metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Azido­{2-[bis­­(2-hy­dr­oxy­eth­yl)amino]­ethano­lato-κ4N,O,O′,O′′}cobalt(II)

aPharmacy College, Henan University of Traditional Chinese Medicine, Zhengzhou 450008, People's Republic of China
*Correspondence e-mail: liuyanju886@163.com

(Received 8 November 2010; accepted 14 November 2010; online 20 November 2010)

In the title complex, [Co(C6H14NO3)(N3)] or [Co(teaH2)N3], the CoII atom resides in a trigonal–bipymidal O3N2 environment formed by three O atoms and one N atom from a simply deprotonated tetra­dentate triethano­lamine ligand, and one N atom from an azide ligand. The O atoms define the equatorial plane whereas both N atoms are in axial positions. The mononuclear units are linked through O—H⋯O hydrogen-bonding inter­actions between the ethanol OH groups and the ethano­late O atom of a neighbouring complex into chains running parallel to [010].

Related literature

For general background to complexes including teaH3 ligands, see: Liu, Wang et al. (2008[Liu, T., Wang, B.-W., Chen, Y.-H., Wang, Z.-M. & Gao, S. (2008). Z. Anorg. Allg. Chem. 634, 778-783.]); Liu, Zhang et al. (2008[Liu, T., Zhang, Y.-J., Wang, Z.-M. & Gao, S. (2008). J. Am. Chem. Soc. 130, 10500-10501.]). For CoII complexes with similar ligands, see: Malaestean et al. (2010[Malaestean, I. L., Speldrich, M., Ellern, A., Baca, S. G. & Kögerler, P. (2010). Polyhedron, 29, 1990-1997.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C6H14NO3)(N3)]

  • Mr = 249.14

  • Monoclinic, P 21 /c

  • a = 8.7752 (2) Å

  • b = 7.9373 (1) Å

  • c = 14.4097 (3) Å

  • β = 107.084 (1)°

  • V = 959.37 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 293 K

  • 0.20 × 0.20 × 0.10 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (REQAB; Jacobson, 1998[Jacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.708, Tmax = 0.823

  • 4004 measured reflections

  • 2179 independent reflections

  • 1253 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 0.89

  • 2179 reflections

  • 135 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.55 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Selected bond lengths (Å)

Co1—O3 1.991 (2)
Co1—N2 2.013 (3)
Co1—O1 2.064 (2)
Co1—O2 2.065 (2)
Co1—N1 2.148 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H1OA⋯O3i 0.80 (6) 1.80 (6) 2.595 (3) 176.90
O1—H2OA⋯O3ii 0.74 (3) 1.83 (3) 2.573 (3) 177.70
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku/MSC, 2006[Rigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The design and synthesis of mononuclear compounds with strong anisotropy, potentially acting as single ion magnets, are of current interest. Podand-like or multi-dentate ligands, such as diethanolamine (deaH2) or triethanolamine (teaH3), have been employed though these ligands were also used to prepare other kinds of clusters (Liu, Wang et al., 2008; Liu, Zhang et al., 2008). In this work, we selected teaH3 as a capping ligand, and azide as another anion, generating complex (I), Co(N(CH2CH2OH)2(CH2CH2O))N3 [= Co(teaH2)N3].

In the structure of (I) each CoII atom is five-coordinate by three O atoms and one N atom from a simply deprotonated tetradentate triethanolamine ligand, and one N atom from an azide ligand in a trigonal-bipymidal coordination environment (Fig. 1). The O atoms define the equatorial plane whereas both N atoms sit in axial positions. The Co—N distances are 2.013 (3)—2.148 (3) Å, and the Co—O distances are 1.991 (2)–2.065 (2) Å. These bond length are in agreement with similar complexes with CoII in trigonal-pyramidal coordination (Malaestean et al., 2010).

The mononuclear Co(teaH2)N3 units are linked through O—H···O hydrogen bonding interactions between the ethanol OH groups and the ethanolate O atom of a neighbouring complex into chains running parallel to [010] (Fig. 2).

Related literature top

For general background to complexes including teaH3 ligands, see: Liu, Wang et al. (2008); Liu, Zhang et al. (2008). For CoII complexes with similar ligands, see: Malaestean et al. (2010).

Experimental top

Under stirring, 2.0 mmol teaH3, 4.0 mmol Et3N and 4.0 mmol NaN3 were added, one after another, into a 20 ml methanol solution containing 1.0 mol Co(ClO4)2.6H2O. The resulting solution was kept stirred for another hour, and then filtered. The filtrate was allowed to stand undisturbed in a sealed vessel. Crystallization took place during one week and gave crystals in a yield of 40% based on Co(ClO4)2.6H2O. The product was washed with methanol and dried in air.

Refinement top

H1OA and H2OA were found in difference Fourier maps and were refined freely. All other H atoms were positioned geometrically as riding atoms, with C—H = 0.97 Å and with Uiso(H) = 1.2 Ueq(C).

Structure description top

The design and synthesis of mononuclear compounds with strong anisotropy, potentially acting as single ion magnets, are of current interest. Podand-like or multi-dentate ligands, such as diethanolamine (deaH2) or triethanolamine (teaH3), have been employed though these ligands were also used to prepare other kinds of clusters (Liu, Wang et al., 2008; Liu, Zhang et al., 2008). In this work, we selected teaH3 as a capping ligand, and azide as another anion, generating complex (I), Co(N(CH2CH2OH)2(CH2CH2O))N3 [= Co(teaH2)N3].

In the structure of (I) each CoII atom is five-coordinate by three O atoms and one N atom from a simply deprotonated tetradentate triethanolamine ligand, and one N atom from an azide ligand in a trigonal-bipymidal coordination environment (Fig. 1). The O atoms define the equatorial plane whereas both N atoms sit in axial positions. The Co—N distances are 2.013 (3)—2.148 (3) Å, and the Co—O distances are 1.991 (2)–2.065 (2) Å. These bond length are in agreement with similar complexes with CoII in trigonal-pyramidal coordination (Malaestean et al., 2010).

The mononuclear Co(teaH2)N3 units are linked through O—H···O hydrogen bonding interactions between the ethanol OH groups and the ethanolate O atom of a neighbouring complex into chains running parallel to [010] (Fig. 2).

For general background to complexes including teaH3 ligands, see: Liu, Wang et al. (2008); Liu, Zhang et al. (2008). For CoII complexes with similar ligands, see: Malaestean et al. (2010).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2006); cell refinement: CrystalClear (Rigaku/MSC, 2006); data reduction: CrystalClear (Rigaku/MSC, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I), showing the labelling of the atoms drawn with displacement ellipsoids at the 30% probability level. All H atoms have been omitted for clarity.
[Figure 2] Fig. 2. A view of the crystal packing along the c axis. Hydrogen bonds are indicated with dashed lines.
Azido{2-[bis(2-hydroxyethyl)amino]ethanolato- κ4N,O,O',O''}cobalt(II) top
Crystal data top
[Co(C6H14NO3)(N3)]F(000) = 516
Mr = 249.14Dx = 1.725 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2179 reflections
a = 8.7752 (2) Åθ = 3.4–27.5°
b = 7.9373 (1) ŵ = 1.78 mm1
c = 14.4097 (3) ÅT = 293 K
β = 107.084 (1)°Pillar, red
V = 959.37 (3) Å30.20 × 0.20 × 0.10 mm
Z = 4
Data collection top
Rigaku Saturn CCD
diffractometer
2179 independent reflections
Radiation source: fine-focus sealed tube1253 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 0.76 pixels mm-1θmax = 27.5°, θmin = 3.5°
ω scansh = 1111
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
k = 1010
Tmin = 0.708, Tmax = 0.823l = 1818
4004 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0427P)2]
where P = (Fo2 + 2Fc2)/3
2179 reflections(Δ/σ)max = 0.001
135 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Co(C6H14NO3)(N3)]V = 959.37 (3) Å3
Mr = 249.14Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.7752 (2) ŵ = 1.78 mm1
b = 7.9373 (1) ÅT = 293 K
c = 14.4097 (3) Å0.20 × 0.20 × 0.10 mm
β = 107.084 (1)°
Data collection top
Rigaku Saturn CCD
diffractometer
2179 independent reflections
Absorption correction: multi-scan
(REQAB; Jacobson, 1998)
1253 reflections with I > 2σ(I)
Tmin = 0.708, Tmax = 0.823Rint = 0.055
4004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.55 e Å3
2179 reflectionsΔρmin = 0.38 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.49520 (5)0.87496 (5)0.81512 (3)0.02597 (16)
C10.2117 (4)0.6897 (4)0.8302 (3)0.0438 (10)
H1A0.18990.62230.77160.053*
H1B0.11730.68860.85220.053*
C20.3480 (4)0.6158 (5)0.9063 (3)0.0405 (9)
H2A0.35230.66380.96900.049*
H2B0.33290.49510.90960.049*
C30.2225 (5)0.9829 (4)0.8818 (3)0.0424 (10)
H3A0.25550.92970.94510.051*
H3B0.10991.00920.86650.051*
C40.3151 (4)1.1428 (4)0.8848 (3)0.0362 (9)
H4A0.26191.21390.83010.043*
H4B0.32171.20400.94410.043*
C50.1604 (4)0.9162 (5)0.7086 (3)0.0423 (10)
H5A0.15621.03820.70490.051*
H5B0.05180.87450.69250.051*
C60.2386 (4)0.8496 (5)0.6363 (2)0.0361 (9)
H6A0.21380.73090.62490.043*
H6B0.19700.90860.57510.043*
N10.2476 (3)0.8648 (3)0.80846 (19)0.0254 (6)
N20.7314 (3)0.8811 (4)0.8330 (2)0.0405 (7)
N30.8273 (4)0.8233 (4)0.9028 (2)0.0388 (8)
N40.9226 (5)0.7663 (5)0.9675 (3)0.0703 (12)
O10.4947 (3)0.6485 (3)0.88538 (18)0.0332 (6)
O20.4718 (3)1.1008 (3)0.88087 (18)0.0344 (6)
O30.4087 (2)0.8714 (3)0.67098 (14)0.0269 (5)
H1OA0.508 (6)1.183 (7)0.863 (4)0.11 (2)*
H2OA0.525 (4)0.569 (4)0.870 (3)0.035 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0262 (2)0.0243 (2)0.0272 (2)0.0003 (2)0.00739 (18)0.0007 (2)
C10.040 (2)0.0305 (19)0.064 (3)0.0069 (17)0.021 (2)0.0004 (18)
C20.050 (2)0.0339 (19)0.046 (2)0.002 (2)0.0274 (19)0.0055 (19)
C30.044 (2)0.034 (2)0.059 (2)0.0046 (18)0.030 (2)0.0111 (19)
C40.042 (2)0.0266 (19)0.048 (2)0.0025 (18)0.0257 (18)0.0068 (17)
C50.029 (2)0.054 (3)0.043 (2)0.0035 (18)0.0095 (17)0.0026 (18)
C60.0263 (19)0.045 (2)0.0335 (19)0.0002 (17)0.0027 (16)0.0022 (17)
N10.0282 (14)0.0220 (13)0.0280 (14)0.0013 (13)0.0114 (12)0.0021 (12)
N20.0264 (16)0.0488 (18)0.0465 (19)0.0014 (16)0.0112 (15)0.0126 (17)
N30.0272 (18)0.047 (2)0.045 (2)0.0005 (15)0.0145 (16)0.0082 (16)
N40.046 (2)0.107 (3)0.050 (2)0.024 (2)0.001 (2)0.008 (2)
O10.0377 (15)0.0227 (15)0.0420 (15)0.0045 (12)0.0163 (12)0.0026 (12)
O20.0372 (15)0.0274 (14)0.0411 (14)0.0091 (12)0.0152 (11)0.0053 (12)
O30.0265 (12)0.0302 (12)0.0252 (11)0.0039 (12)0.0093 (9)0.0022 (11)
Geometric parameters (Å, º) top
Co1—O31.991 (2)C3—H3B0.9700
Co1—N22.013 (3)C4—O21.433 (4)
Co1—O12.064 (2)C4—H4A0.9700
Co1—O22.065 (2)C4—H4B0.9700
Co1—N12.148 (3)C5—N11.475 (4)
C1—N11.478 (4)C5—C61.502 (5)
C1—C21.486 (5)C5—H5A0.9700
C1—H1A0.9700C5—H5B0.9700
C1—H1B0.9700C6—O31.439 (4)
C2—O11.430 (4)C6—H6A0.9700
C2—H2A0.9700C6—H6B0.9700
C2—H2B0.9700N2—N31.197 (4)
C3—N11.476 (4)N3—N41.147 (4)
C3—C41.501 (5)O1—H2OA0.74 (3)
C3—H3A0.9700O2—H1OA0.81 (5)
O3—Co1—N2101.32 (11)O2—C4—H4B110.0
O3—Co1—O1116.37 (10)C3—C4—H4B110.0
N2—Co1—O196.24 (12)H4A—C4—H4B108.3
O3—Co1—O2115.60 (10)N1—C5—C6111.6 (3)
N2—Co1—O299.08 (12)N1—C5—H5A109.3
O1—Co1—O2121.07 (10)C6—C5—H5A109.3
O3—Co1—N183.24 (9)N1—C5—H5B109.3
N2—Co1—N1175.37 (11)C6—C5—H5B109.3
O1—Co1—N180.87 (10)H5A—C5—H5B108.0
O2—Co1—N179.50 (10)O3—C6—C5110.8 (3)
N1—C1—C2110.6 (3)O3—C6—H6A109.5
N1—C1—H1A109.5C5—C6—H6A109.5
C2—C1—H1A109.5O3—C6—H6B109.5
N1—C1—H1B109.5C5—C6—H6B109.5
C2—C1—H1B109.5H6A—C6—H6B108.1
H1A—C1—H1B108.1C5—N1—C3112.2 (3)
O1—C2—C1110.6 (3)C5—N1—C1112.6 (3)
O1—C2—H2A109.5C3—N1—C1111.0 (3)
C1—C2—H2A109.5C5—N1—Co1105.15 (19)
O1—C2—H2B109.5C3—N1—Co1107.8 (2)
C1—C2—H2B109.5C1—N1—Co1107.6 (2)
H2A—C2—H2B108.1N3—N2—Co1122.8 (2)
N1—C3—C4111.4 (3)N4—N3—N2177.5 (4)
N1—C3—H3A109.4C2—O1—Co1113.2 (2)
C4—C3—H3A109.4C2—O1—H2OA109 (3)
N1—C3—H3B109.4Co1—O1—H2OA123 (3)
C4—C3—H3B109.4C4—O2—Co1116.5 (2)
H3A—C3—H3B108.0C4—O2—H1OA107 (4)
O2—C4—C3108.7 (3)Co1—O2—H1OA117 (4)
O2—C4—H4A110.0C6—O3—Co1113.77 (18)
C3—C4—H4A110.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1OA···O3i0.80 (6)1.80 (6)2.595 (3)176.90
O1—H2OA···O3ii0.74 (3)1.83 (3)2.573 (3)177.70
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[Co(C6H14NO3)(N3)]
Mr249.14
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)8.7752 (2), 7.9373 (1), 14.4097 (3)
β (°) 107.084 (1)
V3)959.37 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.20 × 0.20 × 0.10
Data collection
DiffractometerRigaku Saturn CCD
Absorption correctionMulti-scan
(REQAB; Jacobson, 1998)
Tmin, Tmax0.708, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
4004, 2179, 1253
Rint0.055
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 0.89
No. of reflections2179
No. of parameters135
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.38

Computer programs: CrystalClear (Rigaku/MSC, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Co1—O31.991 (2)Co1—O22.065 (2)
Co1—N22.013 (3)Co1—N12.148 (3)
Co1—O12.064 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H1OA···O3i0.80 (6)1.80 (6)2.595 (3)176.90
O1—H2OA···O3ii0.74 (3)1.83 (3)2.573 (3)177.70
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y1/2, z+3/2.
 

Acknowledgements

This study was supported by the Doctoral Research Fund of Henan Chinese Medicine (BSJJ2009–38).

References

First citationJacobson, R. (1998). REQAB. Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, T., Wang, B.-W., Chen, Y.-H., Wang, Z.-M. & Gao, S. (2008). Z. Anorg. Allg. Chem. 634, 778–783.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, T., Zhang, Y.-J., Wang, Z.-M. & Gao, S. (2008). J. Am. Chem. Soc. 130, 10500–10501.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMalaestean, I. L., Speldrich, M., Ellern, A., Baca, S. G. & Kögerler, P. (2010). Polyhedron, 29, 1990–1997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2006). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds