metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[tetra­aqua­(1,10-phenanthroline-κ2N,N′)cobalt(II)] hexa­aqua­cobalt(II) bis­­[3,5-bis­­(carboxyl­atometh­­oxy)benzoate] tetra­hydrate

aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China, and bZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.edu.cn

(Received 6 November 2010; accepted 10 November 2010; online 17 November 2010)

The title compound, [Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2·4H2O, was obtanied by the reaction of cobalt acetate with 3,5-bis­(carb­oxy­meth­oxy)benzoic acid and 1,10-phenanthroline. The asymmetric unit contains one tetra­aqua­(1,10-phenanthroline)cobalt(II) cation, one half of a hexa­aqua­cobalt(II) cation that is completed by inversion symmetry, one 3,5-bis­(carboxyl­atometh­oxy)benzoate trianion and two lattice water mol­ecules. The two CoII atoms each show a slightly distorted octa­hedral coordination (CoO6 and CoO4N2). The cations, anions and lattice water mol­ecules are linked by an intricate network of O—H⋯O hydrogen bonds into a three-dimensional structure.

Related literature

For background to multicarboxyl­ate ligands, see: Cao et al. (2002[Cao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087-2094.]); Dai et al. (2002[Dai, J. C., Wu, X. T. & Fu, Z. Y. (2002). Chem. Commun. pp. 12-13.]); He et al. (2008[He, Y. H., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Cryst. Growth Des. 10, 3586-3594.]); Rowsell et al. (2005[Rowsell, J. L. C., Spenser, E. C., Eckert, J., Howard, J. A. K. & Yaghi, O. M. (2005). Science, 309, 1350-1354.]); Wang et al. (2005[Wang, Z., Kravtsov, V. Ch. & Zaworotko, M. J. (2005). Angew. Chem. Int. Ed. 44, 2877-2880.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2·4H2O

  • Mr = 1395.82

  • Monoclinic, P 21 /n

  • a = 7.0924 (1) Å

  • b = 20.3779 (4) Å

  • c = 20.1810 (3) Å

  • β = 99.063 (1)°

  • V = 2880.31 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.96 mm−1

  • T = 296 K

  • 0.22 × 0.15 × 0.07 mm

Data collection
  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Goéttingen, Germany.]) Tmin = 0.839, Tmax = 0.933

  • 21923 measured reflections

  • 5080 independent reflections

  • 3751 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.100

  • S = 1.09

  • 5080 reflections

  • 450 parameters

  • 27 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O5W 2.0144 (19)
Co1—O6W 2.112 (2)
Co1—O7W 2.115 (3)
Co2—O2W 2.072 (2)
Co2—O1W 2.093 (2)
Co2—O4W 2.102 (2)
Co2—N1 2.109 (2)
Co2—O3W 2.118 (2)
Co2—N2 2.157 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4W—H4WA⋯O7i 0.84 (2) 1.88 (2) 2.713 (3) 173 (3)
O2W—H2WA⋯O8i 0.86 (2) 1.86 (2) 2.690 (3) 163 (3)
O8W—H8WA⋯O1i 0.84 (2) 1.91 (2) 2.732 (3) 163 (4)
O4W—H4WB⋯O2ii 0.84 (2) 1.91 (2) 2.731 (3) 169 (3)
O7W—H7WA⋯O9Wii 0.84 (2) 2.01 (2) 2.818 (3) 164 (3)
O8W—H8WB⋯O4ii 0.85 (2) 2.29 (3) 2.945 (3) 134 (4)
O3W—H3WA⋯O7iii 0.83 (2) 2.12 (2) 2.881 (3) 152 (3)
O5W—H5WA⋯O1iii 0.84 (2) 1.77 (2) 2.609 (3) 175 (4)
O1W—H1WB⋯O7iii 0.84 (2) 1.88 (2) 2.711 (3) 170 (3)
O6W—H6WB⋯O5iv 0.81 (2) 2.00 (2) 2.812 (3) 177 (3)
O5W—H5WB⋯O4iv 0.83 (2) 1.89 (2) 2.715 (3) 174 (4)
O3W—H3WB⋯O4iv 0.79 (2) 2.25 (2) 3.029 (3) 168 (4)
O3W—H3WB⋯O3iv 0.79 (2) 2.54 (3) 3.080 (3) 127 (3)
O9W—H9WB⋯O2v 0.82 (2) 2.00 (2) 2.818 (3) 172 (4)
O7W—H7WB⋯O9Wvi 0.83 (2) 1.97 (2) 2.805 (4) 174 (4)
O1W—H1WA⋯O5vii 0.82 (2) 1.97 (2) 2.785 (3) 172 (4)
O6W—H6WA⋯O2 0.79 (2) 2.00 (2) 2.775 (3) 169 (3)
O2W—H2WB⋯O8W 0.85 (2) 1.88 (2) 2.723 (3) 177 (3)
O9W—H9WA⋯O5 0.83 (2) 2.00 (2) 2.831 (3) 173 (3)
Symmetry codes: (i) -x+2, -y, -z+1; (ii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (vi) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x, y, z+1.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Multibenzenecarboxylate ligands, such as terephthalic acid, 1,3,5-benzenetricarboxylic acid, or 1,2,4,5-benzenetetracarboxylic acid, have been employed in the construction of numerous framework compounds (Dai et al., 2002; Rowsell et al., 2005; Wang et al., 2005; Cao et al., 2002). Herein, on the basis of the rigidity of 3,5-dihydroxybenzoic acid, we successfully designed a new multicarboxylate ligand, viz. 3,5-bis-carboxymethoxy-benzoic acid (C11H10O8) (He et al., 2008). In this work, we report the synthesis and structure of a new compound, [Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2.4H2O, (I).

A perspective view of the molecular entities of compound (I) is presented in Fig.1. The asymmetric unit consists of one [Co(C12H8N2)(H2O)4]2+, half a [Co(H2O)6]2+ cation (1 symmetry), one (C11H7O8)23- anion, and two lattice water molecules. In the cations, the CoII atoms show a slightly distorted octahedral coordination (CoO6 and CoO4N2, respectively). In the anion, one of the carboxymethyl groups is almost co-planar to the benzene ring with the dihedral angle of 3.5 (1)°, while the formate group makes a dihedral angle of 17.2 (1)° with the benzene ring. The other carboxymethyl group is almost perpendicular to the benzene ring with the torsion angle C17—O6—C22—C23 of 81.3 (3)°. Together with lattice water molecules, the carboxylic O atoms act as acceptors of O—H···O hydrogen bonds forming a three-dimensional structure (Fig. 2).

Related literature top

For background to multicarboxylate ligands, see: Cao et al. (2002); Dai et al. (2002); He et al. (2008); Rowsell et al. (2005); Wang et al. (2005).

Experimental top

A mixture of 3,5-bis-carboxymethoxy-benzoic acid (0.373 g, 1.50 mmol), Co(CH3COO)2.4H2O (0.282 g, 1.00 mmol), 1,10-phenanthroline (0.049 g, 0.25 mmol), and Na2CO3 (0.079 g, 0.75 mmol) in C2H5OH (2 ml)/H2O (16 ml) was placed in a Teflon-lined stainless steel vessel and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. Then the reaction mixture was filtered and well-shaped pink crystals of compound (I) were obtained from the mother liquor by slow evaporation at room temperature for several days.

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [aromatic C—H 0.93Å and aliphatic C—H 0.97 Å, Uiso(H) = 1.2Ueq(C)]. The oxygen-bound H-atoms were located in difference Fourier maps and refined with the O—H distance restrained to 0.85 Å and Uiso(H) = 1.2Ueq(O).

Structure description top

Multibenzenecarboxylate ligands, such as terephthalic acid, 1,3,5-benzenetricarboxylic acid, or 1,2,4,5-benzenetetracarboxylic acid, have been employed in the construction of numerous framework compounds (Dai et al., 2002; Rowsell et al., 2005; Wang et al., 2005; Cao et al., 2002). Herein, on the basis of the rigidity of 3,5-dihydroxybenzoic acid, we successfully designed a new multicarboxylate ligand, viz. 3,5-bis-carboxymethoxy-benzoic acid (C11H10O8) (He et al., 2008). In this work, we report the synthesis and structure of a new compound, [Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2.4H2O, (I).

A perspective view of the molecular entities of compound (I) is presented in Fig.1. The asymmetric unit consists of one [Co(C12H8N2)(H2O)4]2+, half a [Co(H2O)6]2+ cation (1 symmetry), one (C11H7O8)23- anion, and two lattice water molecules. In the cations, the CoII atoms show a slightly distorted octahedral coordination (CoO6 and CoO4N2, respectively). In the anion, one of the carboxymethyl groups is almost co-planar to the benzene ring with the dihedral angle of 3.5 (1)°, while the formate group makes a dihedral angle of 17.2 (1)° with the benzene ring. The other carboxymethyl group is almost perpendicular to the benzene ring with the torsion angle C17—O6—C22—C23 of 81.3 (3)°. Together with lattice water molecules, the carboxylic O atoms act as acceptors of O—H···O hydrogen bonds forming a three-dimensional structure (Fig. 2).

For background to multicarboxylate ligands, see: Cao et al. (2002); Dai et al. (2002); He et al. (2008); Rowsell et al. (2005); Wang et al. (2005).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the molecular entities of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The three-dimensional set up of structure of (I), viewed down [100]. Dashed lines indicate hydrogen bonds.
Bis[tetraaqua(1,10-phenanthroline-κ2N,N')cobalt(II)] hexaaquacobalt(II) bis[3,5-bis(carboxylatomethoxy)benzoate] tetrahydrate top
Crystal data top
[Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2·4H2OF(000) = 1446
Mr = 1395.82Dx = 1.609 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3158 reflections
a = 7.0924 (1) Åθ = 1.4–25.0°
b = 20.3779 (4) ŵ = 0.96 mm1
c = 20.1810 (3) ÅT = 296 K
β = 99.063 (1)°Block, pink
V = 2880.31 (8) Å30.22 × 0.15 × 0.07 mm
Z = 2
Data collection top
Bruker APEXII area-detector
diffractometer
5080 independent reflections
Radiation source: fine-focus sealed tube3751 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ω scansθmax = 25.0°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.839, Tmax = 0.933k = 2424
21923 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0472P)2]
where P = (Fo2 + 2Fc2)/3
5080 reflections(Δ/σ)max = 0.001
450 parametersΔρmax = 0.31 e Å3
27 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2·4H2OV = 2880.31 (8) Å3
Mr = 1395.82Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.0924 (1) ŵ = 0.96 mm1
b = 20.3779 (4) ÅT = 296 K
c = 20.1810 (3) Å0.22 × 0.15 × 0.07 mm
β = 99.063 (1)°
Data collection top
Bruker APEXII area-detector
diffractometer
5080 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3751 reflections with I > 2σ(I)
Tmin = 0.839, Tmax = 0.933Rint = 0.054
21923 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03927 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.31 e Å3
5080 reflectionsΔρmin = 0.30 e Å3
450 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.00000.50000.03353 (17)
Co20.74606 (6)0.243825 (19)0.763479 (18)0.03271 (14)
N10.7089 (3)0.34589 (12)0.74971 (11)0.0339 (6)
N20.7521 (3)0.25550 (12)0.65761 (11)0.0344 (6)
O1W0.6596 (4)0.23471 (14)0.85757 (11)0.0551 (7)
H1WA0.696 (4)0.2535 (16)0.8930 (12)0.066*
H1WB0.548 (3)0.2210 (18)0.8584 (16)0.066*
O10.7285 (4)0.00598 (10)0.32671 (11)0.0589 (7)
O2W0.8488 (3)0.14848 (11)0.76823 (11)0.0441 (6)
H2WA0.921 (4)0.1411 (17)0.8057 (9)0.053*
H2WB0.926 (4)0.1379 (16)0.7422 (11)0.053*
O20.6887 (3)0.11208 (10)0.34103 (9)0.0383 (5)
O3W0.4615 (3)0.21473 (13)0.72790 (10)0.0486 (6)
H3WA0.395 (4)0.1961 (15)0.7526 (12)0.058*
H3WB0.413 (4)0.2101 (17)0.6903 (8)0.058*
O30.7342 (3)0.20327 (10)0.11420 (9)0.0472 (6)
O40.7996 (3)0.32426 (10)0.08547 (9)0.0479 (6)
O4W1.0173 (3)0.26858 (11)0.81544 (12)0.0474 (6)
H4WA1.106 (4)0.2421 (12)0.8289 (16)0.057*
H4WB1.072 (4)0.3051 (9)0.8180 (16)0.057*
O5W0.4188 (4)0.04985 (11)0.57696 (12)0.0663 (8)
H5WA0.367 (5)0.0307 (15)0.6061 (15)0.080*
H5WB0.389 (6)0.0890 (9)0.5780 (18)0.080*
O50.7541 (3)0.30672 (10)0.02457 (9)0.0382 (5)
O6W0.4901 (3)0.08954 (10)0.44683 (10)0.0457 (6)
H6WA0.533 (4)0.0971 (15)0.4139 (12)0.055*
H6WB0.420 (4)0.1186 (13)0.4560 (15)0.055*
O60.6088 (4)0.02370 (11)0.07416 (10)0.0524 (6)
O7W0.7879 (4)0.02001 (14)0.54018 (13)0.0592 (7)
H7WA0.849 (4)0.0467 (13)0.5203 (16)0.071*
H7WB0.860 (5)0.0126 (12)0.5454 (18)0.071*
O70.6937 (3)0.18124 (10)0.15287 (10)0.0434 (5)
O80.8981 (3)0.10571 (11)0.12730 (10)0.0465 (6)
O8W1.1066 (5)0.11321 (14)0.68801 (14)0.0824 (10)
H8WB1.097 (6)0.1260 (18)0.6478 (12)0.099*
H8WA1.137 (6)0.0734 (10)0.6857 (19)0.099*
O9W0.4790 (4)0.40818 (12)0.04843 (13)0.0514 (6)
H9WA0.552 (4)0.3760 (13)0.0411 (14)0.048 (11)*
H9WB0.401 (5)0.3993 (19)0.0817 (15)0.104 (19)*
C10.6998 (4)0.39104 (16)0.79609 (15)0.0417 (8)
H1A0.70740.37750.84040.050*
C20.6795 (5)0.45779 (17)0.78211 (17)0.0518 (9)
H2A0.67790.48810.81650.062*
C30.6622 (5)0.47783 (17)0.71727 (19)0.0530 (9)
H3A0.64460.52210.70680.064*
C40.6708 (4)0.43239 (16)0.66644 (15)0.0420 (8)
C50.6501 (5)0.44923 (19)0.59653 (17)0.0543 (10)
H5A0.62940.49270.58350.065*
C60.6604 (5)0.40298 (19)0.54975 (16)0.0521 (9)
H6A0.64440.41510.50480.062*
C70.6953 (4)0.33579 (17)0.56737 (14)0.0406 (8)
C80.6990 (4)0.36689 (15)0.68516 (14)0.0335 (7)
C90.7180 (4)0.31756 (15)0.63583 (13)0.0325 (7)
C100.7060 (5)0.28512 (19)0.52134 (16)0.0498 (9)
H10A0.69040.29430.47570.060*
C110.7391 (5)0.2229 (2)0.54308 (15)0.0512 (9)
H11A0.74590.18920.51250.061*
C120.7631 (5)0.20916 (17)0.61220 (15)0.0446 (8)
H12A0.78760.16620.62660.054*
C130.6916 (4)0.07233 (14)0.22994 (13)0.0324 (7)
C140.7154 (4)0.13290 (14)0.20404 (13)0.0326 (7)
H14A0.73790.16910.23230.039*
C150.7059 (4)0.14038 (14)0.13487 (13)0.0335 (7)
C160.6709 (4)0.08749 (14)0.09286 (14)0.0352 (7)
H16A0.66370.09250.04670.042*
C170.6463 (4)0.02584 (15)0.12065 (14)0.0375 (7)
C180.6587 (4)0.01780 (15)0.18883 (14)0.0373 (7)
H18A0.64530.02350.20700.045*
C190.7032 (4)0.06265 (15)0.30421 (13)0.0364 (7)
C200.7191 (4)0.21662 (14)0.04494 (12)0.0303 (7)
H20A0.59130.20640.02250.036*
H20B0.80880.18960.02540.036*
C210.7619 (4)0.28832 (14)0.03547 (13)0.0301 (7)
C220.5633 (5)0.08635 (15)0.09867 (16)0.0491 (9)
H22A0.49170.11100.06200.059*
H22B0.48110.08010.13230.059*
C230.7349 (5)0.12653 (16)0.12912 (13)0.0366 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0424 (4)0.0287 (3)0.0329 (3)0.0087 (3)0.0163 (3)0.0036 (2)
Co20.0366 (3)0.0297 (3)0.0316 (2)0.00050 (19)0.00464 (18)0.00106 (17)
N10.0316 (15)0.0339 (15)0.0350 (13)0.0041 (12)0.0014 (11)0.0024 (11)
N20.0332 (16)0.0364 (16)0.0336 (13)0.0016 (12)0.0057 (11)0.0043 (11)
O1W0.0514 (16)0.0808 (19)0.0353 (12)0.0249 (14)0.0131 (12)0.0124 (12)
O10.106 (2)0.0308 (14)0.0483 (12)0.0189 (13)0.0372 (14)0.0146 (10)
O2W0.0503 (16)0.0350 (13)0.0458 (12)0.0040 (12)0.0035 (11)0.0021 (11)
O20.0557 (15)0.0302 (12)0.0309 (10)0.0071 (10)0.0126 (10)0.0033 (9)
O3W0.0424 (15)0.0666 (17)0.0352 (11)0.0129 (13)0.0014 (11)0.0045 (12)
O30.0793 (18)0.0323 (13)0.0291 (10)0.0105 (12)0.0054 (11)0.0057 (9)
O40.0784 (17)0.0317 (13)0.0357 (11)0.0141 (12)0.0151 (11)0.0048 (10)
O4W0.0341 (14)0.0287 (13)0.0752 (16)0.0024 (11)0.0048 (12)0.0041 (12)
O5W0.120 (2)0.0343 (14)0.0587 (14)0.0220 (15)0.0592 (15)0.0090 (12)
O50.0533 (14)0.0325 (12)0.0288 (10)0.0056 (10)0.0066 (10)0.0048 (9)
O6W0.0620 (17)0.0366 (14)0.0452 (12)0.0151 (12)0.0291 (12)0.0126 (10)
O60.0850 (19)0.0275 (13)0.0391 (11)0.0028 (12)0.0075 (12)0.0026 (10)
O7W0.0489 (17)0.0568 (18)0.0733 (16)0.0085 (13)0.0140 (13)0.0192 (14)
O70.0420 (14)0.0323 (13)0.0552 (13)0.0002 (11)0.0058 (11)0.0082 (10)
O80.0469 (16)0.0452 (15)0.0470 (13)0.0055 (12)0.0065 (11)0.0075 (10)
O8W0.115 (3)0.0616 (19)0.0827 (19)0.0341 (19)0.0517 (19)0.0138 (16)
O9W0.0445 (16)0.0475 (17)0.0584 (16)0.0085 (14)0.0037 (13)0.0078 (13)
C10.040 (2)0.041 (2)0.0430 (17)0.0031 (16)0.0013 (15)0.0073 (15)
C20.051 (2)0.042 (2)0.061 (2)0.0047 (18)0.0050 (18)0.0142 (17)
C30.047 (2)0.032 (2)0.080 (3)0.0069 (17)0.0096 (19)0.0036 (18)
C40.034 (2)0.037 (2)0.0546 (19)0.0015 (16)0.0040 (15)0.0088 (16)
C50.046 (2)0.049 (2)0.067 (2)0.0035 (19)0.0087 (18)0.0227 (19)
C60.046 (2)0.062 (3)0.048 (2)0.0006 (19)0.0068 (17)0.0248 (18)
C70.0276 (18)0.057 (2)0.0373 (16)0.0055 (16)0.0056 (14)0.0055 (15)
C80.0247 (17)0.0343 (18)0.0404 (16)0.0015 (14)0.0018 (13)0.0021 (14)
C90.0231 (17)0.0380 (19)0.0360 (15)0.0038 (14)0.0036 (13)0.0057 (13)
C100.043 (2)0.072 (3)0.0354 (17)0.008 (2)0.0093 (16)0.0033 (18)
C110.046 (2)0.070 (3)0.0389 (18)0.006 (2)0.0102 (16)0.0157 (17)
C120.045 (2)0.044 (2)0.0459 (18)0.0017 (17)0.0081 (16)0.0065 (16)
C130.0323 (18)0.0343 (18)0.0321 (15)0.0024 (14)0.0101 (13)0.0015 (13)
C140.0398 (19)0.0258 (17)0.0329 (15)0.0004 (14)0.0081 (14)0.0028 (12)
C150.0407 (19)0.0265 (17)0.0334 (15)0.0006 (14)0.0059 (14)0.0087 (13)
C160.040 (2)0.0321 (18)0.0327 (15)0.0024 (15)0.0025 (14)0.0057 (13)
C170.042 (2)0.0303 (18)0.0378 (16)0.0029 (15)0.0010 (14)0.0046 (13)
C180.044 (2)0.0290 (17)0.0388 (16)0.0024 (15)0.0048 (14)0.0067 (13)
C190.041 (2)0.0363 (19)0.0353 (15)0.0046 (16)0.0155 (14)0.0081 (14)
C200.0342 (18)0.0302 (17)0.0258 (14)0.0016 (14)0.0025 (13)0.0018 (12)
C210.0338 (18)0.0262 (17)0.0314 (15)0.0027 (14)0.0086 (13)0.0016 (13)
C220.061 (3)0.0277 (19)0.0520 (19)0.0018 (17)0.0109 (17)0.0066 (15)
C230.047 (2)0.035 (2)0.0256 (14)0.0019 (17)0.0007 (14)0.0030 (13)
Geometric parameters (Å, º) top
Co1—O5Wi2.0144 (19)O8W—H8WB0.845 (18)
Co1—O5W2.0144 (19)O8W—H8WA0.842 (18)
Co1—O6Wi2.112 (2)O9W—H9WA0.833 (17)
Co1—O6W2.112 (2)O9W—H9WB0.819 (18)
Co1—O7W2.115 (3)C1—C21.392 (5)
Co1—O7Wi2.115 (3)C1—H1A0.9300
Co2—O2W2.072 (2)C2—C31.358 (5)
Co2—O1W2.093 (2)C2—H2A0.9300
Co2—O4W2.102 (2)C3—C41.390 (4)
Co2—N12.109 (2)C3—H3A0.9300
Co2—O3W2.118 (2)C4—C81.393 (4)
Co2—N22.157 (2)C4—C51.437 (4)
N1—C11.321 (4)C5—C61.344 (5)
N1—C81.362 (3)C5—H5A0.9300
N2—C121.327 (4)C6—C71.426 (5)
N2—C91.348 (4)C6—H6A0.9300
O1W—H1WA0.816 (17)C7—C101.399 (5)
O1W—H1WB0.839 (17)C7—C91.415 (4)
O1—C191.244 (3)C8—C91.436 (4)
O2W—H2WA0.856 (17)C10—C111.350 (5)
O2W—H2WB0.846 (17)C10—H10A0.9300
O2—C191.266 (3)C11—C121.406 (4)
O3W—H3WA0.831 (17)C11—H11A0.9300
O3W—H3WB0.788 (17)C12—H12A0.9300
O3—C151.372 (3)C13—C141.361 (4)
O3—C201.412 (3)C13—C181.384 (4)
O4—C211.241 (3)C13—C191.501 (3)
O4W—H4WA0.841 (17)C14—C151.395 (3)
O4W—H4WB0.837 (17)C14—H14A0.9300
O5W—H5WA0.837 (17)C15—C161.370 (4)
O5W—H5WB0.826 (18)C16—C171.398 (4)
O5—C211.261 (3)C16—H16A0.9300
O6W—H6WA0.788 (17)C17—C181.375 (4)
O6W—H6WB0.810 (17)C18—H18A0.9300
O6—C171.375 (3)C20—C211.511 (4)
O6—C221.424 (4)C20—H20A0.9700
O7W—H7WA0.836 (18)C20—H20B0.9700
O7W—H7WB0.834 (18)C22—C231.515 (4)
O7—C231.266 (4)C22—H22A0.9700
O8—C231.239 (4)C22—H22B0.9700
O5Wi—Co1—O5W180.00 (8)C2—C3—H3A119.9
O5Wi—Co1—O6Wi88.01 (8)C4—C3—H3A119.9
O5W—Co1—O6Wi91.99 (8)C3—C4—C8117.3 (3)
O5Wi—Co1—O6W91.99 (8)C3—C4—C5123.8 (3)
O5W—Co1—O6W88.01 (8)C8—C4—C5118.9 (3)
O6Wi—Co1—O6W180.000 (1)C6—C5—C4120.9 (3)
O5Wi—Co1—O7W90.96 (12)C6—C5—H5A119.5
O5W—Co1—O7W89.04 (12)C4—C5—H5A119.5
O6Wi—Co1—O7W91.08 (10)C5—C6—C7121.6 (3)
O6W—Co1—O7W88.92 (10)C5—C6—H6A119.2
O5Wi—Co1—O7Wi89.04 (12)C7—C6—H6A119.2
O5W—Co1—O7Wi90.96 (12)C10—C7—C9116.4 (3)
O6Wi—Co1—O7Wi88.92 (10)C10—C7—C6124.6 (3)
O6W—Co1—O7Wi91.08 (10)C9—C7—C6118.9 (3)
O7W—Co1—O7Wi180.0N1—C8—C4123.0 (3)
O2W—Co2—O1W91.48 (10)N1—C8—C9116.5 (3)
O2W—Co2—O4W85.09 (9)C4—C8—C9120.5 (3)
O1W—Co2—O4W86.82 (10)N2—C9—C7123.5 (3)
O2W—Co2—N1165.12 (9)N2—C9—C8117.5 (2)
O1W—Co2—N199.13 (10)C7—C9—C8119.0 (3)
O4W—Co2—N185.11 (9)C11—C10—C7120.1 (3)
O2W—Co2—O3W93.59 (10)C11—C10—H10A119.9
O1W—Co2—O3W83.29 (9)C7—C10—H10A119.9
O4W—Co2—O3W169.99 (9)C10—C11—C12119.8 (3)
N1—Co2—O3W97.97 (10)C10—C11—H11A120.1
O2W—Co2—N295.03 (9)C12—C11—H11A120.1
O1W—Co2—N2164.28 (10)N2—C12—C11122.2 (3)
O4W—Co2—N2107.96 (10)N2—C12—H12A118.9
N1—Co2—N277.42 (9)C11—C12—H12A118.9
O3W—Co2—N282.04 (8)C14—C13—C18121.1 (2)
C1—N1—C8117.2 (3)C14—C13—C19120.8 (3)
C1—N1—Co2127.8 (2)C18—C13—C19118.1 (3)
C8—N1—Co2114.98 (19)C13—C14—C15119.6 (3)
C12—N2—C9118.0 (3)C13—C14—H14A120.2
C12—N2—Co2128.2 (2)C15—C14—H14A120.2
C9—N2—Co2113.33 (17)C16—C15—O3124.6 (2)
Co2—O1W—H1WA131 (2)C16—C15—C14120.6 (3)
Co2—O1W—H1WB117 (2)O3—C15—C14114.8 (3)
H1WA—O1W—H1WB108 (2)C15—C16—C17118.7 (3)
Co2—O2W—H2WA111 (2)C15—C16—H16A120.6
Co2—O2W—H2WB118 (2)C17—C16—H16A120.6
H2WA—O2W—H2WB99 (2)C18—C17—O6124.8 (3)
Co2—O3W—H3WA122 (2)C18—C17—C16121.1 (3)
Co2—O3W—H3WB127 (2)O6—C17—C16114.1 (2)
H3WA—O3W—H3WB109 (3)C17—C18—C13118.9 (3)
C15—O3—C20119.3 (2)C17—C18—H18A120.6
Co2—O4W—H4WA126 (2)C13—C18—H18A120.6
Co2—O4W—H4WB129 (2)O1—C19—O2123.0 (2)
H4WA—O4W—H4WB103 (2)O1—C19—C13117.9 (3)
Co1—O5W—H5WA121 (2)O2—C19—C13119.0 (3)
Co1—O5W—H5WB128 (2)O3—C20—C21109.0 (2)
H5WA—O5W—H5WB107 (2)O3—C20—H20A109.9
Co1—O6W—H6WA128 (2)C21—C20—H20A109.9
Co1—O6W—H6WB119 (2)O3—C20—H20B109.9
H6WA—O6W—H6WB112 (3)C21—C20—H20B109.9
C17—O6—C22116.8 (2)H20A—C20—H20B108.3
Co1—O7W—H7WA119 (2)O4—C21—O5125.2 (3)
Co1—O7W—H7WB115 (3)O4—C21—C20119.3 (2)
H7WA—O7W—H7WB103 (2)O5—C21—C20115.5 (2)
H8WB—O8W—H8WA103 (2)O6—C22—C23114.4 (3)
H9WA—O9W—H9WB107 (3)O6—C22—H22A108.6
N1—C1—C2123.5 (3)C23—C22—H22A108.6
N1—C1—H1A118.3O6—C22—H22B108.6
C2—C1—H1A118.3C23—C22—H22B108.6
C3—C2—C1118.7 (3)H22A—C22—H22B107.6
C3—C2—H2A120.7O8—C23—O7125.8 (3)
C1—C2—H2A120.7O8—C23—C22119.9 (3)
C2—C3—C4120.2 (3)O7—C23—C22114.3 (3)
O2W—Co2—N1—C1114.6 (4)Co2—N2—C9—C85.0 (3)
O1W—Co2—N1—C120.4 (3)C10—C7—C9—N21.2 (4)
O4W—Co2—N1—C165.6 (3)C6—C7—C9—N2179.7 (3)
O3W—Co2—N1—C1104.8 (3)C10—C7—C9—C8177.0 (3)
N2—Co2—N1—C1175.2 (3)C6—C7—C9—C82.1 (4)
O2W—Co2—N1—C863.3 (4)N1—C8—C9—N22.8 (4)
O1W—Co2—N1—C8161.7 (2)C4—C8—C9—N2177.6 (3)
O4W—Co2—N1—C8112.3 (2)N1—C8—C9—C7175.5 (3)
O3W—Co2—N1—C877.3 (2)C4—C8—C9—C74.1 (4)
N2—Co2—N1—C82.66 (19)C9—C7—C10—C110.8 (5)
O2W—Co2—N2—C1217.1 (3)C6—C7—C10—C11179.8 (3)
O1W—Co2—N2—C1297.0 (4)C7—C10—C11—C120.2 (5)
O4W—Co2—N2—C12103.6 (3)C9—N2—C12—C110.5 (5)
N1—Co2—N2—C12175.9 (3)Co2—N2—C12—C11170.9 (2)
O3W—Co2—N2—C1275.8 (3)C10—C11—C12—N20.9 (5)
O2W—Co2—N2—C9171.1 (2)C18—C13—C14—C150.2 (4)
O1W—Co2—N2—C974.8 (4)C19—C13—C14—C15179.3 (3)
O4W—Co2—N2—C984.6 (2)C20—O3—C15—C162.9 (4)
N1—Co2—N2—C94.08 (19)C20—O3—C15—C14177.2 (3)
O3W—Co2—N2—C996.0 (2)C13—C14—C15—C160.7 (5)
C8—N1—C1—C20.5 (5)C13—C14—C15—O3179.2 (3)
Co2—N1—C1—C2178.4 (2)O3—C15—C16—C17179.5 (3)
N1—C1—C2—C32.1 (5)C14—C15—C16—C170.5 (5)
C1—C2—C3—C42.0 (5)C22—O6—C17—C185.8 (5)
C2—C3—C4—C80.5 (5)C22—O6—C17—C16173.9 (3)
C2—C3—C4—C5178.8 (3)C15—C16—C17—C180.7 (5)
C3—C4—C5—C6179.8 (3)C15—C16—C17—O6179.0 (3)
C8—C4—C5—C60.9 (5)O6—C17—C18—C13178.0 (3)
C4—C5—C6—C71.1 (5)C16—C17—C18—C131.6 (5)
C5—C6—C7—C10179.4 (3)C14—C13—C18—C171.4 (5)
C5—C6—C7—C90.5 (5)C19—C13—C18—C17179.5 (3)
C1—N1—C8—C43.2 (4)C14—C13—C19—O1162.3 (3)
Co2—N1—C8—C4178.6 (2)C18—C13—C19—O116.8 (4)
C1—N1—C8—C9177.2 (3)C14—C13—C19—O217.1 (4)
Co2—N1—C8—C91.0 (3)C18—C13—C19—O2163.8 (3)
C3—C4—C8—N13.3 (5)C15—O3—C20—C21178.3 (2)
C5—C4—C8—N1176.1 (3)O3—C20—C21—O40.9 (4)
C3—C4—C8—C9177.2 (3)O3—C20—C21—O5179.7 (2)
C5—C4—C8—C93.5 (4)C17—O6—C22—C2381.3 (3)
C12—N2—C9—C70.6 (4)O6—C22—C23—O84.5 (4)
Co2—N2—C9—C7173.3 (2)O6—C22—C23—O7177.7 (2)
C12—N2—C9—C8177.7 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O7ii0.84 (2)1.88 (2)2.713 (3)173 (3)
O2W—H2WA···O8ii0.86 (2)1.86 (2)2.690 (3)163 (3)
O8W—H8WA···O1ii0.84 (2)1.91 (2)2.732 (3)163 (4)
O4W—H4WB···O2iii0.84 (2)1.91 (2)2.731 (3)169 (3)
O7W—H7WA···O9Wiii0.84 (2)2.01 (2)2.818 (3)164 (3)
O8W—H8WB···O4iii0.85 (2)2.29 (3)2.945 (3)134 (4)
O3W—H3WA···O7i0.83 (2)2.12 (2)2.881 (3)152 (3)
O5W—H5WA···O1i0.84 (2)1.77 (2)2.609 (3)175 (4)
O1W—H1WB···O7i0.84 (2)1.88 (2)2.711 (3)170 (3)
O6W—H6WB···O5iv0.81 (2)2.00 (2)2.812 (3)177 (3)
O5W—H5WB···O4iv0.83 (2)1.89 (2)2.715 (3)174 (4)
O3W—H3WB···O4iv0.79 (2)2.25 (2)3.029 (3)168 (4)
O3W—H3WB···O3iv0.79 (2)2.54 (3)3.080 (3)127 (3)
O9W—H9WB···O2v0.82 (2)2.00 (2)2.818 (3)172 (4)
O7W—H7WB···O9Wvi0.83 (2)1.97 (2)2.805 (4)174 (4)
O1W—H1WA···O5vii0.82 (2)1.97 (2)2.785 (3)172 (4)
O6W—H6WA···O20.79 (2)2.00 (2)2.775 (3)169 (3)
O2W—H2WB···O8W0.85 (2)1.88 (2)2.723 (3)177 (3)
O9W—H9WA···O50.83 (2)2.00 (2)2.831 (3)173 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+1/2, y+1/2, z+1/2; (iv) x1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2; (vi) x+3/2, y1/2, z+1/2; (vii) x, y, z+1.

Experimental details

Crystal data
Chemical formula[Co(C12H8N2)(H2O)4]2[Co(H2O)6](C11H7O8)2·4H2O
Mr1395.82
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.0924 (1), 20.3779 (4), 20.1810 (3)
β (°) 99.063 (1)
V3)2880.31 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.96
Crystal size (mm)0.22 × 0.15 × 0.07
Data collection
DiffractometerBruker APEXII area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.839, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
21923, 5080, 3751
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.100, 1.09
No. of reflections5080
No. of parameters450
No. of restraints27
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Co1—O5W2.0144 (19)Co2—O4W2.102 (2)
Co1—O6W2.112 (2)Co2—N12.109 (2)
Co1—O7W2.115 (3)Co2—O3W2.118 (2)
Co2—O2W2.072 (2)Co2—N22.157 (2)
Co2—O1W2.093 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4W—H4WA···O7i0.841 (17)1.878 (18)2.713 (3)173 (3)
O2W—H2WA···O8i0.856 (17)1.86 (2)2.690 (3)163 (3)
O8W—H8WA···O1i0.842 (18)1.91 (2)2.732 (3)163 (4)
O4W—H4WB···O2ii0.837 (17)1.905 (18)2.731 (3)169 (3)
O7W—H7WA···O9Wii0.836 (18)2.01 (2)2.818 (3)164 (3)
O8W—H8WB···O4ii0.845 (18)2.29 (3)2.945 (3)134 (4)
O3W—H3WA···O7iii0.831 (17)2.122 (18)2.881 (3)152 (3)
O5W—H5WA···O1iii0.837 (17)1.774 (18)2.609 (3)175 (4)
O1W—H1WB···O7iii0.839 (17)1.880 (17)2.711 (3)170 (3)
O6W—H6WB···O5iv0.810 (17)2.002 (18)2.812 (3)177 (3)
O5W—H5WB···O4iv0.826 (18)1.891 (19)2.715 (3)174 (4)
O3W—H3WB···O4iv0.788 (17)2.253 (18)3.029 (3)168 (4)
O3W—H3WB···O3iv0.788 (17)2.54 (3)3.080 (3)127 (3)
O9W—H9WB···O2v0.819 (18)2.004 (18)2.818 (3)172 (4)
O7W—H7WB···O9Wvi0.834 (18)1.974 (18)2.805 (4)174 (4)
O1W—H1WA···O5vii0.816 (17)1.974 (18)2.785 (3)172 (4)
O6W—H6WA···O20.788 (17)1.997 (17)2.775 (3)169 (3)
O2W—H2WB···O8W0.846 (17)1.877 (18)2.723 (3)177 (3)
O9W—H9WA···O50.833 (17)2.004 (18)2.831 (3)173 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z1/2; (vi) x+3/2, y1/2, z+1/2; (vii) x, y, z+1.
 

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, R., Sun, D., Liang, Y., Hong, M., Tatsumi, K. & Shi, Q. (2002). Inorg. Chem. 41, 2087–2094.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationDai, J. C., Wu, X. T. & Fu, Z. Y. (2002). Chem. Commun. pp. 12–13.  Web of Science CrossRef Google Scholar
First citationHe, Y. H., Feng, Y. L., Lan, Y. Z. & Wen, Y. H. (2008). Cryst. Growth Des. 10, 3586–3594.  Web of Science CSD CrossRef Google Scholar
First citationRowsell, J. L. C., Spenser, E. C., Eckert, J., Howard, J. A. K. & Yaghi, O. M. (2005). Science, 309, 1350–1354.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Goéttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, Z., Kravtsov, V. Ch. & Zaworotko, M. J. (2005). Angew. Chem. Int. Ed. 44, 2877–2880.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds