previous studies of the family of RE2Mo4O15 (RE is a rare earth metal cation) compounds show that they adopt different structure types, such as monoclinic La2Mo4O15 with Z = 4 (Dubois et al., 2001; Naruke & Yamase, 2003); Tb2Mo4O15 (Naruke & Yamase, 2001) and Ho2Mo4O15 (Efremov et al., 1988b) with Z = 2, or triclinic Nd2Mo4O15 (Naruke & Yamase, 2003) with Z = 3. In this paper, we present synthesis and crystal structure of the β-phase of compound Nd2Mo4O15 which is structurally different from the first (α-) Nd2Mo4O15 polymorph (Naruke & Yamase, 2003), but is isotypic with Ce2Mo4O15 (Fallon & Gatehouse, 1982) and Pr2Mo4O15 (Efremov et al., 1988a) with Z = 2.

The structure of β-Nd2Mo4O15 features a three-dimensional framework composed of distorted NdO7, NdO8, MoO4 and MoO6 polyhedra, as shown in Fig. 1. There are four crystallographically different Mo atoms in the asymmetric unit. Mo(1), Mo(2), Mo(3) atoms are surrounded by four oxygen atoms within a tetrahedral coordination, while the Mo(4) atom is surrrounded by six oxygen atoms within a considerably distorted octahedral coordination. Two adjacent Mo(4)O6 octahedra are connected through edge-sharing, forming Mo2O10 units. These Mo2O10 units are interconnected by Mo(1)O4 tetrahedra via corner-sharing to form an infinite Mo4O14 chain parallel to [100]. The distorted environments of the two Nd atoms Nd(1) and Nd(2) are different. While Nd(1) is coordinated by seven oxygen atoms, Nd(2) is coordinated by eight oxygen atoms. The Mo4O14 chains are linked perpendicularly to the chain direction into a three-dimensional framework via isolated Mo(2)O4 and Mo(3)O4 tetrahedra and by Nd(1)O7 and Nd(2)O8 polyhedra sharing edges and corners (Fig. 2) .

For background to molybdates with rare earth (RE) cations, see: Borchardt & Bierstedt (1966); Ouwerkerk et al. (1982). For the α-polymorph of Nd2Mo4O15, see: (Naruke & Yamase, 2003). Structures isotypic with β-Nd2Mo4O15 were reported for the Ce (Fallon & Gatehouse, 1982) and Pr (Efremov et al., 1988a) analogues. For the crystal structures, properties and applications of other molybdates with general formula RE2Mo4O15 (RE is a rare earth metal), see: RE = La (Dubois et al., 2001); Tb (Naruke & Yamase, 2001); La, Nd, Sm (Naruke & Yamase, 2003); Ho (Efremov et al., 1988b).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The expanded asymmetric unit of β-Nd2Mo4O15 showing the coordination environments of the Mo and Nd atoms. [Symmetry codes: (i) x, y, z; (ii) 1 - x, 1 - y, 1 - z; (iii) -1 + x, 1 + y, z; (iv) 1 - x, 1 - y, -z; (v) x, 1 + y, z; (vi) -x, 1 - y, 1 - z; (vii) x, -1 + y, z; (viii) -1 + x, y, z.]
[Figure 2] Fig. 2. View of the crystal structure of β-Nd2Mo4O15 along [010]. MoO4 and MoO6 units are given in the polyhedral representation.
dineodymium(III) tetramolybdate(VI) top
Crystal data top
Nd2Mo4O15Z = 2
Mr = 912.24F(000) = 816
Triclinic, P1Dx = 4.705 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.4000 (6) ÅCell parameters from 487 reflections
b = 7.4992 (6) Åθ = 2.1–23.0°
c = 11.7291 (9) ŵ = 11.77 mm1
α = 88.916 (2)°T = 293 K
β = 83.957 (1)°Prism, light-red
γ = 84.196 (2)°0.15 × 0.15 × 0.05 mm
V = 643.94 (9) Å3
Data collection top
Bruker SMART 1K CCD
diffractometer
2390 independent reflections
Radiation source: fine-focus sealed tube2268 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 25.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 98
Tmin = 0.271, Tmax = 0.591k = 96
3620 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 w = 1/[σ2(Fo2) + (0.0986P)2 + 6.3644P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.128(Δ/σ)max < 0.001
S = 1.05Δρmax = 3.38 e Å3
2390 reflectionsΔρmin = 2.54 e Å3
191 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0080 (7)
Crystal data top
Nd2Mo4O15γ = 84.196 (2)°
Mr = 912.24V = 643.94 (9) Å3
Triclinic, P1Z = 2
a = 7.4000 (6) ÅMo Kα radiation
b = 7.4992 (6) ŵ = 11.77 mm1
c = 11.7291 (9) ÅT = 293 K
α = 88.916 (2)°0.15 × 0.15 × 0.05 mm
β = 83.957 (1)°
Data collection top
Bruker SMART 1K CCD
diffractometer
2390 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
2268 reflections with I > 2σ(I)
Tmin = 0.271, Tmax = 0.591Rint = 0.040
3620 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.046191 parameters
wR(F2) = 0.1280 restraints
S = 1.05Δρmax = 3.38 e Å3
2390 reflectionsΔρmin = 2.54 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conven tional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Nd10.24478 (7)0.41215 (6)0.22477 (4)0.0090 (2)
Nd20.67891 (6)0.09060 (6)0.22360 (4)0.0081 (2)
Mo10.43929 (11)0.25334 (11)0.52879 (7)0.0093 (3)
Mo20.72798 (11)0.57014 (10)0.12800 (7)0.0081 (3)
Mo30.22775 (11)0.92862 (10)0.12894 (7)0.0084 (3)
Mo40.09418 (11)0.67225 (10)0.52795 (7)0.0090 (3)
O110.0842 (9)0.4745 (9)0.4032 (6)0.0122 (14)
O20.6680 (10)0.2917 (10)0.5608 (6)0.0180 (15)
O150.5756 (9)0.4080 (9)0.1806 (6)0.0124 (14)
O80.3544 (9)0.0941 (9)0.1872 (6)0.0116 (14)
O10.2954 (10)0.4305 (9)0.5914 (6)0.0161 (15)
O50.8677 (10)0.2270 (10)0.3442 (7)0.0183 (15)
O70.7035 (11)0.0974 (11)0.0170 (7)0.0209 (17)
O120.0335 (11)0.8313 (10)0.4610 (7)0.0217 (16)
O40.4229 (10)0.2652 (9)0.3798 (6)0.0153 (15)
O60.9983 (10)0.0078 (11)0.1526 (7)0.0231 (17)
O90.2747 (11)0.4070 (11)0.0191 (7)0.0227 (17)
O100.2620 (11)0.7197 (10)0.1964 (6)0.0200 (16)
O130.6638 (11)0.7841 (10)0.1853 (7)0.0207 (16)
O140.9451 (11)0.4864 (12)0.1581 (7)0.0253 (18)
O30.3788 (10)0.0521 (9)0.5944 (6)0.0150 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Nd10.0097 (3)0.0080 (3)0.0089 (3)0.0000 (2)0.0000 (2)0.0003 (2)
Nd20.0096 (3)0.0058 (3)0.0091 (3)0.0022 (2)0.0012 (2)0.0003 (2)
Mo10.0098 (4)0.0084 (4)0.0101 (4)0.0026 (3)0.0019 (3)0.0022 (3)
Mo20.0086 (4)0.0075 (4)0.0084 (4)0.0030 (3)0.0001 (3)0.0001 (3)
Mo30.0089 (4)0.0080 (4)0.0088 (4)0.0025 (3)0.0011 (3)0.0016 (3)
Mo40.0083 (4)0.0079 (4)0.0113 (4)0.0026 (3)0.0011 (3)0.0023 (3)
O110.013 (3)0.013 (3)0.011 (3)0.004 (3)0.001 (3)0.000 (3)
O20.017 (4)0.023 (4)0.015 (4)0.006 (3)0.000 (3)0.002 (3)
O150.006 (3)0.011 (3)0.020 (4)0.001 (2)0.003 (3)0.006 (3)
O80.010 (3)0.008 (3)0.017 (3)0.006 (3)0.002 (3)0.002 (3)
O10.019 (4)0.009 (3)0.019 (4)0.003 (3)0.000 (3)0.001 (3)
O50.016 (4)0.016 (4)0.024 (4)0.004 (3)0.001 (3)0.004 (3)
O70.026 (4)0.024 (4)0.012 (4)0.001 (3)0.000 (3)0.006 (3)
O120.023 (4)0.016 (4)0.027 (4)0.003 (3)0.008 (3)0.000 (3)
O40.015 (3)0.009 (3)0.019 (4)0.005 (3)0.001 (3)0.001 (3)
O60.012 (4)0.030 (5)0.026 (4)0.002 (3)0.001 (3)0.002 (3)
O90.026 (4)0.027 (4)0.016 (4)0.005 (3)0.001 (3)0.003 (3)
O100.032 (4)0.015 (4)0.016 (4)0.005 (3)0.013 (3)0.004 (3)
O130.031 (4)0.011 (4)0.021 (4)0.006 (3)0.006 (3)0.001 (3)
O140.015 (4)0.039 (5)0.021 (4)0.007 (3)0.003 (3)0.007 (4)
O30.017 (3)0.008 (3)0.019 (4)0.002 (3)0.000 (3)0.008 (3)
Geometric parameters (Å, º) top
Nd1—O112.326 (7)Mo2—O151.798 (7)
Nd1—O102.339 (7)Mo3—O6v1.737 (7)
Nd1—O92.400 (8)Mo3—O7iv1.742 (8)
Nd1—O14i2.437 (8)Mo3—O101.749 (7)
Nd1—O152.446 (6)Mo3—O8vi1.814 (6)
Nd1—O82.472 (7)Mo4—O121.680 (8)
Nd1—O42.528 (7)Mo4—O5vii1.753 (7)
Nd1—Nd23.8158 (7)Mo4—O11viii1.909 (7)
Nd2—O13ii2.366 (7)Mo4—O2vii1.989 (7)
Nd2—O3iii2.387 (7)Mo4—O112.115 (7)
Nd2—O52.399 (7)Mo4—O12.386 (7)
Nd2—O72.411 (8)Mo4—Mo4viii3.1674 (15)
Nd2—O62.444 (7)O11—Mo4viii1.909 (7)
Nd2—O82.480 (7)O2—Mo4vii1.989 (7)
Nd2—O152.484 (7)O8—Mo3ii1.814 (6)
Nd2—O42.742 (7)O5—Mo4vii1.753 (7)
Mo1—O11.739 (7)O7—Mo3iv1.742 (8)
Mo1—O31.758 (7)O6—Mo3ix1.737 (7)
Mo1—O41.764 (7)O9—Mo2iv1.733 (8)
Mo1—O21.823 (7)O13—Nd2vi2.366 (7)
Mo2—O9iv1.733 (8)O14—Nd1x2.437 (8)
Mo2—O141.734 (8)O3—Nd2iii2.387 (7)
Mo2—O131.753 (7)
O11—Nd1—O1088.8 (3)O4—Nd2—Nd141.44 (15)
O11—Nd1—O9153.3 (3)O1—Mo1—O3108.8 (3)
O10—Nd1—O983.4 (3)O1—Mo1—O4107.4 (3)
O11—Nd1—O14i82.8 (3)O3—Mo1—O4114.5 (3)
O10—Nd1—O14i82.1 (3)O1—Mo1—O2105.5 (3)
O9—Nd1—O14i70.9 (3)O3—Mo1—O2109.3 (3)
O11—Nd1—O15125.3 (2)O4—Mo1—O2110.9 (3)
O10—Nd1—O1581.3 (3)O9iv—Mo2—O14109.3 (4)
O9—Nd1—O1578.7 (3)O9iv—Mo2—O13106.3 (4)
O14i—Nd1—O15146.7 (3)O14—Mo2—O13112.1 (4)
O11—Nd1—O8116.2 (2)O9iv—Mo2—O15109.1 (4)
O10—Nd1—O8152.5 (3)O14—Mo2—O15107.0 (3)
O9—Nd1—O878.6 (3)O13—Mo2—O15113.0 (3)
O14i—Nd1—O8110.8 (3)O6v—Mo3—O7iv111.1 (4)
O15—Nd1—O875.0 (2)O6v—Mo3—O10109.0 (4)
O11—Nd1—O470.6 (2)O7iv—Mo3—O10108.4 (4)
O10—Nd1—O4116.3 (2)O6v—Mo3—O8vi106.6 (4)
O9—Nd1—O4135.5 (2)O7iv—Mo3—O8vi109.7 (3)
O14i—Nd1—O4146.5 (2)O10—Mo3—O8vi112.0 (3)
O15—Nd1—O466.7 (2)O12—Mo4—O5vii104.3 (4)
O8—Nd1—O466.3 (2)O12—Mo4—O11viii102.4 (4)
O11—Nd1—Nd2116.20 (17)O5vii—Mo4—O11viii95.7 (3)
O10—Nd1—Nd2120.5 (2)O12—Mo4—O2vii97.0 (4)
O9—Nd1—Nd289.6 (2)O5vii—Mo4—O2vii97.9 (3)
O14i—Nd1—Nd2148.9 (2)O11viii—Mo4—O2vii152.7 (3)
O15—Nd1—Nd239.66 (16)O12—Mo4—O1194.5 (3)
O8—Nd1—Nd239.68 (15)O5vii—Mo4—O11160.8 (3)
O4—Nd1—Nd245.87 (15)O11viii—Mo4—O1176.3 (3)
O13ii—Nd2—O3iii73.9 (3)O2vii—Mo4—O1183.4 (3)
O13ii—Nd2—O5129.8 (3)O12—Mo4—O1170.4 (3)
O3iii—Nd2—O575.9 (3)O5vii—Mo4—O183.9 (3)
O13ii—Nd2—O779.6 (3)O11viii—Mo4—O181.3 (3)
O3iii—Nd2—O7153.0 (3)O2vii—Mo4—O176.7 (3)
O5—Nd2—O7126.9 (3)O11—Mo4—O177.7 (3)
O13ii—Nd2—O680.7 (3)O12—Mo4—Mo4viii100.5 (3)
O3iii—Nd2—O6107.9 (3)O5vii—Mo4—Mo4viii133.6 (3)
O5—Nd2—O671.7 (3)O11viii—Mo4—Mo4viii40.4 (2)
O7—Nd2—O672.0 (3)O2vii—Mo4—Mo4viii117.3 (2)
O13ii—Nd2—O879.2 (3)O11—Mo4—Mo4viii35.83 (18)
O3iii—Nd2—O891.6 (2)O1—Mo4—Mo4viii76.52 (17)
O5—Nd2—O8140.7 (2)Mo4viii—O11—Mo4103.7 (3)
O7—Nd2—O878.5 (3)Mo4viii—O11—Nd1122.5 (3)
O6—Nd2—O8146.8 (3)Mo4—O11—Nd1133.7 (3)
O13ii—Nd2—O15147.6 (2)Mo1—O2—Mo4vii136.8 (4)
O3iii—Nd2—O15124.5 (2)Mo2—O15—Nd1135.0 (4)
O5—Nd2—O1582.5 (2)Mo2—O15—Nd2123.6 (3)
O7—Nd2—O1577.3 (3)Nd1—O15—Nd2101.4 (2)
O6—Nd2—O15112.6 (3)Mo3ii—O8—Nd1126.2 (3)
O8—Nd2—O1574.2 (2)Mo3ii—O8—Nd2132.4 (3)
O13ii—Nd2—O4119.7 (3)Nd1—O8—Nd2100.8 (2)
O3iii—Nd2—O463.0 (2)Mo1—O1—Mo4136.9 (4)
O5—Nd2—O478.3 (2)Mo4vii—O5—Nd2152.6 (4)
O7—Nd2—O4129.9 (2)Mo3iv—O7—Nd2165.9 (5)
O6—Nd2—O4150.0 (2)Mo1—O4—Nd1144.6 (4)
O8—Nd2—O463.0 (2)Mo1—O4—Nd2122.6 (3)
O15—Nd2—O462.9 (2)Nd1—O4—Nd292.7 (2)
O13ii—Nd2—Nd1118.7 (2)Mo3ix—O6—Nd2168.5 (5)
O3iii—Nd2—Nd199.86 (17)Mo2iv—O9—Nd1171.6 (5)
O5—Nd2—Nd1105.23 (18)Mo3—O10—Nd1156.8 (4)
O7—Nd2—Nd188.49 (19)Mo2—O13—Nd2vi159.0 (5)
O6—Nd2—Nd1150.0 (2)Mo2—O14—Nd1x169.8 (5)
O8—Nd2—Nd139.53 (15)Mo1—O3—Nd2iii143.0 (4)
O15—Nd2—Nd138.92 (15)
Symmetry codes: (i) x1, y, z; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z; (v) x1, y+1, z; (vi) x, y+1, z; (vii) x+1, y+1, z+1; (viii) x, y+1, z+1; (ix) x+1, y1, z; (x) x+1, y, z.

Experimental details

Crystal data
Chemical formulaNd2Mo4O15
Mr912.24
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.4000 (6), 7.4992 (6), 11.7291 (9)
α, β, γ (°)88.916 (2), 83.957 (1), 84.196 (2)
V3)643.94 (9)
Z2
Radiation typeMo Kα
µ (mm1)11.77
Crystal size (mm)0.15 × 0.15 × 0.05
Data collection
DiffractometerBruker SMART 1K CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.271, 0.591
No. of measured, independent and
observed [I > 2σ(I)] reflections
3620, 2390, 2268
Rint0.040
(sin θ/λ)max1)0.611
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.128, 1.05
No. of reflections2390
No. of parameters191
Δρmax, Δρmin (e Å3)3.38, 2.54

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).

 

References

First citationBorchardt, H. J. & Bierstedt, P. E. (1966). Appl. Phys. Lett. 8, 50–52.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDubois, F., Goutenoire, F., Laligant, Y., Suard, E. & Lacorre, P. (2001). J. Solid State Chem. 159, 228–233.  Web of Science CrossRef CAS Google Scholar
First citationEfremov, V. A., Davydova, N. N., Gokhman, L. Z., Evdokimov, A. A. & Trunov, V. K. (1988b). Zh. Neorg. Khim. 33, 3005–3010.  CAS Google Scholar
First citationEfremov, V. A., Davydova, N. N. & Trunov, V. K. (1988a). Zh. Neorg. Khim. 33, 3001–3004.  CAS Google Scholar
First citationFallon, G. D. & Gatehouse, B. M. (1982). J. Solid State Chem. 44, 156–161.  CrossRef CAS Web of Science Google Scholar
First citationNaruke, H. & Yamase, T. (2001). Acta Cryst. E57, i106–i108.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNaruke, H. & Yamase, T. (2003). J. Solid State Chem. 173, 407–417.  Web of Science CrossRef CAS Google Scholar
First citationOuwerkerk, M., Kellendonk, F. & Blasse, G. (1982). J. Chem. Soc. Faraday Trans. 2, 603–611.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds