organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Bis[4-(meth­­oxy­carbon­yl)benz­yl]benzimidazolium bromide monohydrate

aGuangdong University of Technology, Faculty of Chemical Engineering and Light Industry, Guangzhou 510006, Guangdong, People's Republic of China
*Correspondence e-mail: corihhr@yahoo.cn

(Received 6 October 2010; accepted 16 October 2010; online 6 November 2010)

In the title compound, C25H23N2O4+·Br·H2O, the dihedral angles between the benzimidazole ring system and the two benzene rings are 87.77 (11) and 63.05 (11)°; the dihedral angle between the two benzene rings is 66.25 (13)°. The crystal structure exhibits C—H⋯O and O—H⋯Br inter­actions; it is also stabilized by ππ stacking inter­actions, with a face-to-face separation of 3.456 Å between parallel benzimidazole ring systems.

Related literature

For general background to and the therapeutic properties of benzimidazole derivatives, see: Herrmann (2002[Herrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290-1309.]); Herrmann et al. (1995[Herrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371-2374.], 1998[Herrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93-96.]); Navarro et al. (2006[Navarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685-692.]). For related structures, see: Akkurt et al. (2005[Akkurt, M., Karaca, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2452-o2454.]); Pınar et al. (2006[Pınar, Ş., Akkurt, M., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2223-o2225.]); Arslan et al. (2009[Arslan, H., VanDerveer, D., Demir, S., Özdemir, İ. & Çetinkaya, B. (2009). Acta Cryst. E65, o208-o209.]). For reference bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C25H23N2O4+·Br·H2O

  • Mr = 513.38

  • Monoclinic, P 21 /c

  • a = 13.604 (2) Å

  • b = 9.3537 (16) Å

  • c = 18.962 (3) Å

  • β = 107.006 (3)°

  • V = 2307.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.82 mm−1

  • T = 110 K

  • 0.39 × 0.36 × 0.35 mm

Data collection
  • Bruker SMART CCD 1K area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.537, Tmax = 0.568

  • 13524 measured reflections

  • 5002 independent reflections

  • 3422 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.096

  • S = 1.05

  • 5002 reflections

  • 300 parameters

  • H-atom parameters constrained

  • Δρmax = 0.78 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O1W 0.95 2.14 3.083 (3) 175
O1W—H1A⋯Br1 0.85 2.49 3.332 (2) 173
O1W—H1B⋯Br1i 0.84 2.43 3.269 (2) 173
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a new class of compounds in organometallic chemistry, N-heterocyclic carbenes have attracted much interest; they have often been applied as catalysts for Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann, 2002; Herrmann et al., 1995; Navarro et al., 2006).

In this work, we report the structure of a new N-heterocyclic carbene derivative, 1,3-bis(4-(methoxycarbonyl)benzyl)benzimidazolium bromide monohydrate. The molecular structure of the title compound is depicted in Fig. 1. All bond lengths are in normal ranges (Allen et al.,1987).

The dihedral angles between the benzimidazole ring system and the two (C9–C14) and (C18–C23) benzene rings are 87.77 (11)° and 63.05 (11)°, respectively; the dihedral angle between the two benzene rings is 66.25 (13)°.

The bromide anions and water molecules form infinite meso-helical chains parallel to the b axis via O—H···Br hydrogen bonds, and the cations are linked to water molecules by C—H···O hydrogen bonds (Fig. 2, Table 1). In the crystal structure, ππ stacking interactions occurs between parallel benzimidazole rings, with a face-to-face separation of 3.456 Å (Fig. 2).

The crystal structures of three very similar benzimidazolium halide monohydrates have been published in recent years (Akkurt et al., 2005; Pınar et al., 2006; Arslan et al., 2009;),

Related literature top

For general background to and the therapeutic properties of benzimidazole derivatives, see: Herrmann (2002); Herrmann et al. (1995, 1998); Navarro et al. (2006). For related structures, see: Akkurt et al. (2005); Pınar et al. (2006); Arslan et al. (2009). For reference bond lengths, see: Allen et al. (1987).

Experimental top

4-(Methoxycarbonyl)benzyl bromide (2.28 g, 10.0 mmol) was slowly added to a solution of benzimidazole (0.59 g, 5.0 mmol) in acetone (25 ml) and the resulting mixture was stirred under reflux for over a period of of 24 h. The volume of solvent was concentrated by ca 10 ml and then cooled to rt. The resulting precipitate was collected, washed with acetone, and dried to afford a white powder. The crude product was recrystallized from methanol/water. Yield 1.81 g, 73.2%. Elemental analysis, calcd (%) for C25H25N2BrO5: C 58.49, H 4.91; found(%): C 58.52, H 4.85. The FAB mass spectrum showed ions at 496.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with distances 0.98 (CH3), 0.99 (CH2) and 0.95 Å (aromatic). The two water H atoms were located in a difference Fourier map and then refined as riding on the water O atom (0.84 and 0.85 Å). Uiso(H) = xUeq(attached atom), where x = 1.5 for O and methyl C, 1.2 for all other C.

Structure description top

As a new class of compounds in organometallic chemistry, N-heterocyclic carbenes have attracted much interest; they have often been applied as catalysts for Suzuki-Miyura, Sonogashira, Stille and Heck reactions (Herrmann, 2002; Herrmann et al., 1995; Navarro et al., 2006).

In this work, we report the structure of a new N-heterocyclic carbene derivative, 1,3-bis(4-(methoxycarbonyl)benzyl)benzimidazolium bromide monohydrate. The molecular structure of the title compound is depicted in Fig. 1. All bond lengths are in normal ranges (Allen et al.,1987).

The dihedral angles between the benzimidazole ring system and the two (C9–C14) and (C18–C23) benzene rings are 87.77 (11)° and 63.05 (11)°, respectively; the dihedral angle between the two benzene rings is 66.25 (13)°.

The bromide anions and water molecules form infinite meso-helical chains parallel to the b axis via O—H···Br hydrogen bonds, and the cations are linked to water molecules by C—H···O hydrogen bonds (Fig. 2, Table 1). In the crystal structure, ππ stacking interactions occurs between parallel benzimidazole rings, with a face-to-face separation of 3.456 Å (Fig. 2).

The crystal structures of three very similar benzimidazolium halide monohydrates have been published in recent years (Akkurt et al., 2005; Pınar et al., 2006; Arslan et al., 2009;),

For general background to and the therapeutic properties of benzimidazole derivatives, see: Herrmann (2002); Herrmann et al. (1995, 1998); Navarro et al. (2006). For related structures, see: Akkurt et al. (2005); Pınar et al. (2006); Arslan et al. (2009). For reference bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view showing 30% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen atoms have been omitted.
[Figure 2] Fig. 2. Crystal packing of the title compound. Dashed lines indicate hydrogen bonds. Symmetry: A = -x + 1, y - 1/2, -z + 3/2; B = -x + 1, y + 1/2, -z + 3/2. H atoms not involved in the hydrogen bond interactions have been omitted for clarity.
1,3-Bis[4-(methoxycarbonyl)benzyl]benzimidazolium bromide monohydrate top
Crystal data top
C25H23N2O4+·Br·H2OF(000) = 1056
Mr = 513.38Dx = 1.478 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3740 reflections
a = 13.604 (2) Åθ = 2.3–26.8°
b = 9.3537 (16) ŵ = 1.82 mm1
c = 18.962 (3) ÅT = 110 K
β = 107.006 (3)°Block, colorless
V = 2307.4 (7) Å30.39 × 0.36 × 0.35 mm
Z = 4
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
5002 independent reflections
Radiation source: fine-focus sealed tube3422 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.046
φ and ω scansθmax = 27.1°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1715
Tmin = 0.537, Tmax = 0.568k = 1111
13524 measured reflectionsl = 1824
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0417P)2 + 0.4447P]
where P = (Fo2 + 2Fc2)/3
5002 reflections(Δ/σ)max < 0.001
300 parametersΔρmax = 0.78 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C25H23N2O4+·Br·H2OV = 2307.4 (7) Å3
Mr = 513.38Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.604 (2) ŵ = 1.82 mm1
b = 9.3537 (16) ÅT = 110 K
c = 18.962 (3) Å0.39 × 0.36 × 0.35 mm
β = 107.006 (3)°
Data collection top
Bruker SMART CCD 1K area-detector
diffractometer
5002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3422 reflections with I > 2σ(I)
Tmin = 0.537, Tmax = 0.568Rint = 0.046
13524 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.096H-atom parameters constrained
S = 1.05Δρmax = 0.78 e Å3
5002 reflectionsΔρmin = 0.35 e Å3
300 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51077 (2)0.40648 (3)0.834559 (16)0.02439 (10)
C10.6347 (2)0.3275 (3)0.63706 (15)0.0175 (6)
H10.63460.26670.67720.021*
C20.6389 (2)0.5212 (3)0.57082 (15)0.0145 (6)
C30.63019 (19)0.4021 (3)0.52566 (14)0.0137 (6)
C40.6237 (2)0.4155 (3)0.45119 (15)0.0178 (6)
H40.61790.33470.41980.021*
C50.6263 (2)0.5528 (3)0.42594 (16)0.0233 (7)
H50.62230.56680.37560.028*
C60.6346 (2)0.6733 (3)0.47144 (16)0.0214 (7)
H60.63570.76580.45110.026*
C70.6410 (2)0.6601 (3)0.54498 (16)0.0201 (7)
H70.64660.74100.57620.024*
C80.6423 (2)0.5565 (3)0.70503 (15)0.0200 (7)
H8A0.61900.49610.73990.024*
H8B0.59160.63460.68860.024*
C90.7443 (2)0.6214 (3)0.74563 (15)0.0175 (6)
C100.8378 (2)0.5707 (3)0.74080 (15)0.0198 (7)
H100.83980.49230.70940.024*
C110.9281 (2)0.6342 (3)0.78168 (16)0.0209 (7)
H110.99190.59900.77800.025*
C120.9273 (2)0.7487 (3)0.82806 (15)0.0172 (6)
C130.8336 (2)0.7982 (3)0.83393 (16)0.0229 (7)
H130.83170.87460.86650.027*
C140.7432 (2)0.7356 (3)0.79225 (16)0.0237 (7)
H140.67930.77130.79550.028*
C151.0268 (2)0.8163 (3)0.86905 (16)0.0202 (7)
C161.1068 (2)0.9863 (4)0.96014 (18)0.0311 (8)
H16A1.15000.91300.99130.047*
H16B1.08891.05920.99140.047*
H16C1.14431.03090.92900.047*
C170.6111 (2)0.1329 (3)0.54368 (16)0.0180 (6)
H17A0.57440.13150.49020.022*
H17B0.56690.08460.56960.022*
C180.7096 (2)0.0511 (3)0.55708 (16)0.0183 (6)
C190.7559 (2)0.0094 (3)0.62603 (16)0.0198 (7)
H190.72420.00110.66430.024*
C200.8467 (2)0.0841 (3)0.63950 (16)0.0203 (6)
H200.87740.12500.68670.024*
C210.8938 (2)0.0994 (3)0.58324 (17)0.0221 (7)
C220.8476 (2)0.0409 (3)0.51461 (17)0.0246 (7)
H220.87880.05260.47620.029*
C230.7567 (2)0.0343 (3)0.50129 (17)0.0238 (7)
H230.72600.07470.45400.029*
C240.9937 (2)0.1754 (3)0.5955 (2)0.0281 (8)
C251.1340 (2)0.2807 (4)0.6830 (2)0.0410 (9)
H25A1.12940.36720.65310.061*
H25B1.15720.30610.73540.061*
H25C1.18320.21410.67200.061*
N10.64248 (17)0.4697 (2)0.64073 (12)0.0159 (5)
N20.62711 (17)0.2832 (2)0.56895 (12)0.0150 (5)
O11.10918 (15)0.7850 (2)0.86183 (11)0.0258 (5)
O21.01338 (14)0.9206 (2)0.91378 (11)0.0246 (5)
O31.03392 (18)0.1982 (3)0.54791 (14)0.0406 (6)
O41.03454 (16)0.2138 (2)0.66612 (12)0.0312 (5)
O1W0.63208 (16)0.1475 (2)0.77270 (11)0.0273 (5)
H1A0.59600.21140.78510.041*
H1B0.59330.08290.74850.041*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02588 (17)0.02610 (17)0.02259 (17)0.00320 (15)0.00927 (12)0.00488 (14)
C10.0135 (15)0.0212 (16)0.0173 (16)0.0022 (12)0.0037 (12)0.0028 (13)
C20.0114 (14)0.0154 (15)0.0157 (15)0.0003 (11)0.0027 (11)0.0001 (12)
C30.0089 (13)0.0144 (13)0.0162 (14)0.0020 (12)0.0012 (10)0.0015 (12)
C40.0184 (15)0.0191 (15)0.0160 (14)0.0049 (13)0.0052 (11)0.0032 (13)
C50.0225 (16)0.0270 (17)0.0200 (16)0.0031 (13)0.0054 (13)0.0037 (13)
C60.0181 (16)0.0179 (16)0.0272 (17)0.0026 (13)0.0054 (13)0.0061 (13)
C70.0178 (16)0.0163 (15)0.0261 (17)0.0013 (12)0.0065 (13)0.0001 (13)
C80.0220 (16)0.0240 (16)0.0159 (15)0.0011 (13)0.0087 (12)0.0054 (12)
C90.0186 (15)0.0216 (16)0.0140 (15)0.0008 (12)0.0073 (12)0.0011 (12)
C100.0236 (16)0.0175 (15)0.0183 (15)0.0029 (13)0.0062 (12)0.0007 (12)
C110.0163 (15)0.0210 (16)0.0259 (17)0.0043 (12)0.0069 (13)0.0042 (13)
C120.0175 (15)0.0193 (15)0.0142 (14)0.0014 (12)0.0040 (12)0.0016 (12)
C130.0238 (17)0.0246 (17)0.0218 (17)0.0007 (13)0.0091 (13)0.0083 (13)
C140.0150 (15)0.0323 (18)0.0256 (17)0.0026 (13)0.0084 (13)0.0106 (14)
C150.0177 (16)0.0213 (16)0.0213 (16)0.0019 (13)0.0051 (12)0.0041 (13)
C160.0222 (18)0.041 (2)0.0300 (19)0.0085 (15)0.0067 (14)0.0140 (16)
C170.0208 (16)0.0119 (14)0.0199 (16)0.0027 (12)0.0039 (12)0.0001 (12)
C180.0184 (15)0.0118 (14)0.0246 (16)0.0042 (12)0.0060 (12)0.0025 (12)
C190.0216 (16)0.0175 (15)0.0223 (16)0.0033 (13)0.0097 (13)0.0007 (13)
C200.0196 (15)0.0146 (14)0.0248 (16)0.0036 (13)0.0033 (12)0.0004 (13)
C210.0208 (15)0.0135 (14)0.0333 (18)0.0008 (13)0.0100 (13)0.0006 (14)
C220.0268 (17)0.0201 (16)0.0306 (18)0.0003 (14)0.0145 (14)0.0017 (14)
C230.0291 (18)0.0193 (16)0.0238 (17)0.0008 (14)0.0089 (14)0.0044 (13)
C240.0225 (17)0.0198 (17)0.045 (2)0.0019 (14)0.0142 (16)0.0007 (15)
C250.0204 (18)0.034 (2)0.064 (3)0.0094 (16)0.0054 (17)0.0011 (19)
N10.0152 (13)0.0175 (12)0.0161 (13)0.0005 (10)0.0061 (10)0.0024 (10)
N20.0146 (12)0.0133 (12)0.0163 (13)0.0014 (10)0.0029 (10)0.0017 (10)
O10.0178 (12)0.0253 (12)0.0345 (13)0.0012 (9)0.0077 (9)0.0024 (10)
O20.0154 (10)0.0332 (13)0.0247 (11)0.0023 (10)0.0050 (8)0.0103 (10)
O30.0364 (14)0.0392 (15)0.0547 (17)0.0107 (12)0.0267 (13)0.0050 (12)
O40.0196 (11)0.0291 (12)0.0432 (15)0.0067 (10)0.0065 (10)0.0029 (11)
O1W0.0282 (12)0.0296 (12)0.0249 (12)0.0060 (10)0.0092 (10)0.0058 (10)
Geometric parameters (Å, º) top
C1—N21.331 (3)C15—O11.205 (3)
C1—N11.334 (3)C15—O21.340 (3)
C1—H10.9500C16—O21.453 (3)
C2—C31.389 (4)C16—H16A0.9800
C2—C71.392 (4)C16—H16B0.9800
C2—N11.398 (3)C16—H16C0.9800
C3—N21.390 (3)C17—N21.481 (3)
C3—C41.394 (4)C17—C181.499 (4)
C4—C51.375 (4)C17—H17A0.9900
C4—H40.9500C17—H17B0.9900
C5—C61.403 (4)C18—C191.394 (4)
C5—H50.9500C18—C231.396 (4)
C6—C71.377 (4)C19—C201.378 (4)
C6—H60.9500C19—H190.9500
C7—H70.9500C20—C211.403 (4)
C8—N11.466 (3)C20—H200.9500
C8—C91.504 (4)C21—C221.382 (4)
C8—H8A0.9900C21—C241.490 (4)
C8—H8B0.9900C22—C231.381 (4)
C9—C101.385 (4)C22—H220.9500
C9—C141.390 (4)C23—H230.9500
C10—C111.381 (4)C24—O31.204 (4)
C10—H100.9500C24—O41.340 (4)
C11—C121.388 (4)C25—O41.439 (4)
C11—H110.9500C25—H25A0.9800
C12—C131.391 (4)C25—H25B0.9800
C12—C151.490 (4)C25—H25C0.9800
C13—C141.382 (4)O1W—H1A0.8490
C13—H130.9500O1W—H1B0.8441
C14—H140.9500
N2—C1—N1110.0 (3)O2—C16—H16A109.5
N2—C1—H1125.0O2—C16—H16B109.5
N1—C1—H1125.0H16A—C16—H16B109.5
C3—C2—C7122.6 (3)O2—C16—H16C109.5
C3—C2—N1106.3 (2)H16A—C16—H16C109.5
C7—C2—N1131.1 (3)H16B—C16—H16C109.5
C2—C3—N2106.8 (2)N2—C17—C18112.9 (2)
C2—C3—C4121.4 (2)N2—C17—H17A109.0
N2—C3—C4131.8 (2)C18—C17—H17A109.0
C5—C4—C3115.9 (3)N2—C17—H17B109.0
C5—C4—H4122.1C18—C17—H17B109.0
C3—C4—H4122.1H17A—C17—H17B107.8
C4—C5—C6122.8 (3)C19—C18—C23118.9 (3)
C4—C5—H5118.6C19—C18—C17120.1 (3)
C6—C5—H5118.6C23—C18—C17121.0 (3)
C7—C6—C5121.4 (3)C20—C19—C18120.9 (3)
C7—C6—H6119.3C20—C19—H19119.5
C5—C6—H6119.3C18—C19—H19119.5
C6—C7—C2116.0 (3)C19—C20—C21119.7 (3)
C6—C7—H7122.0C19—C20—H20120.2
C2—C7—H7122.0C21—C20—H20120.2
N1—C8—C9115.1 (2)C22—C21—C20119.5 (3)
N1—C8—H8A108.5C22—C21—C24118.6 (3)
C9—C8—H8A108.5C20—C21—C24121.9 (3)
N1—C8—H8B108.5C23—C22—C21120.7 (3)
C9—C8—H8B108.5C23—C22—H22119.7
H8A—C8—H8B107.5C21—C22—H22119.7
C10—C9—C14119.1 (3)C22—C23—C18120.2 (3)
C10—C9—C8123.8 (3)C22—C23—H23119.9
C14—C9—C8117.1 (2)C18—C23—H23119.9
C11—C10—C9120.0 (3)O3—C24—O4123.7 (3)
C11—C10—H10120.0O3—C24—C21124.2 (3)
C9—C10—H10120.0O4—C24—C21112.2 (3)
C10—C11—C12121.1 (3)O4—C25—H25A109.5
C10—C11—H11119.4O4—C25—H25B109.5
C12—C11—H11119.4H25A—C25—H25B109.5
C11—C12—C13119.0 (3)O4—C25—H25C109.5
C11—C12—C15118.9 (3)H25A—C25—H25C109.5
C13—C12—C15122.1 (3)H25B—C25—H25C109.5
C14—C13—C12119.8 (3)C1—N1—C2108.3 (2)
C14—C13—H13120.1C1—N1—C8125.2 (2)
C12—C13—H13120.1C2—N1—C8126.1 (2)
C13—C14—C9121.0 (3)C1—N2—C3108.5 (2)
C13—C14—H14119.5C1—N2—C17124.8 (2)
C9—C14—H14119.5C3—N2—C17126.5 (2)
O1—C15—O2123.5 (3)C15—O2—C16115.7 (2)
O1—C15—C12124.8 (3)C24—O4—C25115.3 (3)
O2—C15—C12111.6 (2)H1A—O1W—H1B109.6
C7—C2—C3—N2178.0 (2)C19—C20—C21—C220.9 (4)
N1—C2—C3—N20.9 (3)C19—C20—C21—C24178.2 (3)
C7—C2—C3—C40.5 (4)C20—C21—C22—C231.1 (4)
N1—C2—C3—C4179.4 (2)C24—C21—C22—C23178.0 (3)
C2—C3—C4—C50.1 (4)C21—C22—C23—C180.6 (4)
N2—C3—C4—C5177.9 (3)C19—C18—C23—C220.2 (4)
C3—C4—C5—C60.2 (4)C17—C18—C23—C22179.8 (3)
C4—C5—C6—C70.2 (4)C22—C21—C24—O35.4 (5)
C5—C6—C7—C20.1 (4)C20—C21—C24—O3175.5 (3)
C3—C2—C7—C60.4 (4)C22—C21—C24—O4173.7 (3)
N1—C2—C7—C6179.1 (3)C20—C21—C24—O45.3 (4)
N1—C8—C9—C1020.6 (4)N2—C1—N1—C20.5 (3)
N1—C8—C9—C14161.6 (3)N2—C1—N1—C8173.9 (2)
C14—C9—C10—C110.4 (4)C3—C2—N1—C10.9 (3)
C8—C9—C10—C11178.1 (3)C7—C2—N1—C1177.9 (3)
C9—C10—C11—C120.1 (4)C3—C2—N1—C8174.2 (2)
C10—C11—C12—C131.0 (4)C7—C2—N1—C84.6 (5)
C10—C11—C12—C15178.0 (3)C9—C8—N1—C1108.2 (3)
C11—C12—C13—C141.8 (4)C9—C8—N1—C279.5 (3)
C15—C12—C13—C14177.2 (3)N1—C1—N2—C30.1 (3)
C12—C13—C14—C91.6 (5)N1—C1—N2—C17176.2 (2)
C10—C9—C14—C130.5 (4)C2—C3—N2—C10.7 (3)
C8—C9—C14—C13177.4 (3)C4—C3—N2—C1178.9 (3)
C11—C12—C15—O14.8 (4)C2—C3—N2—C17175.5 (2)
C13—C12—C15—O1174.2 (3)C4—C3—N2—C172.7 (5)
C11—C12—C15—O2177.2 (2)C18—C17—N2—C186.9 (3)
C13—C12—C15—O23.9 (4)C18—C17—N2—C397.5 (3)
N2—C17—C18—C1983.0 (3)O1—C15—O2—C166.2 (4)
N2—C17—C18—C2396.9 (3)C12—C15—O2—C16175.7 (2)
C23—C18—C19—C200.4 (4)O3—C24—O4—C252.5 (5)
C17—C18—C19—C20179.6 (3)C21—C24—O4—C25176.6 (3)
C18—C19—C20—C210.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1W0.952.143.083 (3)175
O1W—H1A···Br10.852.493.332 (2)173
O1W—H1B···Br1i0.842.433.269 (2)173
Symmetry code: (i) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC25H23N2O4+·Br·H2O
Mr513.38
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)13.604 (2), 9.3537 (16), 18.962 (3)
β (°) 107.006 (3)
V3)2307.4 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.39 × 0.36 × 0.35
Data collection
DiffractometerBruker SMART CCD 1K area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.537, 0.568
No. of measured, independent and
observed [I > 2σ(I)] reflections
13524, 5002, 3422
Rint0.046
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.096, 1.05
No. of reflections5002
No. of parameters300
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.78, 0.35

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O1W0.952.143.083 (3)174.7
O1W—H1A···Br10.852.493.332 (2)172.6
O1W—H1B···Br1i0.842.433.269 (2)172.6
Symmetry code: (i) x+1, y1/2, z+3/2.
 

Acknowledgements

This work was funded by the 211 project of Guangdong Province.

References

First citationAkkurt, M., Karaca, S., Küçükbay, H., Orhan, E. & Büyükgüngör, O. (2005). Acta Cryst. E61, o2452–o2454.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArslan, H., VanDerveer, D., Demir, S., Özdemir, İ. & Çetinkaya, B. (2009). Acta Cryst. E65, o208–o209.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc, Madison, Wisconsin, USA.  Google Scholar
First citationHerrmann, W. A. (2002). Angew. Chem. Int. Ed. 41, 1290–1309.  Web of Science CrossRef CAS Google Scholar
First citationHerrmann, W. A., Elison, M., Fischer, J., Köcher, C. & Artus, G. R. J. (1995). Angew. Chem. Int. Ed. Engl. 34, 2371–2374.  CrossRef CAS Web of Science Google Scholar
First citationHerrmann, W. A., Reisinger, C. P. & Spiegler, M. (1998). J. Organomet. Chem. 557, 93–96.  CAS Google Scholar
First citationNavarro, O., Marion, N., Oonishi, Y., Kelly, R. A. & Nolan, S. P. (2006). J. Org. Chem. 71, 685–692.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPınar, Ş., Akkurt, M., Küçükbay, H., Şireci, N. & Büyükgüngör, O. (2006). Acta Cryst. E62, o2223–o2225.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds