metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­[2-(3-carb­­oxy-5-carboxyl­atophen­­oxy)acetato-κO1]bis­­(1,10-phenanthroline-κ2N,N′)manganese(II) dihydrate

aZhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, People's Republic of China
*Correspondence e-mail: sky37@zjnu.cn

(Received 9 November 2010; accepted 18 November 2010; online 24 November 2010)

In the title complex, [Mn(C10H6O7)(C12H8N2)2(H2O)]·2H2O, the MnII atom is coordinated by two O atoms from one 2-(3-carb­oxy-5-carboxyl­atophen­oxy)acetate (HOABDC2−) dianion and one water mol­ecule and by four N atoms from two 1,10-phenanthroline (phen) ligands within a distorted octa­hedral geometry. O—H⋯O hydrogen bonding between –COOH and –COO groups of adjacent mol­ecules and between carboxyl­ate groups and coordinated and uncoordin­ated water mol­ecules leads to a three-dimensional structure which is further stabilized by weak ππ inter­actions of adjacent phen ligands with centroid–centroid separations of 4.2932 (1) Å.

Related literature

For related structures, see: Cao et al. (2004[Cao, X.-Y., Zhang, J., Cheng, J.-K., Kang, Y. & Yao, Y.-G. (2004). CrystEngComm, 6, 315-317.], 2007[Cao, X.-Y., Zhang, J., Li, Z.-J., Cheng, J.-K. & Yao, Y.-G. (2007). CrystEngComm, 9, 806-814.]); Cheng et al. (2004[Cheng, D., Khan, M. A. & Houser, R. P. (2004). Cryst. Growth Des. 4, 599-604.]); Murugavel et al. (2002[Murugavel, R., Krishnamurthy, D. & Sathiyendiran, M. (2002). J. Chem. Soc. Dalton Trans. pp. 34-39.]); Zhang et al. (2002[Zhang, X.-M., Tong, M.-L. & Chen, X.-M. (2002). Angew. Chem. Int. Ed. 41, 1029-1031.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(C10H6O7)(C12H8N2)2(H2O)]·2H2O

  • Mr = 707.54

  • Monoclinic, P 21 /n

  • a = 8.1024 (2) Å

  • b = 22.3106 (6) Å

  • c = 17.5381 (5) Å

  • β = 99.212 (2)°

  • V = 3129.46 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.49 mm−1

  • T = 296 K

  • 0.29 × 0.24 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.871, Tmax = 0.955

  • 69826 measured reflections

  • 7282 independent reflections

  • 5127 reflections with I > 2σ(I)

  • Rint = 0.050

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.117

  • S = 1.00

  • 7282 reflections

  • 463 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Selected bond lengths (Å)

Mn—O6 2.1352 (13)
Mn—O1W 2.1820 (15)
Mn—N1 2.2462 (17)
Mn—N4 2.2633 (16)
Mn—N2 2.2776 (16)
Mn—N3 2.2974 (16)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WA⋯O4i 0.83 (2) 1.92 (2) 2.740 (2) 174 (2)
O1—H⋯O3ii 0.87 (2) 1.56 (2) 2.4148 (19) 169 (3)
O2W—H2WB⋯O4iii 0.84 (2) 2.08 (2) 2.917 (2) 176 (3)
O2W—H2WA⋯O2iv 0.83 (2) 2.08 (2) 2.908 (3) 177 (3)
O3W—H3WB⋯O3v 0.83 (2) 2.55 (2) 3.323 (3) 155 (4)
O3W—H3WA⋯O2Wvi 0.84 (2) 2.01 (2) 2.845 (3) 173 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x, -y+1, -z+1; (v) -x+1, -y+1, -z+1; (vi) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg, 2007[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Many aromatic polycarboxylate ligands have been employed as organic skeletons in the formation of various metal-organic compounds. To the best of our knowledge, aromatic polycarboxylate ligand with both rigid and flexible carboxyl groups are less reported. In comparison with rigid aromatic multicarboxylic ligands (Cheng et al., 2004; Murugavel et al., 2002; Zhang et al., 2002), 5-oxyacetic-1,3-benzenebiscarboxylic acid (H3OABDC) provides two rigid carboxyl groups and one flexible oxyacetato group (Cao et al., 2004, 2007). Herein, we report the synthesis and structure of a new MnII compound based on the H3OABDC ligand, [Mn(C10H6O7)(C12H8N2)2(H2O)].2H2O, (I).

Compound (I) consists of one MnII atom, one HOABDC2- dianion, two phenanthroline (phen) ligands, one coordinated and two lattice water molecules, as shown in Fig. 1. The MnII atom is six-coordinated by four nitrogen atoms from two phen ligands (Mn—N 2.2462 (17)–2.2974 (16) Å), one oxygen atom from one flexible carboxyl group of the HOABDC2- anion (Mn—O 2.1352 (13) Å) and one water molecule (Mn—O 2.1820 (15) Å) in a distorted octahedral geometry. It is notable that only the flexible carboxylato group participates in a monodentately coordinating mode to the MnII atom. The dianion is not planar as indicated by the dihedral angles (8.2 (1)–10.17 (5) °) between the benzene ring and the two carboxy groups, as well as the torsion angle (69.0 (2) °) involving the benzene ring and the OCH2COO2 group. The complex molecules are connected to each other through O—H···O interactions between the two rigid carboxyl groups of the HOABDC2- dianion to form a "T"-shaped chain (Fig. 2). Adjacent chains are further linked with each other via weak ππ interactions between phen groups (centroid—centroid separation between planes is 4.2932 (1) Å) and O—H···O hydrogen bonds involving both coordinated and uncoordinated water molecules (Fig. 3).

Related literature top

For related structures, see: Cao et al. (2004, 2007); Cheng et al. (2004); Murugavel et al. (2002); Zhang et al. (2002).

Experimental top

All reagents were of analytical reagent grade and were used without further purification. A mixture of H3OABDC (0.1205 g, 0.5 mmol), Mn(NO3)2.6H2O (0.0976 g, 0.34 mmol), phen (0.1986 g, 0.01 mmol), and NaOH (0.0101 g, 0.25 mmol) was dissolved in purified water (15 ml), and reacted in a 25 ml stainless steel reactor with a telflon liner and heated at 433 K for 72 h, and then cooled to room temperature over 3 days. Then, the reactor was cooled to room temperature at a speed of 5 K.h-1. Yellow single crystals of title compound were obtained by slow evaporation of the filtrate over a few days (yield 40.1% based on H3OABDC).

Refinement top

The carbon-bound H-atoms were positioned geometrically and included in the refinement using a riding model [C—H 0.93 Å Uiso(H) = 1.2Ueq(C)]. The oxygen-bound H-atoms were located in difference Fourier maps and were refined with the O—H distances restrained to 0.82 Å [Uiso(H) = 1.2Ueq(O)].

Structure description top

Many aromatic polycarboxylate ligands have been employed as organic skeletons in the formation of various metal-organic compounds. To the best of our knowledge, aromatic polycarboxylate ligand with both rigid and flexible carboxyl groups are less reported. In comparison with rigid aromatic multicarboxylic ligands (Cheng et al., 2004; Murugavel et al., 2002; Zhang et al., 2002), 5-oxyacetic-1,3-benzenebiscarboxylic acid (H3OABDC) provides two rigid carboxyl groups and one flexible oxyacetato group (Cao et al., 2004, 2007). Herein, we report the synthesis and structure of a new MnII compound based on the H3OABDC ligand, [Mn(C10H6O7)(C12H8N2)2(H2O)].2H2O, (I).

Compound (I) consists of one MnII atom, one HOABDC2- dianion, two phenanthroline (phen) ligands, one coordinated and two lattice water molecules, as shown in Fig. 1. The MnII atom is six-coordinated by four nitrogen atoms from two phen ligands (Mn—N 2.2462 (17)–2.2974 (16) Å), one oxygen atom from one flexible carboxyl group of the HOABDC2- anion (Mn—O 2.1352 (13) Å) and one water molecule (Mn—O 2.1820 (15) Å) in a distorted octahedral geometry. It is notable that only the flexible carboxylato group participates in a monodentately coordinating mode to the MnII atom. The dianion is not planar as indicated by the dihedral angles (8.2 (1)–10.17 (5) °) between the benzene ring and the two carboxy groups, as well as the torsion angle (69.0 (2) °) involving the benzene ring and the OCH2COO2 group. The complex molecules are connected to each other through O—H···O interactions between the two rigid carboxyl groups of the HOABDC2- dianion to form a "T"-shaped chain (Fig. 2). Adjacent chains are further linked with each other via weak ππ interactions between phen groups (centroid—centroid separation between planes is 4.2932 (1) Å) and O—H···O hydrogen bonds involving both coordinated and uncoordinated water molecules (Fig. 3).

For related structures, see: Cao et al. (2004, 2007); Cheng et al. (2004); Murugavel et al. (2002); Zhang et al. (2002).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The "T"-shaped chain in the title compound.
[Figure 3] Fig. 3. The three-dimensional framework of the title compound with hydrogen bonding and ππ interactions (dashed lines).
Aqua[2-(3-carboxyphenoxy)acetato-κO1]bis(1,10-phenanthroline- κ2N,N')manganese(II) dihydrate top
Crystal data top
[Mn(C10H6O7)(C12H8N2)2(H2O)]·2H2OF(000) = 1460
Mr = 707.54Dx = 1.502 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 9990 reflections
a = 8.1024 (2) Åθ = 1.5–27.7°
b = 22.3106 (6) ŵ = 0.49 mm1
c = 17.5381 (5) ÅT = 296 K
β = 99.212 (2)°Block, yellow
V = 3129.46 (14) Å30.29 × 0.24 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
7282 independent reflections
Radiation source: fine-focus sealed tube5127 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.050
ω scansθmax = 27.7°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.871, Tmax = 0.955k = 2829
69826 measured reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0638P)2 + 0.5366P]
where P = (Fo2 + 2Fc2)/3
7282 reflections(Δ/σ)max = 0.001
463 parametersΔρmax = 0.41 e Å3
10 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Mn(C10H6O7)(C12H8N2)2(H2O)]·2H2OV = 3129.46 (14) Å3
Mr = 707.54Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.1024 (2) ŵ = 0.49 mm1
b = 22.3106 (6) ÅT = 296 K
c = 17.5381 (5) Å0.29 × 0.24 × 0.10 mm
β = 99.212 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
7282 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5127 reflections with I > 2σ(I)
Tmin = 0.871, Tmax = 0.955Rint = 0.050
69826 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03810 restraints
wR(F2) = 0.117H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.41 e Å3
7282 reflectionsΔρmin = 0.26 e Å3
463 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn0.20775 (3)0.527200 (13)0.259979 (16)0.03977 (10)
O1W0.3442 (2)0.58989 (7)0.19761 (9)0.0548 (4)
H1WA0.302 (3)0.6150 (9)0.1656 (12)0.066*
H1WB0.395 (3)0.5651 (9)0.1744 (13)0.066*
O10.1064 (2)0.31086 (7)0.08413 (8)0.0585 (4)
H0.050 (3)0.2960 (10)0.0421 (11)0.070*
O2W0.3384 (2)0.69978 (11)0.94327 (11)0.0845 (6)
H2WB0.310 (4)0.6916 (14)0.9859 (11)0.101*
H2WA0.254 (3)0.7136 (14)0.9152 (14)0.101*
O20.0390 (2)0.25197 (9)0.15014 (9)0.0759 (5)
O3W0.1249 (3)0.72517 (11)0.4755 (2)0.1336 (11)
H3WB0.209 (3)0.7467 (16)0.486 (3)0.160*
H3WA0.042 (3)0.7476 (16)0.462 (3)0.160*
O30.4840 (2)0.23215 (7)0.46173 (8)0.0724 (5)
O40.2717 (2)0.17586 (7)0.40925 (8)0.0608 (4)
O50.62133 (16)0.36920 (6)0.26636 (7)0.0440 (3)
O60.40064 (17)0.46344 (6)0.25174 (8)0.0455 (3)
O70.4781 (2)0.49201 (7)0.14154 (9)0.0671 (5)
N10.3104 (2)0.56296 (8)0.37776 (10)0.0517 (4)
N20.1241 (2)0.46239 (7)0.34659 (9)0.0444 (4)
N30.0037 (2)0.59680 (7)0.24904 (10)0.0474 (4)
N40.01674 (19)0.49978 (7)0.15726 (9)0.0424 (4)
C10.2283 (2)0.28589 (8)0.21010 (10)0.0395 (4)
C20.2303 (2)0.25059 (8)0.27511 (10)0.0415 (4)
H20.14290.22430.27860.050*
C30.3647 (2)0.25495 (8)0.33519 (10)0.0387 (4)
C40.4927 (2)0.29499 (8)0.32972 (10)0.0385 (4)
H40.58240.29780.36990.046*
C50.4888 (2)0.33098 (8)0.26510 (10)0.0366 (4)
C60.3576 (2)0.32568 (8)0.20429 (10)0.0387 (4)
H60.35600.34860.15990.046*
C70.0849 (3)0.28103 (9)0.14504 (11)0.0441 (4)
C80.3719 (3)0.21739 (9)0.40661 (10)0.0452 (5)
C90.6173 (2)0.40997 (9)0.20347 (11)0.0436 (4)
H9B0.59720.38730.15570.052*
H9A0.72660.42850.20690.052*
C100.4870 (2)0.45928 (8)0.19925 (11)0.0391 (4)
C110.4049 (3)0.61143 (11)0.39264 (16)0.0699 (7)
H110.42920.63420.35140.084*
C120.4691 (4)0.62961 (14)0.4676 (2)0.0944 (11)
H120.53270.66440.47610.113*
C130.4381 (4)0.59635 (16)0.5274 (2)0.0949 (12)
H130.48410.60740.57750.114*
C140.3372 (3)0.54517 (13)0.51546 (14)0.0710 (8)
C150.2971 (4)0.50771 (19)0.57607 (15)0.0959 (12)
H150.33580.51790.62720.115*
C160.2060 (4)0.45879 (19)0.56048 (16)0.0913 (11)
H160.18190.43540.60120.110*
C170.1430 (3)0.44057 (14)0.48282 (14)0.0667 (7)
C180.0533 (3)0.38851 (15)0.46418 (18)0.0842 (9)
H180.02750.36380.50330.101*
C190.0027 (3)0.37328 (13)0.38935 (19)0.0801 (8)
H190.05600.33790.37670.096*
C200.0403 (3)0.41167 (11)0.33149 (14)0.0596 (6)
H200.00500.40110.28020.072*
C210.1775 (2)0.47682 (10)0.42138 (11)0.0482 (5)
C220.2753 (3)0.52968 (10)0.43802 (12)0.0521 (5)
C230.0184 (3)0.64320 (10)0.29509 (14)0.0587 (6)
H230.05920.64700.34000.070*
C240.1426 (3)0.68609 (11)0.27993 (18)0.0715 (7)
H240.15100.71680.31500.086*
C250.2517 (3)0.68242 (11)0.21291 (19)0.0729 (8)
H250.33460.71130.20130.088*
C260.2408 (3)0.63540 (10)0.16083 (14)0.0585 (6)
C270.3498 (3)0.62863 (13)0.08932 (17)0.0724 (8)
H270.43020.65780.07400.087*
C280.3393 (3)0.58124 (14)0.04358 (15)0.0701 (7)
H280.41150.57840.00320.084*
C290.2185 (3)0.53454 (11)0.06531 (12)0.0531 (5)
C300.2098 (3)0.48226 (12)0.02292 (13)0.0603 (6)
H300.28540.47610.02220.072*
C310.0914 (3)0.44008 (11)0.04712 (12)0.0567 (6)
H310.08620.40480.01940.068*
C320.0217 (3)0.45103 (10)0.11419 (12)0.0487 (5)
H320.10480.42280.12960.058*
C330.1037 (2)0.54120 (9)0.13409 (11)0.0441 (5)
C340.1145 (2)0.59240 (9)0.18283 (12)0.0465 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn0.04202 (17)0.03954 (18)0.03701 (17)0.00304 (12)0.00406 (12)0.00051 (12)
O1W0.0625 (10)0.0436 (9)0.0606 (10)0.0093 (7)0.0173 (8)0.0131 (7)
O10.0702 (10)0.0685 (10)0.0302 (7)0.0123 (8)0.0114 (7)0.0053 (7)
O2W0.0594 (11)0.1263 (17)0.0674 (12)0.0024 (11)0.0084 (9)0.0115 (12)
O20.0634 (10)0.0999 (13)0.0555 (10)0.0298 (10)0.0173 (8)0.0241 (9)
O3W0.0990 (17)0.0797 (17)0.230 (3)0.0064 (13)0.049 (2)0.0240 (19)
O30.1013 (13)0.0683 (10)0.0371 (8)0.0295 (10)0.0207 (8)0.0144 (7)
O40.0910 (12)0.0531 (9)0.0355 (7)0.0239 (8)0.0016 (7)0.0043 (6)
O50.0392 (7)0.0418 (7)0.0481 (7)0.0008 (6)0.0016 (6)0.0087 (6)
O60.0492 (8)0.0440 (8)0.0460 (8)0.0077 (6)0.0158 (6)0.0066 (6)
O70.0841 (12)0.0664 (10)0.0565 (9)0.0243 (9)0.0289 (8)0.0261 (8)
N10.0498 (10)0.0476 (10)0.0541 (11)0.0055 (8)0.0022 (8)0.0106 (8)
N20.0386 (8)0.0523 (10)0.0422 (9)0.0035 (7)0.0058 (7)0.0033 (7)
N30.0497 (10)0.0431 (9)0.0516 (10)0.0056 (8)0.0151 (8)0.0022 (8)
N40.0403 (9)0.0461 (9)0.0399 (9)0.0027 (7)0.0038 (7)0.0026 (7)
C10.0475 (10)0.0401 (10)0.0285 (9)0.0004 (8)0.0016 (8)0.0007 (7)
C20.0510 (11)0.0397 (11)0.0323 (9)0.0035 (8)0.0018 (8)0.0000 (7)
C30.0534 (11)0.0328 (9)0.0281 (9)0.0006 (8)0.0007 (8)0.0008 (7)
C40.0455 (10)0.0357 (9)0.0307 (9)0.0025 (8)0.0044 (8)0.0017 (7)
C50.0405 (10)0.0316 (9)0.0364 (9)0.0037 (8)0.0026 (8)0.0007 (7)
C60.0480 (10)0.0374 (10)0.0292 (9)0.0023 (8)0.0018 (8)0.0027 (7)
C70.0522 (12)0.0429 (11)0.0338 (10)0.0017 (9)0.0032 (8)0.0008 (8)
C80.0643 (13)0.0374 (10)0.0312 (9)0.0026 (9)0.0009 (9)0.0012 (8)
C90.0396 (10)0.0447 (11)0.0475 (11)0.0025 (8)0.0098 (8)0.0069 (9)
C100.0402 (10)0.0389 (10)0.0374 (10)0.0016 (8)0.0035 (8)0.0038 (8)
C110.0628 (15)0.0511 (14)0.0883 (18)0.0051 (11)0.0109 (13)0.0199 (13)
C120.0787 (19)0.0655 (19)0.123 (3)0.0192 (15)0.0331 (19)0.0488 (19)
C130.086 (2)0.099 (2)0.085 (2)0.0432 (19)0.0331 (17)0.0548 (19)
C140.0646 (15)0.0963 (19)0.0463 (13)0.0378 (15)0.0087 (11)0.0240 (13)
C150.091 (2)0.157 (3)0.0361 (14)0.062 (2)0.0009 (14)0.0113 (18)
C160.084 (2)0.151 (3)0.0415 (15)0.046 (2)0.0161 (14)0.0221 (18)
C170.0513 (13)0.098 (2)0.0538 (14)0.0242 (14)0.0184 (11)0.0229 (13)
C180.0651 (17)0.105 (2)0.087 (2)0.0095 (16)0.0241 (15)0.0476 (18)
C190.0566 (15)0.0713 (18)0.113 (2)0.0077 (13)0.0156 (15)0.0305 (17)
C200.0483 (12)0.0599 (14)0.0690 (15)0.0054 (11)0.0044 (11)0.0071 (12)
C210.0389 (10)0.0679 (14)0.0384 (10)0.0157 (10)0.0076 (8)0.0051 (9)
C220.0464 (11)0.0686 (14)0.0386 (10)0.0215 (10)0.0013 (9)0.0099 (10)
C230.0652 (14)0.0488 (13)0.0669 (14)0.0059 (11)0.0254 (12)0.0023 (11)
C240.0753 (17)0.0474 (14)0.101 (2)0.0112 (12)0.0437 (17)0.0015 (13)
C250.0591 (15)0.0503 (14)0.117 (2)0.0191 (11)0.0375 (16)0.0205 (15)
C260.0431 (12)0.0552 (13)0.0803 (16)0.0092 (10)0.0198 (11)0.0257 (12)
C270.0446 (13)0.0770 (18)0.095 (2)0.0126 (12)0.0091 (13)0.0396 (16)
C280.0424 (12)0.098 (2)0.0662 (16)0.0008 (13)0.0025 (11)0.0373 (15)
C290.0380 (10)0.0736 (15)0.0468 (12)0.0056 (10)0.0042 (9)0.0199 (11)
C300.0480 (12)0.0876 (18)0.0423 (11)0.0211 (12)0.0019 (10)0.0091 (12)
C310.0617 (14)0.0635 (14)0.0444 (12)0.0183 (12)0.0066 (10)0.0044 (10)
C320.0491 (12)0.0504 (12)0.0458 (11)0.0040 (9)0.0055 (9)0.0011 (9)
C330.0360 (10)0.0530 (12)0.0439 (11)0.0003 (9)0.0083 (8)0.0136 (9)
C340.0389 (10)0.0467 (11)0.0567 (12)0.0064 (9)0.0162 (9)0.0145 (9)
Geometric parameters (Å, º) top
Mn—O62.1352 (13)C9—H9A0.9700
Mn—O1W2.1820 (15)C11—C121.395 (4)
Mn—N12.2462 (17)C11—H110.9300
Mn—N42.2633 (16)C12—C131.341 (5)
Mn—N22.2776 (16)C12—H120.9300
Mn—N32.2974 (16)C13—C141.400 (5)
O1W—H1WA0.829 (15)C13—H130.9300
O1W—H1WB0.834 (15)C14—C221.413 (3)
O1—C71.294 (2)C14—C151.430 (5)
O1—H0.867 (16)C15—C161.322 (5)
O2W—H2WB0.838 (16)C15—H150.9300
O2W—H2WA0.834 (17)C16—C171.435 (4)
O2—C71.210 (2)C16—H160.9300
O3W—H3WB0.831 (18)C17—C181.381 (4)
O3W—H3WA0.839 (18)C17—C211.411 (3)
O3—C81.260 (2)C18—C191.354 (4)
O4—C81.238 (2)C18—H180.9300
O5—C51.369 (2)C19—C201.398 (3)
O5—C91.426 (2)C19—H190.9300
O6—C101.246 (2)C20—H200.9300
O7—C101.241 (2)C21—C221.425 (3)
N1—C111.326 (3)C23—C241.383 (3)
N1—C221.359 (3)C23—H230.9300
N2—C201.324 (3)C24—C251.355 (4)
N2—C211.353 (3)C24—H240.9300
N3—C231.330 (3)C25—C261.403 (4)
N3—C341.353 (3)C25—H250.9300
N4—C321.328 (3)C26—C341.410 (3)
N4—C331.358 (2)C26—C271.421 (4)
C1—C21.384 (2)C27—C281.338 (4)
C1—C61.389 (3)C27—H270.9300
C1—C71.496 (2)C28—C291.438 (3)
C2—C31.392 (2)C28—H280.9300
C2—H20.9300C29—C301.391 (3)
C3—C41.383 (3)C29—C331.408 (3)
C3—C81.500 (2)C30—C311.362 (3)
C4—C51.385 (2)C30—H300.9300
C4—H40.9300C31—C321.392 (3)
C5—C61.385 (2)C31—H310.9300
C6—H60.9300C32—H320.9300
C9—C101.519 (3)C33—C341.438 (3)
C9—H9B0.9700
O6—Mn—O1W87.60 (5)C12—C11—H11118.7
O6—Mn—N197.56 (6)C13—C12—C11119.2 (3)
O1W—Mn—N195.19 (7)C13—C12—H12120.4
O6—Mn—N4100.41 (6)C11—C12—H12120.4
O1W—Mn—N496.37 (6)C12—C13—C14120.8 (3)
N1—Mn—N4158.98 (6)C12—C13—H13119.6
O6—Mn—N285.50 (5)C14—C13—H13119.6
O1W—Mn—N2165.93 (6)C13—C14—C22116.9 (3)
N1—Mn—N273.63 (7)C13—C14—C15124.2 (3)
N4—Mn—N296.92 (6)C22—C14—C15118.9 (3)
O6—Mn—N3171.40 (6)C16—C15—C14121.0 (3)
O1W—Mn—N387.47 (6)C16—C15—H15119.5
N1—Mn—N389.90 (6)C14—C15—H15119.5
N4—Mn—N373.17 (6)C15—C16—C17122.2 (3)
N2—Mn—N3100.78 (6)C15—C16—H16118.9
Mn—O1W—H1WA125.9 (17)C17—C16—H16118.9
Mn—O1W—H1WB98.6 (17)C18—C17—C21117.6 (2)
H1WA—O1W—H1WB107.6 (19)C18—C17—C16123.8 (3)
C7—O1—H112.5 (17)C21—C17—C16118.6 (3)
H2WB—O2W—H2WA107 (2)C19—C18—C17120.4 (2)
H3WB—O3W—H3WA108 (3)C19—C18—H18119.8
C5—O5—C9117.66 (14)C17—C18—H18119.8
C10—O6—Mn127.12 (12)C18—C19—C20118.8 (3)
C11—N1—C22118.6 (2)C18—C19—H19120.6
C11—N1—Mn126.00 (18)C20—C19—H19120.6
C22—N1—Mn115.37 (14)N2—C20—C19122.9 (2)
C20—N2—C21118.14 (19)N2—C20—H20118.6
C20—N2—Mn127.37 (15)C19—C20—H20118.6
C21—N2—Mn114.35 (14)N2—C21—C17122.2 (2)
C23—N3—C34117.76 (18)N2—C21—C22118.48 (19)
C23—N3—Mn127.85 (15)C17—C21—C22119.3 (2)
C34—N3—Mn113.98 (13)N1—C22—C14121.9 (2)
C32—N4—C33118.21 (17)N1—C22—C21118.16 (18)
C32—N4—Mn126.51 (13)C14—C22—C21120.0 (2)
C33—N4—Mn114.90 (13)N3—C23—C24123.7 (2)
C2—C1—C6120.96 (17)N3—C23—H23118.1
C2—C1—C7119.50 (17)C24—C23—H23118.1
C6—C1—C7119.54 (16)C25—C24—C23118.6 (2)
C1—C2—C3119.24 (17)C25—C24—H24120.7
C1—C2—H2120.4C23—C24—H24120.7
C3—C2—H2120.4C24—C25—C26120.6 (2)
C4—C3—C2119.79 (16)C24—C25—H25119.7
C4—C3—C8119.30 (16)C26—C25—H25119.7
C2—C3—C8120.91 (17)C25—C26—C34116.7 (2)
C3—C4—C5120.79 (16)C25—C26—C27124.0 (2)
C3—C4—H4119.6C34—C26—C27119.3 (2)
C5—C4—H4119.6C28—C27—C26121.5 (2)
O5—C5—C4115.65 (15)C28—C27—H27119.2
O5—C5—C6124.69 (16)C26—C27—H27119.2
C4—C5—C6119.64 (17)C27—C28—C29121.3 (2)
C5—C6—C1119.53 (16)C27—C28—H28119.4
C5—C6—H6120.2C29—C28—H28119.4
C1—C6—H6120.2C30—C29—C33117.6 (2)
O2—C7—O1124.02 (18)C30—C29—C28123.8 (2)
O2—C7—C1122.31 (17)C33—C29—C28118.6 (2)
O1—C7—C1113.67 (17)C31—C30—C29120.4 (2)
O4—C8—O3124.31 (18)C31—C30—H30119.8
O4—C8—C3120.76 (17)C29—C30—H30119.8
O3—C8—C3114.92 (17)C30—C31—C32118.5 (2)
O5—C9—C10115.42 (15)C30—C31—H31120.7
O5—C9—H9B108.4C32—C31—H31120.7
C10—C9—H9B108.4N4—C32—C31123.3 (2)
O5—C9—H9A108.4N4—C32—H32118.4
C10—C9—H9A108.4C31—C32—H32118.4
H9B—C9—H9A107.5N4—C33—C29121.9 (2)
O7—C10—O6126.36 (18)N4—C33—C34118.19 (17)
O7—C10—C9114.52 (17)C29—C33—C34119.88 (19)
O6—C10—C9119.11 (16)N3—C34—C26122.6 (2)
N1—C11—C12122.6 (3)N3—C34—C33118.18 (17)
N1—C11—H11118.7C26—C34—C33119.2 (2)
O1W—Mn—O6—C1030.45 (16)Mn—N1—C11—C12177.58 (19)
N1—Mn—O6—C10125.37 (16)N1—C11—C12—C131.6 (4)
N4—Mn—O6—C1065.59 (16)C11—C12—C13—C142.4 (4)
N2—Mn—O6—C10161.82 (16)C12—C13—C14—C222.0 (4)
N3—Mn—O6—C1024.6 (5)C12—C13—C14—C15179.5 (3)
O6—Mn—N1—C1195.28 (18)C13—C14—C15—C16177.5 (3)
O1W—Mn—N1—C117.02 (18)C22—C14—C15—C161.0 (4)
N4—Mn—N1—C11116.2 (2)C14—C15—C16—C170.1 (5)
N2—Mn—N1—C11178.30 (19)C15—C16—C17—C18177.2 (3)
N3—Mn—N1—C1180.42 (18)C15—C16—C17—C211.1 (4)
O6—Mn—N1—C2282.22 (14)C21—C17—C18—C190.6 (4)
O1W—Mn—N1—C22170.48 (14)C16—C17—C18—C19177.7 (3)
N4—Mn—N1—C2266.4 (2)C17—C18—C19—C201.1 (4)
N2—Mn—N1—C220.80 (13)C21—N2—C20—C191.1 (3)
N3—Mn—N1—C22102.08 (14)Mn—N2—C20—C19176.39 (17)
O6—Mn—N2—C2077.02 (17)C18—C19—C20—N20.3 (4)
O1W—Mn—N2—C20137.9 (2)C20—N2—C21—C171.7 (3)
N1—Mn—N2—C20176.26 (18)Mn—N2—C21—C17177.57 (15)
N4—Mn—N2—C2022.95 (18)C20—N2—C21—C22176.70 (18)
N3—Mn—N2—C2097.06 (17)Mn—N2—C21—C220.8 (2)
O6—Mn—N2—C2198.38 (14)C18—C17—C21—N20.9 (3)
O1W—Mn—N2—C2137.5 (3)C16—C17—C21—N2179.3 (2)
N1—Mn—N2—C210.86 (13)C18—C17—C21—C22177.5 (2)
N4—Mn—N2—C21161.65 (13)C16—C17—C21—C220.9 (3)
N3—Mn—N2—C2187.54 (14)C11—N1—C22—C140.3 (3)
O6—Mn—N3—C23140.2 (3)Mn—N1—C22—C14177.38 (16)
O1W—Mn—N3—C2385.23 (17)C11—N1—C22—C21178.37 (19)
N1—Mn—N3—C239.97 (18)Mn—N1—C22—C210.7 (2)
N4—Mn—N3—C23177.33 (18)C13—C14—C22—N10.6 (3)
N2—Mn—N3—C2383.28 (18)C15—C14—C22—N1179.2 (2)
O6—Mn—N3—C3432.1 (5)C13—C14—C22—C21177.5 (2)
O1W—Mn—N3—C3487.11 (14)C15—C14—C22—C211.2 (3)
N1—Mn—N3—C34177.68 (14)N2—C21—C22—N10.1 (3)
N4—Mn—N3—C3410.33 (13)C17—C21—C22—N1178.33 (18)
N2—Mn—N3—C34104.37 (13)N2—C21—C22—C14178.22 (19)
O6—Mn—N4—C329.20 (17)C17—C21—C22—C140.2 (3)
O1W—Mn—N4—C3297.91 (16)C34—N3—C23—C241.6 (3)
N1—Mn—N4—C32139.10 (19)Mn—N3—C23—C24173.73 (17)
N2—Mn—N4—C3277.47 (17)N3—C23—C24—C252.9 (4)
N3—Mn—N4—C32176.69 (17)C23—C24—C25—C261.3 (4)
O6—Mn—N4—C33163.56 (12)C24—C25—C26—C341.4 (3)
O1W—Mn—N4—C3374.85 (13)C24—C25—C26—C27179.6 (2)
N1—Mn—N4—C3348.1 (2)C25—C26—C27—C28176.5 (2)
N2—Mn—N4—C33109.77 (13)C34—C26—C27—C282.4 (3)
N3—Mn—N4—C3310.55 (12)C26—C27—C28—C290.9 (4)
C6—C1—C2—C30.4 (3)C27—C28—C29—C30175.1 (2)
C7—C1—C2—C3179.47 (17)C27—C28—C29—C333.7 (3)
C1—C2—C3—C41.0 (3)C33—C29—C30—C311.4 (3)
C1—C2—C3—C8179.91 (17)C28—C29—C30—C31179.8 (2)
C2—C3—C4—C50.1 (3)C29—C30—C31—C321.0 (3)
C8—C3—C4—C5179.02 (17)C33—N4—C32—C310.7 (3)
C9—O5—C5—C4175.88 (15)Mn—N4—C32—C31173.26 (15)
C9—O5—C5—C65.5 (3)C30—C31—C32—N42.2 (3)
C3—C4—C5—O5179.48 (16)C32—N4—C33—C291.9 (3)
C3—C4—C5—C61.8 (3)Mn—N4—C33—C29171.52 (14)
O5—C5—C6—C1178.99 (17)C32—N4—C33—C34176.75 (17)
C4—C5—C6—C12.4 (3)Mn—N4—C33—C349.8 (2)
C2—C1—C6—C51.3 (3)C30—C29—C33—N42.9 (3)
C7—C1—C6—C5178.81 (17)C28—C29—C33—N4178.20 (18)
C2—C1—C7—O28.0 (3)C30—C29—C33—C34175.71 (18)
C6—C1—C7—O2172.1 (2)C28—C29—C33—C343.2 (3)
C2—C1—C7—O1172.33 (18)C23—N3—C34—C261.3 (3)
C6—C1—C7—O17.5 (3)Mn—N3—C34—C26171.89 (15)
C4—C3—C8—O4170.49 (19)C23—N3—C34—C33177.67 (18)
C2—C3—C8—O410.4 (3)Mn—N3—C34—C339.2 (2)
C4—C3—C8—O310.3 (3)C25—C26—C34—N32.7 (3)
C2—C3—C8—O3168.75 (19)C27—C26—C34—N3178.23 (19)
C5—O5—C9—C1069.0 (2)C25—C26—C34—C33176.20 (18)
Mn—O6—C10—O70.6 (3)C27—C26—C34—C332.8 (3)
Mn—O6—C10—C9179.20 (12)N4—C33—C34—N30.3 (3)
O5—C9—C10—O7175.65 (18)C29—C33—C34—N3178.99 (17)
O5—C9—C10—O64.2 (3)N4—C33—C34—C26178.66 (17)
C22—N1—C11—C120.2 (3)C29—C33—C34—C260.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.83 (2)1.92 (2)2.740 (2)174 (2)
O1—H···O3ii0.87 (2)1.56 (2)2.4148 (19)169 (3)
O2W—H2WB···O4iii0.84 (2)2.08 (2)2.917 (2)176 (3)
O2W—H2WA···O2iv0.83 (2)2.08 (2)2.908 (3)177 (3)
O3W—H3WB···O3v0.83 (2)2.55 (2)3.323 (3)155 (4)
O3W—H3WA···O2Wvi0.84 (2)2.01 (2)2.845 (3)173 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C10H6O7)(C12H8N2)2(H2O)]·2H2O
Mr707.54
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)8.1024 (2), 22.3106 (6), 17.5381 (5)
β (°) 99.212 (2)
V3)3129.46 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.49
Crystal size (mm)0.29 × 0.24 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.871, 0.955
No. of measured, independent and
observed [I > 2σ(I)] reflections
69826, 7282, 5127
Rint0.050
(sin θ/λ)max1)0.654
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.117, 1.00
No. of reflections7282
No. of parameters463
No. of restraints10
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.26

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Mn—O62.1352 (13)Mn—N42.2633 (16)
Mn—O1W2.1820 (15)Mn—N22.2776 (16)
Mn—N12.2462 (17)Mn—N32.2974 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1WA···O4i0.829 (15)1.915 (16)2.740 (2)174 (2)
O1—H···O3ii0.867 (16)1.559 (17)2.4148 (19)169 (3)
O2W—H2WB···O4iii0.838 (16)2.080 (17)2.917 (2)176 (3)
O2W—H2WA···O2iv0.834 (17)2.075 (17)2.908 (3)177 (3)
O3W—H3WB···O3v0.831 (18)2.55 (2)3.323 (3)155 (4)
O3W—H3WA···O2Wvi0.839 (18)2.011 (19)2.845 (3)173 (5)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x1/2, y+1/2, z1/2; (iii) x+1/2, y+1/2, z+3/2; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x1/2, y+3/2, z1/2.
 

References

First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCao, X.-Y., Zhang, J., Cheng, J.-K., Kang, Y. & Yao, Y.-G. (2004). CrystEngComm, 6, 315–317.  Web of Science CSD CrossRef CAS Google Scholar
First citationCao, X.-Y., Zhang, J., Li, Z.-J., Cheng, J.-K. & Yao, Y.-G. (2007). CrystEngComm, 9, 806–814.  Web of Science CSD CrossRef CAS Google Scholar
First citationCheng, D., Khan, M. A. & Houser, R. P. (2004). Cryst. Growth Des. 4, 599–604.  Web of Science CSD CrossRef CAS Google Scholar
First citationMurugavel, R., Krishnamurthy, D. & Sathiyendiran, M. (2002). J. Chem. Soc. Dalton Trans. pp. 34–39.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, X.-M., Tong, M.-L. & Chen, X.-M. (2002). Angew. Chem. Int. Ed. 41, 1029–1031.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds