organic compounds
N′-(2,4-Dichlorobenzylidene)-2-methylbenzohydrazide
aDepartment of Chemistry, Jiaying University, Meizhou 514015, People's Republic of China
*Correspondence e-mail: tangchunbao@yahoo.com.cn
In the title hydrazone compound, C15H12Cl2N2O, the dihedral angle between the two benzene rings is 12.2 (2)°. In the crystal, molecules are linked through intermolecular N—H⋯O hydrogen bonds, forming forming C(4) chains propagating in [001].
Related literature
For general background to et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For the crystal structures of related compounds, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010). For reference bond-length data, see: Allen et al. (1987).
see: RasrasExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 2002); cell SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810043710/wn2414sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810043710/wn2414Isup2.hkl
2,4-Dichlorobenzaldehyde (0.1 mmol, 19.1 mg) and 2-methylbenzohydrazide (0.1 mmol, 15.0 mg) were dissolved in methanol (20 ml). The mixture was stirred at reflux for 10 min to give a clear colourless solution. Colourless block-shaped crystals of the compound were formed by slow evaporation of the solvent over several days.
Atom H2 was located in a difference Fourier map and refined isotropically, with the N—H distance restrained to 0.90 (1) Å [Uiso(H) = 0.08 Å2]. Other H atoms were constrained to ideal geometries and refined as riding, with Csp2—H = 0.93 Å and C(methyl)—H = 0.96 Å; Uiso(H) = kUeq(C), where k = 1.5 for methyl H and 1.2 for all other H atoms.
Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the
of the new title hydrazone compound (Fig. 1).In the title molecule, the dihedral angle between the two benzene rings is 12.2 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8 and N1—N2—C8—C9 are 3.1 (2), 12.2 (2), and 3.0 (2)°, respectively. All the bond lengths have normal values (Allen et al., 1987) and are comparable to those in the similar hydrazone compound reported recently (Tang, 2010).
In the
of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the c axis (Fig. 2).For general background to
see: Rasras et al. (2010); Pyta et al. (2010); Angelusiu et al. (2010). For the crystal structures of related compounds, see: Fun et al. (2008); Singh & Singh (2010); Ahmad et al. (2010); Tang (2010). For reference bond-length data, see: Allen et al. (1987).Data collection: SMART (Bruker, 2002); cell
SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).C15H12Cl2N2O | F(000) = 632 |
Mr = 307.17 | Dx = 1.424 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
a = 7.563 (1) Å | Cell parameters from 1160 reflections |
b = 25.729 (2) Å | θ = 2.7–24.3° |
c = 8.174 (2) Å | µ = 0.45 mm−1 |
β = 115.771 (2)° | T = 298 K |
V = 1432.4 (4) Å3 | Block, colourless |
Z = 4 | 0.15 × 0.13 × 0.10 mm |
Bruker SMART CCD area-detector diffractometer | 3040 independent reflections |
Radiation source: fine-focus sealed tube | 1529 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.089 |
ω scans | θmax = 27.0°, θmin = 2.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −9→6 |
Tmin = 0.936, Tmax = 0.957 | k = −32→28 |
7436 measured reflections | l = −10→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.047 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.85 | w = 1/[σ2(Fo2) + (0.0246P)2] where P = (Fo2 + 2Fc2)/3 |
3040 reflections | (Δ/σ)max < 0.001 |
185 parameters | Δρmax = 0.22 e Å−3 |
1 restraint | Δρmin = −0.18 e Å−3 |
C15H12Cl2N2O | V = 1432.4 (4) Å3 |
Mr = 307.17 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.563 (1) Å | µ = 0.45 mm−1 |
b = 25.729 (2) Å | T = 298 K |
c = 8.174 (2) Å | 0.15 × 0.13 × 0.10 mm |
β = 115.771 (2)° |
Bruker SMART CCD area-detector diffractometer | 3040 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1529 reflections with I > 2σ(I) |
Tmin = 0.936, Tmax = 0.957 | Rint = 0.089 |
7436 measured reflections |
R[F2 > 2σ(F2)] = 0.047 | 1 restraint |
wR(F2) = 0.097 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.85 | Δρmax = 0.22 e Å−3 |
3040 reflections | Δρmin = −0.18 e Å−3 |
185 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cl1 | 0.30785 (12) | 0.05472 (3) | 0.66289 (10) | 0.0762 (3) | |
Cl2 | −0.23133 (11) | 0.02731 (3) | −0.01806 (10) | 0.0694 (3) | |
H2 | 0.424 (4) | 0.2371 (10) | 0.803 (2) | 0.080* | |
N1 | 0.3080 (3) | 0.21618 (9) | 0.5418 (2) | 0.0400 (5) | |
N2 | 0.4152 (3) | 0.24626 (9) | 0.6931 (3) | 0.0412 (6) | |
O1 | 0.4719 (3) | 0.30767 (7) | 0.5227 (2) | 0.0506 (5) | |
C1 | 0.1513 (3) | 0.13548 (10) | 0.4312 (3) | 0.0354 (6) | |
C2 | 0.1547 (3) | 0.08202 (11) | 0.4558 (3) | 0.0411 (7) | |
C3 | 0.0400 (4) | 0.04854 (11) | 0.3178 (3) | 0.0455 (7) | |
H3 | 0.0474 | 0.0128 | 0.3363 | 0.055* | |
C4 | −0.0840 (3) | 0.06916 (12) | 0.1541 (3) | 0.0422 (7) | |
C5 | −0.0965 (4) | 0.12162 (12) | 0.1234 (3) | 0.0473 (7) | |
H5 | −0.1832 | 0.1350 | 0.0114 | 0.057* | |
C6 | 0.0214 (4) | 0.15428 (11) | 0.2613 (3) | 0.0438 (7) | |
H6 | 0.0142 | 0.1899 | 0.2403 | 0.053* | |
C7 | 0.2715 (3) | 0.17057 (11) | 0.5775 (3) | 0.0392 (7) | |
H7 | 0.3215 | 0.1595 | 0.6976 | 0.047* | |
C8 | 0.4929 (4) | 0.29150 (10) | 0.6711 (3) | 0.0375 (6) | |
C9 | 0.6141 (4) | 0.31927 (10) | 0.8446 (3) | 0.0367 (6) | |
C10 | 0.5972 (4) | 0.37312 (11) | 0.8577 (3) | 0.0419 (7) | |
C11 | 0.7197 (5) | 0.39632 (12) | 1.0223 (4) | 0.0587 (8) | |
H11 | 0.7096 | 0.4320 | 1.0353 | 0.070* | |
C12 | 0.8536 (5) | 0.36888 (15) | 1.1652 (4) | 0.0649 (9) | |
H12 | 0.9344 | 0.3859 | 1.2720 | 0.078* | |
C13 | 0.8691 (4) | 0.31614 (14) | 1.1512 (4) | 0.0601 (9) | |
H13 | 0.9602 | 0.2972 | 1.2482 | 0.072* | |
C14 | 0.7481 (4) | 0.29148 (11) | 0.9917 (3) | 0.0472 (7) | |
H14 | 0.7564 | 0.2556 | 0.9827 | 0.057* | |
C15 | 0.4557 (4) | 0.40581 (11) | 0.7048 (4) | 0.0604 (9) | |
H15A | 0.4380 | 0.4386 | 0.7516 | 0.091* | |
H15B | 0.3317 | 0.3882 | 0.6475 | 0.091* | |
H15C | 0.5068 | 0.4115 | 0.6174 | 0.091* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cl1 | 0.0772 (6) | 0.0571 (6) | 0.0563 (5) | −0.0056 (4) | −0.0065 (4) | 0.0130 (4) |
Cl2 | 0.0518 (5) | 0.0768 (6) | 0.0616 (5) | −0.0099 (4) | 0.0080 (4) | −0.0297 (4) |
N1 | 0.0466 (14) | 0.0428 (15) | 0.0341 (12) | −0.0087 (12) | 0.0208 (10) | −0.0055 (11) |
N2 | 0.0559 (14) | 0.0402 (15) | 0.0316 (12) | −0.0128 (12) | 0.0229 (12) | −0.0057 (11) |
O1 | 0.0797 (14) | 0.0437 (13) | 0.0342 (10) | −0.0083 (10) | 0.0301 (10) | 0.0013 (8) |
C1 | 0.0309 (14) | 0.0418 (18) | 0.0359 (15) | −0.0042 (13) | 0.0169 (12) | −0.0042 (12) |
C2 | 0.0340 (15) | 0.0457 (19) | 0.0390 (15) | −0.0025 (13) | 0.0116 (12) | −0.0008 (13) |
C3 | 0.0380 (16) | 0.0406 (19) | 0.0550 (17) | −0.0034 (13) | 0.0175 (14) | −0.0038 (14) |
C4 | 0.0309 (15) | 0.051 (2) | 0.0421 (16) | −0.0033 (13) | 0.0134 (13) | −0.0131 (14) |
C5 | 0.0403 (16) | 0.062 (2) | 0.0339 (15) | 0.0094 (15) | 0.0113 (13) | −0.0041 (14) |
C6 | 0.0496 (17) | 0.0418 (19) | 0.0391 (16) | 0.0049 (14) | 0.0185 (14) | 0.0018 (13) |
C7 | 0.0411 (16) | 0.0446 (19) | 0.0303 (14) | −0.0041 (14) | 0.0139 (12) | −0.0009 (13) |
C8 | 0.0429 (16) | 0.0371 (18) | 0.0369 (15) | 0.0020 (13) | 0.0213 (13) | −0.0031 (13) |
C9 | 0.0420 (16) | 0.0399 (19) | 0.0355 (15) | −0.0059 (13) | 0.0236 (13) | −0.0013 (12) |
C10 | 0.0492 (17) | 0.0383 (19) | 0.0520 (17) | −0.0061 (14) | 0.0348 (15) | −0.0031 (14) |
C11 | 0.076 (2) | 0.050 (2) | 0.066 (2) | −0.0191 (18) | 0.046 (2) | −0.0198 (18) |
C12 | 0.074 (2) | 0.079 (3) | 0.0475 (19) | −0.032 (2) | 0.0317 (19) | −0.0183 (19) |
C13 | 0.056 (2) | 0.077 (3) | 0.0438 (18) | −0.0152 (18) | 0.0183 (16) | 0.0042 (17) |
C14 | 0.0507 (17) | 0.0504 (19) | 0.0431 (16) | −0.0092 (15) | 0.0228 (14) | −0.0014 (15) |
C15 | 0.065 (2) | 0.043 (2) | 0.079 (2) | 0.0056 (16) | 0.0376 (19) | 0.0034 (17) |
Cl1—C2 | 1.731 (2) | C7—H7 | 0.9300 |
Cl2—C4 | 1.737 (2) | C8—C9 | 1.494 (3) |
N1—C7 | 1.268 (3) | C9—C14 | 1.387 (3) |
N1—N2 | 1.383 (3) | C9—C10 | 1.400 (3) |
N2—C8 | 1.351 (3) | C10—C11 | 1.393 (4) |
N2—H2 | 0.901 (10) | C10—C15 | 1.501 (4) |
O1—C8 | 1.226 (3) | C11—C12 | 1.364 (4) |
C1—C2 | 1.389 (3) | C11—H11 | 0.9300 |
C1—C6 | 1.393 (3) | C12—C13 | 1.371 (4) |
C1—C7 | 1.458 (3) | C12—H12 | 0.9300 |
C2—C3 | 1.384 (3) | C13—C14 | 1.379 (3) |
C3—C4 | 1.364 (3) | C13—H13 | 0.9300 |
C3—H3 | 0.9300 | C14—H14 | 0.9300 |
C4—C5 | 1.368 (3) | C15—H15A | 0.9600 |
C5—C6 | 1.377 (3) | C15—H15B | 0.9600 |
C5—H5 | 0.9300 | C15—H15C | 0.9600 |
C6—H6 | 0.9300 | ||
C7—N1—N2 | 114.4 (2) | O1—C8—C9 | 122.6 (2) |
C8—N2—N1 | 118.9 (2) | N2—C8—C9 | 114.1 (2) |
C8—N2—H2 | 120.6 (18) | C14—C9—C10 | 120.0 (2) |
N1—N2—H2 | 120.3 (18) | C14—C9—C8 | 119.5 (2) |
C2—C1—C6 | 116.7 (2) | C10—C9—C8 | 120.5 (2) |
C2—C1—C7 | 121.9 (2) | C11—C10—C9 | 116.9 (3) |
C6—C1—C7 | 121.4 (3) | C11—C10—C15 | 119.9 (3) |
C3—C2—C1 | 122.2 (2) | C9—C10—C15 | 123.2 (2) |
C3—C2—Cl1 | 117.4 (2) | C12—C11—C10 | 122.7 (3) |
C1—C2—Cl1 | 120.39 (19) | C12—C11—H11 | 118.7 |
C4—C3—C2 | 118.5 (3) | C10—C11—H11 | 118.7 |
C4—C3—H3 | 120.7 | C11—C12—C13 | 120.0 (3) |
C2—C3—H3 | 120.7 | C11—C12—H12 | 120.0 |
C3—C4—C5 | 121.8 (2) | C13—C12—H12 | 120.0 |
C3—C4—Cl2 | 118.6 (2) | C12—C13—C14 | 119.2 (3) |
C5—C4—Cl2 | 119.6 (2) | C12—C13—H13 | 120.4 |
C4—C5—C6 | 118.9 (2) | C14—C13—H13 | 120.4 |
C4—C5—H5 | 120.5 | C13—C14—C9 | 121.1 (3) |
C6—C5—H5 | 120.5 | C13—C14—H14 | 119.4 |
C5—C6—C1 | 121.9 (3) | C9—C14—H14 | 119.4 |
C5—C6—H6 | 119.0 | C10—C15—H15A | 109.5 |
C1—C6—H6 | 119.0 | C10—C15—H15B | 109.5 |
N1—C7—C1 | 120.3 (2) | H15A—C15—H15B | 109.5 |
N1—C7—H7 | 119.9 | C10—C15—H15C | 109.5 |
C1—C7—H7 | 119.9 | H15A—C15—H15C | 109.5 |
O1—C8—N2 | 123.2 (2) | H15B—C15—H15C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.90 (1) | 2.03 (1) | 2.892 (3) | 159 (3) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | C15H12Cl2N2O |
Mr | 307.17 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 298 |
a, b, c (Å) | 7.563 (1), 25.729 (2), 8.174 (2) |
β (°) | 115.771 (2) |
V (Å3) | 1432.4 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.45 |
Crystal size (mm) | 0.15 × 0.13 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.936, 0.957 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7436, 3040, 1529 |
Rint | 0.089 |
(sin θ/λ)max (Å−1) | 0.639 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.047, 0.097, 0.85 |
No. of reflections | 3040 |
No. of parameters | 185 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.18 |
Computer programs: SMART (Bruker, 2002), SAINT (Bruker, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···O1i | 0.901 (10) | 2.031 (14) | 2.892 (3) | 159 (3) |
Symmetry code: (i) x, −y+1/2, z+1/2. |
Acknowledgements
Financial support from the Jiaying University Research Fund is gratefully acknowledged.
References
Ahmad, T., Zia-ur-Rehman, M., Siddiqui, H. L., Mahmud, S. & Parvez, M. (2010). Acta Cryst. E66, o976. Web of Science CrossRef IUCr Journals Google Scholar
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Angelusiu, M. V., Barbuceanu, S. F., Draghici, C. & Almajan, G. L. (2010). Eur. J. Med. Chem. 45, 2055–2062. Web of Science CrossRef CAS PubMed Google Scholar
Bruker (2002). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Fun, H.-K., Sujith, K. V., Patil, P. S., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1961–o1962. Web of Science CSD CrossRef IUCr Journals Google Scholar
Pyta, K., Przybylski, P., Huczynski, A., Hoser, A., Wozniak, K., Schilf, W., Kamienski, B., Grech, E. & Brzezinski, B. (2010). J. Mol. Struct. 970, 147–154. Web of Science CSD CrossRef CAS Google Scholar
Rasras, A. J. M., Al-Tel, T. H., Al-Aboudi, A. F. & Al-Qawasmeh, R. A. (2010). Eur. J. Med. Chem. 45, 2307–2313. Web of Science CrossRef CAS PubMed Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Singh, V. P. & Singh, S. (2010). Acta Cryst. E66, o1172. Web of Science CSD CrossRef IUCr Journals Google Scholar
Tang, C.-B. (2010). Acta Cryst. E66, o2482. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Hydrazone compounds have received much attention in biological and structural chemistry in the last few years (Rasras et al., 2010; Pyta et al., 2010; Angelusiu et al., 2010; Fun et al., 2008; Singh & Singh, 2010; Ahmad et al., 2010). In the present paper, the author reports the crystal structure of the new title hydrazone compound (Fig. 1).
In the title molecule, the dihedral angle between the two benzene rings is 12.2 (2)°. The torsion angles C1—C7—N1—N2, C7—N1—N2—C8 and N1—N2—C8—C9 are 3.1 (2), 12.2 (2), and 3.0 (2)°, respectively. All the bond lengths have normal values (Allen et al., 1987) and are comparable to those in the similar hydrazone compound reported recently (Tang, 2010).
In the crystal structure of the title compound, molecules are linked through intermolecular N—H···O hydrogen bonds (Table 1), forming chains along the c axis (Fig. 2).