inorganic compounds
β-Nd2Mo4O15
aDepartment of Physics and Chemistry, Henan Polytechnic University, Jiaozuo, Henan 454000, People's Republic of China
*Correspondence e-mail: iamzd@hpu.edu.cn
The title compound, dineodymium(III) tetramolybdate(VI), has been prepared by a 2Mo4O15. The is isotypic with those of Ce2Mo4O15 and Pr2Mo4O15. It features a three-dimensional network composed of distorted edge- and corner-sharing NdO7 polyhedra, NdO8 polyhedra, MoO4 tetrahedra and MoO6 octahedra.
technique and is the second polymorph of composition NdRelated literature
For background to molybdates with rare earth (RE) cations, see: Borchardt & Bierstedt (1966); Ouwerkerk et al. (1982). For the α-polymorph of Nd2Mo4O15, see: Naruke & Yamase (2003). Structures isotypic with β-Nd2Mo4O15 were reported for the Ce (Fallon & Gatehouse, 1982) and Pr (Efremov et al., 1988a) analogues. For the crystal structures, properties and applications of other molybdates with general formula RE2Mo4O15, see: RE = La (Dubois et al., 2001); Tb (Naruke & Yamase, 2001); La, Nd, Sm (Naruke & Yamase, 2003); Ho (Efremov et al., 1988b).
Experimental
Crystal data
|
Data collection: SMART (Bruker, 1997); cell SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Supporting information
https://doi.org/10.1107/S1600536810048609/wm2425sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810048609/wm2425Isup2.hkl
The finely ground reagents K2CO3, Nd2O3, and MoO3 were mixed in the molar ratio K: Nd: Mo = 3: 2: 6, were placed in a Pt crucible, and heated at 573 K for 4 h. The mixture was then re-ground and heated at 1273 K for 20 h, then cooled to 673 K at a rate of 3 K h-1, and finally quenched to room temperature. A few light-red crystals of the title compound with prismatic shape were obtained.
The highest peak in the difference
equals to 3.38 e/Å3 at the distance of 0.92 Å from the Nd(1) site while the deepest hole equals to -2.54 e/Å3 at the distance of 1.22 Å from the Nd(2) site.Rare-earth molybdate compounds have been intensively studied due to their diversity and excellent chemical stabilities, as well as their potential applications as laser host phosphors, or as ferroelectric and ferroelastic materials (Borchardt & Bierstedt, 1966; Ouwerkerk et al., 1982). Previous studies of the family of RE2Mo4O15 (RE is a rare earth metal cation) compounds show that they adopt different structure types, such as monoclinic La2Mo4O15 with Z = 4 (Dubois et al., 2001; Naruke & Yamase, 2003); Tb2Mo4O15 (Naruke & Yamase, 2001) and Ho2Mo4O15 (Efremov et al., 1988b) with Z = 2, or triclinic Nd2Mo4O15 (Naruke & Yamase, 2003) with Z = 3. In this paper, we present synthesis and β-phase of compound Nd2Mo4O15 which is structurally different from the first (α-) Nd2Mo4O15 polymorph (Naruke & Yamase, 2003), but is isotypic with Ce2Mo4O15 (Fallon & Gatehouse, 1982) and Pr2Mo4O15 (Efremov et al., 1988a) with Z = 2.
of theThe structure of β-Nd2Mo4O15 features a three-dimensional framework composed of distorted NdO7, NdO8, MoO4 and MoO6 polyhedra, as shown in Fig. 1. There are four crystallographically different Mo atoms in the Mo(1), Mo(2), Mo(3) atoms are surrounded by four oxygen atoms within a tetrahedral coordination, while the Mo(4) atom is surrrounded by six oxygen atoms within a considerably distorted octahedral coordination. Two adjacent Mo(4)O6 octahedra are connected through edge-sharing, forming Mo2O10 units. These Mo2O10 units are interconnected by Mo(1)O4 tetrahedra via corner-sharing to form an infinite Mo4O14 chain parallel to [100]. The distorted environments of the two Nd atoms Nd(1) and Nd(2) are different. While Nd(1) is coordinated by seven oxygen atoms, Nd(2) is coordinated by eight oxygen atoms. The Mo4O14 chains are linked perpendicularly to the chain direction into a three-dimensional framework via isolated Mo(2)O4 and Mo(3)O4 tetrahedra and by Nd(1)O7 and Nd(2)O8 polyhedra sharing edges and corners (Fig. 2) .
For background to molybdates with rare earth (RE) cations, see: Borchardt & Bierstedt (1966); Ouwerkerk et al. (1982). For the α-polymorph of Nd2Mo4O15, see: (Naruke & Yamase, 2003). Structures isotypic with β-Nd2Mo4O15 were reported for the Ce (Fallon & Gatehouse, 1982) and Pr (Efremov et al., 1988a) analogues. For the crystal structures, properties and applications of other molybdates with general formula RE2Mo4O15 (RE is a rare earth metal), see: RE = La (Dubois et al., 2001); Tb (Naruke & Yamase, 2001); La, Nd, Sm (Naruke & Yamase, 2003); Ho (Efremov et al., 1988b).
Data collection: SMART (Bruker, 1997); cell
SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2004); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Nd2Mo4O15 | Z = 2 |
Mr = 912.24 | F(000) = 816 |
Triclinic, P1 | Dx = 4.705 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.4000 (6) Å | Cell parameters from 487 reflections |
b = 7.4992 (6) Å | θ = 2.1–23.0° |
c = 11.7291 (9) Å | µ = 11.77 mm−1 |
α = 88.916 (2)° | T = 293 K |
β = 83.957 (1)° | Prism, light-red |
γ = 84.196 (2)° | 0.15 × 0.15 × 0.05 mm |
V = 643.94 (9) Å3 |
Bruker SMART 1K CCD diffractometer | 2390 independent reflections |
Radiation source: fine-focus sealed tube | 2268 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ω scans | θmax = 25.7°, θmin = 1.8° |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | h = −9→8 |
Tmin = 0.271, Tmax = 0.591 | k = −9→6 |
3620 measured reflections | l = −14→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | w = 1/[σ2(Fo2) + (0.0986P)2 + 6.3644P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.128 | (Δ/σ)max < 0.001 |
S = 1.05 | Δρmax = 3.38 e Å−3 |
2390 reflections | Δρmin = −2.54 e Å−3 |
191 parameters | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
0 restraints | Extinction coefficient: 0.0080 (7) |
Nd2Mo4O15 | γ = 84.196 (2)° |
Mr = 912.24 | V = 643.94 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.4000 (6) Å | Mo Kα radiation |
b = 7.4992 (6) Å | µ = 11.77 mm−1 |
c = 11.7291 (9) Å | T = 293 K |
α = 88.916 (2)° | 0.15 × 0.15 × 0.05 mm |
β = 83.957 (1)° |
Bruker SMART 1K CCD diffractometer | 2390 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1997) | 2268 reflections with I > 2σ(I) |
Tmin = 0.271, Tmax = 0.591 | Rint = 0.040 |
3620 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 191 parameters |
wR(F2) = 0.128 | 0 restraints |
S = 1.05 | Δρmax = 3.38 e Å−3 |
2390 reflections | Δρmin = −2.54 e Å−3 |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conven tional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Nd1 | 0.24478 (7) | 0.41215 (6) | 0.22477 (4) | 0.0090 (2) | |
Nd2 | 0.67891 (6) | 0.09060 (6) | 0.22360 (4) | 0.0081 (2) | |
Mo1 | 0.43929 (11) | 0.25334 (11) | 0.52879 (7) | 0.0093 (3) | |
Mo2 | 0.72798 (11) | 0.57014 (10) | 0.12800 (7) | 0.0081 (3) | |
Mo3 | 0.22775 (11) | 0.92862 (10) | 0.12894 (7) | 0.0084 (3) | |
Mo4 | 0.09418 (11) | 0.67225 (10) | 0.52795 (7) | 0.0090 (3) | |
O11 | 0.0842 (9) | 0.4745 (9) | 0.4032 (6) | 0.0122 (14) | |
O2 | 0.6680 (10) | 0.2917 (10) | 0.5608 (6) | 0.0180 (15) | |
O15 | 0.5756 (9) | 0.4080 (9) | 0.1806 (6) | 0.0124 (14) | |
O8 | 0.3544 (9) | 0.0941 (9) | 0.1872 (6) | 0.0116 (14) | |
O1 | 0.2954 (10) | 0.4305 (9) | 0.5914 (6) | 0.0161 (15) | |
O5 | 0.8677 (10) | 0.2270 (10) | 0.3442 (7) | 0.0183 (15) | |
O7 | 0.7035 (11) | 0.0974 (11) | 0.0170 (7) | 0.0209 (17) | |
O12 | −0.0335 (11) | 0.8313 (10) | 0.4610 (7) | 0.0217 (16) | |
O4 | 0.4229 (10) | 0.2652 (9) | 0.3798 (6) | 0.0153 (15) | |
O6 | 0.9983 (10) | 0.0078 (11) | 0.1526 (7) | 0.0231 (17) | |
O9 | 0.2747 (11) | 0.4070 (11) | 0.0191 (7) | 0.0227 (17) | |
O10 | 0.2620 (11) | 0.7197 (10) | 0.1964 (6) | 0.0200 (16) | |
O13 | 0.6638 (11) | 0.7841 (10) | 0.1853 (7) | 0.0207 (16) | |
O14 | 0.9451 (11) | 0.4864 (12) | 0.1581 (7) | 0.0253 (18) | |
O3 | 0.3788 (10) | 0.0521 (9) | 0.5944 (6) | 0.0150 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Nd1 | 0.0097 (3) | 0.0080 (3) | 0.0089 (3) | 0.0000 (2) | 0.0000 (2) | 0.0003 (2) |
Nd2 | 0.0096 (3) | 0.0058 (3) | 0.0091 (3) | −0.0022 (2) | −0.0012 (2) | −0.0003 (2) |
Mo1 | 0.0098 (4) | 0.0084 (4) | 0.0101 (4) | −0.0026 (3) | −0.0019 (3) | 0.0022 (3) |
Mo2 | 0.0086 (4) | 0.0075 (4) | 0.0084 (4) | −0.0030 (3) | 0.0001 (3) | 0.0001 (3) |
Mo3 | 0.0089 (4) | 0.0080 (4) | 0.0088 (4) | −0.0025 (3) | −0.0011 (3) | −0.0016 (3) |
Mo4 | 0.0083 (4) | 0.0079 (4) | 0.0113 (4) | −0.0026 (3) | −0.0011 (3) | −0.0023 (3) |
O11 | 0.013 (3) | 0.013 (3) | 0.011 (3) | −0.004 (3) | −0.001 (3) | 0.000 (3) |
O2 | 0.017 (4) | 0.023 (4) | 0.015 (4) | −0.006 (3) | 0.000 (3) | 0.002 (3) |
O15 | 0.006 (3) | 0.011 (3) | 0.020 (4) | −0.001 (2) | 0.003 (3) | −0.006 (3) |
O8 | 0.010 (3) | 0.008 (3) | 0.017 (3) | −0.006 (3) | −0.002 (3) | −0.002 (3) |
O1 | 0.019 (4) | 0.009 (3) | 0.019 (4) | −0.003 (3) | 0.000 (3) | −0.001 (3) |
O5 | 0.016 (4) | 0.016 (4) | 0.024 (4) | −0.004 (3) | −0.001 (3) | −0.004 (3) |
O7 | 0.026 (4) | 0.024 (4) | 0.012 (4) | −0.001 (3) | 0.000 (3) | −0.006 (3) |
O12 | 0.023 (4) | 0.016 (4) | 0.027 (4) | 0.003 (3) | −0.008 (3) | 0.000 (3) |
O4 | 0.015 (3) | 0.009 (3) | 0.019 (4) | 0.005 (3) | 0.001 (3) | −0.001 (3) |
O6 | 0.012 (4) | 0.030 (5) | 0.026 (4) | 0.002 (3) | 0.001 (3) | −0.002 (3) |
O9 | 0.026 (4) | 0.027 (4) | 0.016 (4) | −0.005 (3) | −0.001 (3) | −0.003 (3) |
O10 | 0.032 (4) | 0.015 (4) | 0.016 (4) | −0.005 (3) | −0.013 (3) | 0.004 (3) |
O13 | 0.031 (4) | 0.011 (4) | 0.021 (4) | −0.006 (3) | −0.006 (3) | −0.001 (3) |
O14 | 0.015 (4) | 0.039 (5) | 0.021 (4) | −0.007 (3) | 0.003 (3) | 0.007 (4) |
O3 | 0.017 (3) | 0.008 (3) | 0.019 (4) | −0.002 (3) | 0.000 (3) | 0.008 (3) |
Nd1—O11 | 2.326 (7) | Mo2—O15 | 1.798 (7) |
Nd1—O10 | 2.339 (7) | Mo3—O6v | 1.737 (7) |
Nd1—O9 | 2.400 (8) | Mo3—O7iv | 1.742 (8) |
Nd1—O14i | 2.437 (8) | Mo3—O10 | 1.749 (7) |
Nd1—O15 | 2.446 (6) | Mo3—O8vi | 1.814 (6) |
Nd1—O8 | 2.472 (7) | Mo4—O12 | 1.680 (8) |
Nd1—O4 | 2.528 (7) | Mo4—O5vii | 1.753 (7) |
Nd1—Nd2 | 3.8158 (7) | Mo4—O11viii | 1.909 (7) |
Nd2—O13ii | 2.366 (7) | Mo4—O2vii | 1.989 (7) |
Nd2—O3iii | 2.387 (7) | Mo4—O11 | 2.115 (7) |
Nd2—O5 | 2.399 (7) | Mo4—O1 | 2.386 (7) |
Nd2—O7 | 2.411 (8) | Mo4—Mo4viii | 3.1674 (15) |
Nd2—O6 | 2.444 (7) | O11—Mo4viii | 1.909 (7) |
Nd2—O8 | 2.480 (7) | O2—Mo4vii | 1.989 (7) |
Nd2—O15 | 2.484 (7) | O8—Mo3ii | 1.814 (6) |
Nd2—O4 | 2.742 (7) | O5—Mo4vii | 1.753 (7) |
Mo1—O1 | 1.739 (7) | O7—Mo3iv | 1.742 (8) |
Mo1—O3 | 1.758 (7) | O6—Mo3ix | 1.737 (7) |
Mo1—O4 | 1.764 (7) | O9—Mo2iv | 1.733 (8) |
Mo1—O2 | 1.823 (7) | O13—Nd2vi | 2.366 (7) |
Mo2—O9iv | 1.733 (8) | O14—Nd1x | 2.437 (8) |
Mo2—O14 | 1.734 (8) | O3—Nd2iii | 2.387 (7) |
Mo2—O13 | 1.753 (7) | ||
O11—Nd1—O10 | 88.8 (3) | O4—Nd2—Nd1 | 41.44 (15) |
O11—Nd1—O9 | 153.3 (3) | O1—Mo1—O3 | 108.8 (3) |
O10—Nd1—O9 | 83.4 (3) | O1—Mo1—O4 | 107.4 (3) |
O11—Nd1—O14i | 82.8 (3) | O3—Mo1—O4 | 114.5 (3) |
O10—Nd1—O14i | 82.1 (3) | O1—Mo1—O2 | 105.5 (3) |
O9—Nd1—O14i | 70.9 (3) | O3—Mo1—O2 | 109.3 (3) |
O11—Nd1—O15 | 125.3 (2) | O4—Mo1—O2 | 110.9 (3) |
O10—Nd1—O15 | 81.3 (3) | O9iv—Mo2—O14 | 109.3 (4) |
O9—Nd1—O15 | 78.7 (3) | O9iv—Mo2—O13 | 106.3 (4) |
O14i—Nd1—O15 | 146.7 (3) | O14—Mo2—O13 | 112.1 (4) |
O11—Nd1—O8 | 116.2 (2) | O9iv—Mo2—O15 | 109.1 (4) |
O10—Nd1—O8 | 152.5 (3) | O14—Mo2—O15 | 107.0 (3) |
O9—Nd1—O8 | 78.6 (3) | O13—Mo2—O15 | 113.0 (3) |
O14i—Nd1—O8 | 110.8 (3) | O6v—Mo3—O7iv | 111.1 (4) |
O15—Nd1—O8 | 75.0 (2) | O6v—Mo3—O10 | 109.0 (4) |
O11—Nd1—O4 | 70.6 (2) | O7iv—Mo3—O10 | 108.4 (4) |
O10—Nd1—O4 | 116.3 (2) | O6v—Mo3—O8vi | 106.6 (4) |
O9—Nd1—O4 | 135.5 (2) | O7iv—Mo3—O8vi | 109.7 (3) |
O14i—Nd1—O4 | 146.5 (2) | O10—Mo3—O8vi | 112.0 (3) |
O15—Nd1—O4 | 66.7 (2) | O12—Mo4—O5vii | 104.3 (4) |
O8—Nd1—O4 | 66.3 (2) | O12—Mo4—O11viii | 102.4 (4) |
O11—Nd1—Nd2 | 116.20 (17) | O5vii—Mo4—O11viii | 95.7 (3) |
O10—Nd1—Nd2 | 120.5 (2) | O12—Mo4—O2vii | 97.0 (4) |
O9—Nd1—Nd2 | 89.6 (2) | O5vii—Mo4—O2vii | 97.9 (3) |
O14i—Nd1—Nd2 | 148.9 (2) | O11viii—Mo4—O2vii | 152.7 (3) |
O15—Nd1—Nd2 | 39.66 (16) | O12—Mo4—O11 | 94.5 (3) |
O8—Nd1—Nd2 | 39.68 (15) | O5vii—Mo4—O11 | 160.8 (3) |
O4—Nd1—Nd2 | 45.87 (15) | O11viii—Mo4—O11 | 76.3 (3) |
O13ii—Nd2—O3iii | 73.9 (3) | O2vii—Mo4—O11 | 83.4 (3) |
O13ii—Nd2—O5 | 129.8 (3) | O12—Mo4—O1 | 170.4 (3) |
O3iii—Nd2—O5 | 75.9 (3) | O5vii—Mo4—O1 | 83.9 (3) |
O13ii—Nd2—O7 | 79.6 (3) | O11viii—Mo4—O1 | 81.3 (3) |
O3iii—Nd2—O7 | 153.0 (3) | O2vii—Mo4—O1 | 76.7 (3) |
O5—Nd2—O7 | 126.9 (3) | O11—Mo4—O1 | 77.7 (3) |
O13ii—Nd2—O6 | 80.7 (3) | O12—Mo4—Mo4viii | 100.5 (3) |
O3iii—Nd2—O6 | 107.9 (3) | O5vii—Mo4—Mo4viii | 133.6 (3) |
O5—Nd2—O6 | 71.7 (3) | O11viii—Mo4—Mo4viii | 40.4 (2) |
O7—Nd2—O6 | 72.0 (3) | O2vii—Mo4—Mo4viii | 117.3 (2) |
O13ii—Nd2—O8 | 79.2 (3) | O11—Mo4—Mo4viii | 35.83 (18) |
O3iii—Nd2—O8 | 91.6 (2) | O1—Mo4—Mo4viii | 76.52 (17) |
O5—Nd2—O8 | 140.7 (2) | Mo4viii—O11—Mo4 | 103.7 (3) |
O7—Nd2—O8 | 78.5 (3) | Mo4viii—O11—Nd1 | 122.5 (3) |
O6—Nd2—O8 | 146.8 (3) | Mo4—O11—Nd1 | 133.7 (3) |
O13ii—Nd2—O15 | 147.6 (2) | Mo1—O2—Mo4vii | 136.8 (4) |
O3iii—Nd2—O15 | 124.5 (2) | Mo2—O15—Nd1 | 135.0 (4) |
O5—Nd2—O15 | 82.5 (2) | Mo2—O15—Nd2 | 123.6 (3) |
O7—Nd2—O15 | 77.3 (3) | Nd1—O15—Nd2 | 101.4 (2) |
O6—Nd2—O15 | 112.6 (3) | Mo3ii—O8—Nd1 | 126.2 (3) |
O8—Nd2—O15 | 74.2 (2) | Mo3ii—O8—Nd2 | 132.4 (3) |
O13ii—Nd2—O4 | 119.7 (3) | Nd1—O8—Nd2 | 100.8 (2) |
O3iii—Nd2—O4 | 63.0 (2) | Mo1—O1—Mo4 | 136.9 (4) |
O5—Nd2—O4 | 78.3 (2) | Mo4vii—O5—Nd2 | 152.6 (4) |
O7—Nd2—O4 | 129.9 (2) | Mo3iv—O7—Nd2 | 165.9 (5) |
O6—Nd2—O4 | 150.0 (2) | Mo1—O4—Nd1 | 144.6 (4) |
O8—Nd2—O4 | 63.0 (2) | Mo1—O4—Nd2 | 122.6 (3) |
O15—Nd2—O4 | 62.9 (2) | Nd1—O4—Nd2 | 92.7 (2) |
O13ii—Nd2—Nd1 | 118.7 (2) | Mo3ix—O6—Nd2 | 168.5 (5) |
O3iii—Nd2—Nd1 | 99.86 (17) | Mo2iv—O9—Nd1 | 171.6 (5) |
O5—Nd2—Nd1 | 105.23 (18) | Mo3—O10—Nd1 | 156.8 (4) |
O7—Nd2—Nd1 | 88.49 (19) | Mo2—O13—Nd2vi | 159.0 (5) |
O6—Nd2—Nd1 | 150.0 (2) | Mo2—O14—Nd1x | 169.8 (5) |
O8—Nd2—Nd1 | 39.53 (15) | Mo1—O3—Nd2iii | 143.0 (4) |
O15—Nd2—Nd1 | 38.92 (15) |
Symmetry codes: (i) x−1, y, z; (ii) x, y−1, z; (iii) −x+1, −y, −z+1; (iv) −x+1, −y+1, −z; (v) x−1, y+1, z; (vi) x, y+1, z; (vii) −x+1, −y+1, −z+1; (viii) −x, −y+1, −z+1; (ix) x+1, y−1, z; (x) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | Nd2Mo4O15 |
Mr | 912.24 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.4000 (6), 7.4992 (6), 11.7291 (9) |
α, β, γ (°) | 88.916 (2), 83.957 (1), 84.196 (2) |
V (Å3) | 643.94 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 11.77 |
Crystal size (mm) | 0.15 × 0.15 × 0.05 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD |
Absorption correction | Multi-scan (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.271, 0.591 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3620, 2390, 2268 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.611 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.128, 1.05 |
No. of reflections | 2390 |
No. of parameters | 191 |
Δρmax, Δρmin (e Å−3) | 3.38, −2.54 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2004), SHELXTL (Sheldrick, 2008).
References
Borchardt, H. J. & Bierstedt, P. E. (1966). Appl. Phys. Lett. 8, 50–52. CrossRef CAS Web of Science Google Scholar
Brandenburg, K. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (1997). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Dubois, F., Goutenoire, F., Laligant, Y., Suard, E. & Lacorre, P. (2001). J. Solid State Chem. 159, 228–233. Web of Science CrossRef CAS Google Scholar
Efremov, V. A., Davydova, N. N., Gokhman, L. Z., Evdokimov, A. A. & Trunov, V. K. (1988b). Zh. Neorg. Khim. 33, 3005–3010. CAS Google Scholar
Efremov, V. A., Davydova, N. N. & Trunov, V. K. (1988a). Zh. Neorg. Khim. 33, 3001–3004. CAS Google Scholar
Fallon, G. D. & Gatehouse, B. M. (1982). J. Solid State Chem. 44, 156–161. CrossRef CAS Web of Science Google Scholar
Naruke, H. & Yamase, T. (2001). Acta Cryst. E57, i106–i108. Web of Science CrossRef IUCr Journals Google Scholar
Naruke, H. & Yamase, T. (2003). J. Solid State Chem. 173, 407–417. Web of Science CrossRef CAS Google Scholar
Ouwerkerk, M., Kellendonk, F. & Blasse, G. (1982). J. Chem. Soc. Faraday Trans. 2, 603–611. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Rare-earth molybdate compounds have been intensively studied due to their diversity and excellent chemical stabilities, as well as their potential applications as laser host phosphors, or as ferroelectric and ferroelastic materials (Borchardt & Bierstedt, 1966; Ouwerkerk et al., 1982). Previous studies of the family of RE2Mo4O15 (RE is a rare earth metal cation) compounds show that they adopt different structure types, such as monoclinic La2Mo4O15 with Z = 4 (Dubois et al., 2001; Naruke & Yamase, 2003); Tb2Mo4O15 (Naruke & Yamase, 2001) and Ho2Mo4O15 (Efremov et al., 1988b) with Z = 2, or triclinic Nd2Mo4O15 (Naruke & Yamase, 2003) with Z = 3. In this paper, we present synthesis and crystal structure of the β-phase of compound Nd2Mo4O15 which is structurally different from the first (α-) Nd2Mo4O15 polymorph (Naruke & Yamase, 2003), but is isotypic with Ce2Mo4O15 (Fallon & Gatehouse, 1982) and Pr2Mo4O15 (Efremov et al., 1988a) with Z = 2.
The structure of β-Nd2Mo4O15 features a three-dimensional framework composed of distorted NdO7, NdO8, MoO4 and MoO6 polyhedra, as shown in Fig. 1. There are four crystallographically different Mo atoms in the asymmetric unit. Mo(1), Mo(2), Mo(3) atoms are surrounded by four oxygen atoms within a tetrahedral coordination, while the Mo(4) atom is surrrounded by six oxygen atoms within a considerably distorted octahedral coordination. Two adjacent Mo(4)O6 octahedra are connected through edge-sharing, forming Mo2O10 units. These Mo2O10 units are interconnected by Mo(1)O4 tetrahedra via corner-sharing to form an infinite Mo4O14 chain parallel to [100]. The distorted environments of the two Nd atoms Nd(1) and Nd(2) are different. While Nd(1) is coordinated by seven oxygen atoms, Nd(2) is coordinated by eight oxygen atoms. The Mo4O14 chains are linked perpendicularly to the chain direction into a three-dimensional framework via isolated Mo(2)O4 and Mo(3)O4 tetrahedra and by Nd(1)O7 and Nd(2)O8 polyhedra sharing edges and corners (Fig. 2) .