organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(3E,5E)-3,5-Bis(4-hy­dr­oxy-3,5-di­meth­oxy­benzyl­­idene)oxan-4-one monohydrate

aGuangdong University of Technology, Faculty of Chemical Engineering and Light Industry, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: corihhr@yahoo.cn

(Received 10 October 2010; accepted 16 October 2010; online 27 November 2010)

In the title compound, C23H24O8·H2O, the six-membered ring of the oxan-4-one (tetra­hydro­pyran-4-one) ring displays an envelope conformation with the heterocyclic O atom at the flap position. The dihedral angles between the terminal benzene rings is 37.23 (10)°. Classical intermolecular O—H⋯O and weak C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For pharmacological activity of curcumin [systematic name (1E,6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione], see: Maheshwari et al. (2006[Maheshwari, R. K., Singh, A. K., Gaddipati, J. & Srimal, R. C. (2006). Life Sci. 78, 2081-2087.]). The title compound is used in the preparation of curcumin analogues, see: Du et al. (2006a[Du, Z.-Y., Bao, Y.-D., Liu, Z., Mao, X.-P., Ma, L., Huang, Z.-S., Gu, L.-Q. & Chan, A. S. C. (2006a). Arch. Pharm. (Weinheim), 339, 123-128.],b[Du, Z.-Y., Liu, R.-R., Shao, W.-Y., Mao, X.-P., Ma, L., Gu, L.-Q. & Huang, Z.-S. (2006b). Eur. J. Med. Chem. 42, 213-218.]); Liu et al. (2008[Liu, Z., Du, Z.-Y., Huang, Z.-S., Lee, K. S. & Gu, L.-Q. (2008). Biosci. Biotech. Biochem. 72, 2214-2218.]). For a related structure, see: Abaee et al. (2008[Abaee, M. S., Mojtahedi, M. M., Sharifi, R., Zahedi, M. M., Mesbah, A. W. & Massa, W. (2008). J. Chem. Res. pp. 388-389.]). For the synthesis, see: Du et al. (2006a[Du, Z.-Y., Bao, Y.-D., Liu, Z., Mao, X.-P., Ma, L., Huang, Z.-S., Gu, L.-Q. & Chan, A. S. C. (2006a). Arch. Pharm. (Weinheim), 339, 123-128.],b[Du, Z.-Y., Liu, R.-R., Shao, W.-Y., Mao, X.-P., Ma, L., Gu, L.-Q. & Huang, Z.-S. (2006b). Eur. J. Med. Chem. 42, 213-218.]); Youssef et al. (2004[Youssef, K. M., El-Sherbeny, M. A., El-Shafie, F. S., Farag, H. A., Al-Deeb, O. A. & Awadalla, S. A. (2004). Arch. Pharm. Pharm. Med. Chem. 337, 42-54.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24O8·H2O

  • Mr = 446.44

  • Monoclinic, P 21 /c

  • a = 9.203 (2) Å

  • b = 14.145 (3) Å

  • c = 17.011 (4) Å

  • β = 105.349 (5)°

  • V = 2135.5 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.43 × 0.40 × 0.32 mm

Data collection
  • Bruker SMART CCD 1000 area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.955, Tmax = 0.967

  • 12756 measured reflections

  • 4650 independent reflections

  • 2502 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.116

  • S = 0.99

  • 4650 reflections

  • 295 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O1Wi 0.82 2.06 2.833 (2) 156
O7—H7⋯O1ii 0.82 2.03 2.801 (2) 157
O1W—H1A⋯O7 0.86 2.38 3.162 (2) 152
O1W—H1B⋯O2iii 0.87 2.05 2.888 (2) 160
C13—H13⋯O7iv 0.93 2.54 3.390 (3) 151
C23—H23C⋯O1v 0.96 2.50 3.445 (3) 167
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) [-x+2, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (v) -x+2, -y+1, -z+2.

Data collection: SMART (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1999[Bruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Curcumin possesses a wide spectrum of pharmacological activities including anti-oxidant, anti-inflammatory, antiviral, antifungal, cancer chemo preventive, cancer chemotherapeutic properties etc. (Maheshwari et al., 2006). We ever screened curcumin analogues for aldose reductase (Du et al., 2006a), α-glucosidase (Du et al., 2006b) and thioredoxin reductase inhibition (Liu et al., 2008). This class of compounds is readily synthesized by reacting a substituted benzaldehyde with tetrahydropyran-4-one; in the case of the title compound, 4-hydroxy-3,5-dimethoxybenzaldehyde was used as the reactant.

The molecular structure of the title compound contains the two 4-hydroxy-3,5-dimethoxyphenyl substituents on the tetrahydropyran-4-one, and the six-membered hetero-ring adopts an envelope conformation with the flap oxygen atom displaced by 0.682 (10) Å from the plane of the other five atoms (Figure 1).

Similar structures have been observed in the literature (Abaee et al., 2008; Du et al., 2006a,b).

The dihedral angles formed between the mean plane through the six atoms of the pyranone ring and two benzene rings of 4-hydroxy-3,5-dimethoxyphenyl groups are 53.86 (10) and 27.86 (10)°, the corresponding dihedral angles between two benzene rings of 4-hydroxy-3,5-dimethoxyphenyl groups is 37.23 (10) °.

In the crystal packing, the molecules are linked by intermolecular O—H···O hydrogen bonds into one-dimensional zigzag chain along b axis (Figure 2, table 1), and through water molecules further connecting into a supramolecular three-dimensional complicated hydrogen bonding network (Figure 3, table 1).

Related literature top

For pharmacological activity of curcumin, see: Maheshwari et al. (2006). The title compound is used in the preparation of curcumin analogues, see: Du et al. (2006a,b); Liu et al. (2008). For a related structure, see: Abaee et al. (2008). For synthesis, see: Du et al. (2006a,b); Youssef et al. (2004).

Experimental top

The title compound was synthesized using a general procedure (Du et al., 2006a,b; Youssef et al., 2004). 4-Hydroxy-3,5-dimethoxybenzy (0.01 mol) and tetrahydropyran-4-one (0.005 mol) were dissolved in THF and added 0.5 mL concentrated HCl as catalyst. The mixture was warmed at 298-303 K for 24 h, cold water was added to precipitate the yellow compound. Crystals were obtained by recrystallization from THF solution.

Refinement top

The C-bound H atoms were positioned geometrically and were included in the refinement in the riding-model approximation, with C—H = 0.96 (CH3), 0.97 (CH2) and 0.93 Å (aromatic); Uiso(H) = 1.2Ueq(C) for H atoms on secondary and tertiary C atoms, and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The water and hydroxyl H atoms were located in a difference Fourier map and refined as riding with Uiso(H) = 1.5Ueq(O).

Structure description top

Curcumin possesses a wide spectrum of pharmacological activities including anti-oxidant, anti-inflammatory, antiviral, antifungal, cancer chemo preventive, cancer chemotherapeutic properties etc. (Maheshwari et al., 2006). We ever screened curcumin analogues for aldose reductase (Du et al., 2006a), α-glucosidase (Du et al., 2006b) and thioredoxin reductase inhibition (Liu et al., 2008). This class of compounds is readily synthesized by reacting a substituted benzaldehyde with tetrahydropyran-4-one; in the case of the title compound, 4-hydroxy-3,5-dimethoxybenzaldehyde was used as the reactant.

The molecular structure of the title compound contains the two 4-hydroxy-3,5-dimethoxyphenyl substituents on the tetrahydropyran-4-one, and the six-membered hetero-ring adopts an envelope conformation with the flap oxygen atom displaced by 0.682 (10) Å from the plane of the other five atoms (Figure 1).

Similar structures have been observed in the literature (Abaee et al., 2008; Du et al., 2006a,b).

The dihedral angles formed between the mean plane through the six atoms of the pyranone ring and two benzene rings of 4-hydroxy-3,5-dimethoxyphenyl groups are 53.86 (10) and 27.86 (10)°, the corresponding dihedral angles between two benzene rings of 4-hydroxy-3,5-dimethoxyphenyl groups is 37.23 (10) °.

In the crystal packing, the molecules are linked by intermolecular O—H···O hydrogen bonds into one-dimensional zigzag chain along b axis (Figure 2, table 1), and through water molecules further connecting into a supramolecular three-dimensional complicated hydrogen bonding network (Figure 3, table 1).

For pharmacological activity of curcumin, see: Maheshwari et al. (2006). The title compound is used in the preparation of curcumin analogues, see: Du et al. (2006a,b); Liu et al. (2008). For a related structure, see: Abaee et al. (2008). For synthesis, see: Du et al. (2006a,b); Youssef et al. (2004).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The molecules are linked via intermolecular O—H···O hydrogen bonds into one-dimensional zigzag chain along b axis. Hydrogen bonds are shown as dashed lines. Symmetry: A = -x + 2, y - 1/2, -z + 3/2; B = -x + 2, y + 1/2, -z + 3/2.
[Figure 3] Fig. 3. The one-dimensional zigzag chain are connected by water hydrogen bonds into a supramolecular three-dimensional complicated hydrogen bonding network. Hydrogen bonds are shown as dashed lines. Symmetry: C = -x + 1, y + 1/2, -z + 3/2; D = -x + 1, -y + 1, -z + 2.
(3E,5E)-3,5-Bis(4-hydroxy-3,5-dimethoxybenzylidene)oxan-4-one monohydrate top
Crystal data top
C23H24O8·H2OF(000) = 944
Mr = 446.44Dx = 1.389 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3096 reflections
a = 9.203 (2) Åθ = 2.7–25.5°
b = 14.145 (3) ŵ = 0.11 mm1
c = 17.011 (4) ÅT = 293 K
β = 105.349 (5)°Block, pale yellow
V = 2135.5 (9) Å30.43 × 0.40 × 0.32 mm
Z = 4
Data collection top
Bruker SMART CCD 1000 area-detector
diffractometer
4650 independent reflections
Radiation source: fine-focus sealed tube2502 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
φ and ω scansθmax = 27.1°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1111
Tmin = 0.955, Tmax = 0.967k = 1718
12756 measured reflectionsl = 1221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.2822P]
where P = (Fo2 + 2Fc2)/3
4650 reflections(Δ/σ)max < 0.001
295 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C23H24O8·H2OV = 2135.5 (9) Å3
Mr = 446.44Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.203 (2) ŵ = 0.11 mm1
b = 14.145 (3) ÅT = 293 K
c = 17.011 (4) Å0.43 × 0.40 × 0.32 mm
β = 105.349 (5)°
Data collection top
Bruker SMART CCD 1000 area-detector
diffractometer
4650 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2502 reflections with I > 2σ(I)
Tmin = 0.955, Tmax = 0.967Rint = 0.044
12756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.116H-atom parameters constrained
S = 0.99Δρmax = 0.20 e Å3
4650 reflectionsΔρmin = 0.18 e Å3
295 parameters
Special details top

Experimental. The formulation was established by the NMR spectrum and ESI mass spectrum. 1H NMR (MSDO-d6, 300 MHz) δ (ppm): 9.03 (brs, 2H, -OH), 7.58 (s, 2H, -CH=), 6.70 (s, 4H, ArH), 4.95 (s, 4H, -CH2-O-CH2-), 3.81 (s, 12H, OCH3). The ESI mass spectrum showed ions at 412.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8908 (2)0.32659 (13)0.97171 (12)0.0394 (5)
C20.8037 (2)0.29050 (13)1.02728 (12)0.0394 (5)
C30.6896 (2)0.35663 (14)1.04616 (13)0.0473 (6)
H3A0.61470.32071.06430.057*
H3B0.73900.39941.08960.057*
C40.7220 (2)0.47300 (14)0.95381 (15)0.0498 (6)
H4A0.76000.51660.99850.060*
H4B0.67010.50960.90650.060*
C50.8524 (2)0.42155 (13)0.93530 (12)0.0392 (5)
C60.8228 (2)0.19984 (14)1.05100 (13)0.0455 (5)
H60.89200.16581.03110.055*
C70.7496 (2)0.14758 (13)1.10385 (13)0.0417 (5)
C80.7119 (2)0.05293 (13)1.08579 (14)0.0452 (5)
H80.74180.02331.04380.054*
C90.6305 (2)0.00271 (13)1.12948 (13)0.0427 (5)
C100.5885 (2)0.04587 (13)1.19366 (13)0.0403 (5)
C110.6329 (2)0.13891 (14)1.21437 (13)0.0398 (5)
C120.7122 (2)0.18956 (14)1.16978 (13)0.0428 (5)
H120.74060.25171.18390.051*
C130.9318 (2)0.45266 (13)0.88503 (13)0.0410 (5)
H131.00800.41160.88050.049*
C140.9230 (2)0.53765 (13)0.83608 (13)0.0395 (5)
C150.9862 (2)0.53228 (13)0.77028 (13)0.0422 (5)
H151.03420.47710.76130.051*
C160.9781 (2)0.60806 (13)0.71856 (13)0.0410 (5)
C170.9098 (2)0.69190 (13)0.73198 (13)0.0401 (5)
C180.8509 (2)0.69876 (13)0.79906 (13)0.0406 (5)
C190.8556 (2)0.62257 (13)0.85041 (13)0.0408 (5)
H190.81400.62760.89450.049*
C200.6271 (3)0.13737 (15)1.05107 (15)0.0607 (7)
H20A0.58260.10710.99980.091*
H20B0.59310.20171.04900.091*
H20C0.73490.13621.06160.091*
C210.6141 (3)0.26902 (15)1.30040 (16)0.0681 (7)
H21A0.72040.28161.31470.102*
H21B0.57470.28351.34590.102*
H21C0.56460.30751.25470.102*
C221.1153 (3)0.53010 (16)0.63678 (16)0.0637 (7)
H22A1.20070.52150.68290.096*
H22B1.14930.54050.58880.096*
H22C1.05300.47460.62950.096*
C230.7318 (3)0.79786 (15)0.87680 (15)0.0583 (6)
H23A0.65180.75340.87410.088*
H23B0.69360.86100.87680.088*
H23C0.81040.78750.92590.088*
O10.99167 (17)0.27831 (9)0.95636 (9)0.0512 (4)
O20.61814 (16)0.40948 (10)0.97496 (10)0.0530 (4)
O30.58409 (18)0.08894 (9)1.11397 (10)0.0589 (4)
O40.50522 (17)0.00394 (9)1.23443 (10)0.0535 (4)
H40.47510.03161.26480.080*
O50.58841 (17)0.17232 (9)1.27958 (9)0.0524 (4)
O61.03097 (17)0.60926 (9)0.65026 (10)0.0564 (4)
O70.89910 (18)0.76810 (9)0.68224 (10)0.0527 (4)
H70.94090.75640.64630.079*
O80.79014 (17)0.78551 (9)0.80853 (10)0.0547 (4)
O1W0.65172 (17)0.92850 (11)0.65729 (11)0.0660 (5)
H1A0.70020.87800.67590.099*
H1B0.58490.91420.61190.099*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0492 (13)0.0356 (11)0.0326 (12)0.0025 (10)0.0094 (11)0.0033 (9)
C20.0479 (12)0.0356 (11)0.0354 (13)0.0017 (9)0.0120 (11)0.0005 (9)
C30.0536 (13)0.0463 (12)0.0442 (14)0.0021 (10)0.0167 (12)0.0079 (11)
C40.0552 (14)0.0403 (12)0.0554 (15)0.0015 (10)0.0173 (12)0.0078 (11)
C50.0464 (12)0.0338 (11)0.0369 (13)0.0033 (9)0.0103 (11)0.0004 (9)
C60.0536 (13)0.0404 (12)0.0456 (14)0.0003 (10)0.0185 (12)0.0013 (10)
C70.0470 (12)0.0374 (11)0.0423 (13)0.0022 (10)0.0149 (11)0.0071 (10)
C80.0551 (13)0.0378 (11)0.0467 (14)0.0045 (10)0.0204 (12)0.0045 (10)
C90.0487 (12)0.0310 (11)0.0483 (14)0.0017 (9)0.0129 (11)0.0028 (10)
C100.0416 (11)0.0368 (11)0.0433 (13)0.0022 (9)0.0126 (11)0.0078 (10)
C110.0445 (12)0.0389 (11)0.0364 (13)0.0032 (9)0.0111 (11)0.0024 (10)
C120.0494 (12)0.0343 (11)0.0435 (14)0.0008 (9)0.0102 (11)0.0038 (10)
C130.0500 (12)0.0321 (10)0.0410 (13)0.0001 (9)0.0121 (11)0.0013 (10)
C140.0433 (11)0.0321 (10)0.0429 (13)0.0024 (9)0.0112 (11)0.0011 (9)
C150.0461 (12)0.0323 (11)0.0497 (14)0.0002 (9)0.0155 (11)0.0020 (10)
C160.0436 (12)0.0383 (11)0.0453 (14)0.0017 (9)0.0190 (11)0.0019 (10)
C170.0437 (12)0.0323 (11)0.0451 (14)0.0015 (9)0.0133 (11)0.0064 (10)
C180.0448 (12)0.0292 (11)0.0488 (14)0.0020 (9)0.0140 (11)0.0007 (10)
C190.0475 (12)0.0362 (11)0.0415 (13)0.0030 (9)0.0167 (11)0.0008 (10)
C200.0782 (17)0.0438 (13)0.0601 (17)0.0027 (12)0.0184 (14)0.0078 (12)
C210.094 (2)0.0520 (15)0.0655 (18)0.0044 (13)0.0329 (16)0.0146 (13)
C220.0762 (17)0.0526 (14)0.0759 (19)0.0133 (12)0.0440 (16)0.0072 (13)
C230.0667 (15)0.0494 (13)0.0644 (17)0.0141 (11)0.0269 (14)0.0014 (12)
O10.0681 (10)0.0414 (8)0.0521 (10)0.0110 (7)0.0299 (9)0.0080 (7)
O20.0484 (9)0.0532 (9)0.0581 (10)0.0032 (7)0.0155 (8)0.0173 (8)
O30.0842 (11)0.0372 (8)0.0632 (11)0.0119 (8)0.0334 (10)0.0059 (8)
O40.0651 (10)0.0424 (8)0.0620 (12)0.0067 (7)0.0328 (9)0.0020 (8)
O50.0698 (10)0.0421 (8)0.0523 (10)0.0040 (7)0.0285 (9)0.0043 (7)
O60.0751 (11)0.0425 (8)0.0638 (11)0.0120 (7)0.0399 (10)0.0117 (8)
O70.0715 (11)0.0363 (8)0.0578 (11)0.0075 (7)0.0303 (9)0.0122 (8)
O80.0743 (11)0.0387 (8)0.0598 (11)0.0117 (7)0.0328 (9)0.0061 (7)
O1W0.0629 (10)0.0578 (10)0.0766 (13)0.0020 (8)0.0171 (9)0.0005 (9)
Geometric parameters (Å, º) top
C1—O11.234 (2)C15—C161.376 (3)
C1—C51.482 (3)C15—H150.9300
C1—C21.483 (3)C16—O61.374 (2)
C2—C61.342 (3)C16—C171.389 (3)
C2—C31.503 (3)C17—O71.358 (2)
C3—O21.427 (2)C17—C181.390 (3)
C3—H3A0.9700C18—O81.376 (2)
C3—H3B0.9700C18—C191.381 (3)
C4—O21.426 (2)C19—H190.9300
C4—C51.506 (3)C20—O31.413 (3)
C4—H4A0.9700C20—H20A0.9600
C4—H4B0.9700C20—H20B0.9600
C5—C131.338 (3)C20—H20C0.9600
C6—C71.460 (3)C21—O51.417 (2)
C6—H60.9300C21—H21A0.9600
C7—C121.390 (3)C21—H21B0.9600
C7—C81.397 (3)C21—H21C0.9600
C8—C91.383 (3)C22—O61.415 (2)
C8—H80.9300C22—H22A0.9600
C9—O31.369 (2)C22—H22B0.9600
C9—C101.392 (3)C22—H22C0.9600
C10—O41.358 (2)C23—O81.413 (3)
C10—C111.395 (3)C23—H23A0.9600
C11—O51.365 (2)C23—H23B0.9600
C11—C121.384 (3)C23—H23C0.9600
C12—H120.9300O4—H40.8200
C13—C141.452 (3)O7—H70.8200
C13—H130.9300O1W—H1A0.8572
C14—C151.393 (3)O1W—H1B0.8743
C14—C191.403 (3)
O1—C1—C5121.49 (18)C16—C15—C14120.50 (18)
O1—C1—C2120.54 (17)C16—C15—H15119.8
C5—C1—C2117.97 (18)C14—C15—H15119.8
C6—C2—C1118.06 (18)O6—C16—C15125.38 (18)
C6—C2—C3125.04 (19)O6—C16—C17113.92 (17)
C1—C2—C3116.64 (17)C15—C16—C17120.70 (19)
O2—C3—C2109.61 (17)O7—C17—C16122.48 (19)
O2—C3—H3A109.7O7—C17—C18118.44 (17)
C2—C3—H3A109.7C16—C17—C18119.08 (18)
O2—C3—H3B109.7O8—C18—C19124.58 (19)
C2—C3—H3B109.7O8—C18—C17114.67 (17)
H3A—C3—H3B108.2C19—C18—C17120.75 (18)
O2—C4—C5111.89 (16)C18—C19—C14119.97 (19)
O2—C4—H4A109.2C18—C19—H19120.0
C5—C4—H4A109.2C14—C19—H19120.0
O2—C4—H4B109.2O3—C20—H20A109.5
C5—C4—H4B109.2O3—C20—H20B109.5
H4A—C4—H4B107.9H20A—C20—H20B109.5
C13—C5—C1117.08 (18)O3—C20—H20C109.5
C13—C5—C4125.08 (18)H20A—C20—H20C109.5
C1—C5—C4117.74 (17)H20B—C20—H20C109.5
C2—C6—C7128.60 (19)O5—C21—H21A109.5
C2—C6—H6115.7O5—C21—H21B109.5
C7—C6—H6115.7H21A—C21—H21B109.5
C12—C7—C8119.13 (19)O5—C21—H21C109.5
C12—C7—C6122.26 (18)H21A—C21—H21C109.5
C8—C7—C6118.58 (19)H21B—C21—H21C109.5
C9—C8—C7120.8 (2)O6—C22—H22A109.5
C9—C8—H8119.6O6—C22—H22B109.5
C7—C8—H8119.6H22A—C22—H22B109.5
O3—C9—C8124.67 (19)O6—C22—H22C109.5
O3—C9—C10115.41 (18)H22A—C22—H22C109.5
C8—C9—C10119.92 (18)H22B—C22—H22C109.5
O4—C10—C9118.97 (18)O8—C23—H23A109.5
O4—C10—C11121.84 (19)O8—C23—H23B109.5
C9—C10—C11119.19 (19)H23A—C23—H23B109.5
O5—C11—C12125.57 (18)O8—C23—H23C109.5
O5—C11—C10113.63 (17)H23A—C23—H23C109.5
C12—C11—C10120.8 (2)H23B—C23—H23C109.5
C11—C12—C7120.00 (19)C4—O2—C3110.80 (16)
C11—C12—H12120.0C9—O3—C20118.01 (17)
C7—C12—H12120.0C10—O4—H4109.5
C5—C13—C14132.99 (19)C11—O5—C21118.12 (17)
C5—C13—H13113.5C16—O6—C22117.36 (16)
C14—C13—H13113.5C17—O7—H7109.5
C15—C14—C19118.95 (18)C18—O8—C23117.46 (16)
C15—C14—C13116.33 (18)H1A—O1W—H1B108.0
C19—C14—C13124.71 (19)
O1—C1—C2—C69.1 (3)C6—C7—C12—C11175.20 (19)
C5—C1—C2—C6170.58 (19)C1—C5—C13—C14176.8 (2)
O1—C1—C2—C3176.48 (19)C4—C5—C13—C140.4 (4)
C5—C1—C2—C33.8 (3)C5—C13—C14—C15158.0 (2)
C6—C2—C3—O2136.3 (2)C5—C13—C14—C1921.6 (4)
C1—C2—C3—O237.7 (2)C19—C14—C15—C162.2 (3)
O1—C1—C5—C130.0 (3)C13—C14—C15—C16177.47 (18)
C2—C1—C5—C13179.67 (18)C14—C15—C16—O6177.28 (19)
O1—C1—C5—C4176.63 (19)C14—C15—C16—C171.5 (3)
C2—C1—C5—C43.1 (3)O6—C16—C17—O70.9 (3)
O2—C4—C5—C13152.0 (2)C15—C16—C17—O7179.78 (19)
O2—C4—C5—C124.3 (3)O6—C16—C17—C18179.54 (18)
C1—C2—C6—C7179.0 (2)C15—C16—C17—C180.7 (3)
C3—C2—C6—C75.1 (4)O7—C17—C18—O81.6 (3)
C2—C6—C7—C1235.3 (3)C16—C17—C18—O8178.00 (18)
C2—C6—C7—C8142.7 (2)O7—C17—C18—C19178.38 (19)
C12—C7—C8—C93.9 (3)C16—C17—C18—C192.0 (3)
C6—C7—C8—C9174.22 (19)O8—C18—C19—C14178.75 (18)
C7—C8—C9—O3177.48 (19)C17—C18—C19—C141.3 (3)
C7—C8—C9—C101.6 (3)C15—C14—C19—C180.8 (3)
O3—C9—C10—O40.8 (3)C13—C14—C19—C18178.80 (19)
C8—C9—C10—O4178.29 (19)C5—C4—O2—C360.9 (2)
O3—C9—C10—C11179.12 (18)C2—C3—O2—C467.7 (2)
C8—C9—C10—C111.7 (3)C8—C9—O3—C202.7 (3)
O4—C10—C11—O51.7 (3)C10—C9—O3—C20178.19 (19)
C9—C10—C11—O5178.28 (18)C12—C11—O5—C215.3 (3)
O4—C10—C11—C12177.24 (19)C10—C11—O5—C21173.58 (19)
C9—C10—C11—C122.8 (3)C15—C16—O6—C227.4 (3)
O5—C11—C12—C7179.31 (18)C17—C16—O6—C22173.82 (19)
C10—C11—C12—C70.5 (3)C19—C18—O8—C231.6 (3)
C8—C7—C12—C112.8 (3)C17—C18—O8—C23178.42 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1Wi0.822.062.833 (2)156
O7—H7···O1ii0.822.032.801 (2)157
O1W—H1A···O70.862.383.162 (2)152
O1W—H1B···O2iii0.872.052.888 (2)160
C13—H13···O7iv0.932.543.390 (3)151
C23—H23C···O1v0.962.503.445 (3)167
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC23H24O8·H2O
Mr446.44
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.203 (2), 14.145 (3), 17.011 (4)
β (°) 105.349 (5)
V3)2135.5 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.43 × 0.40 × 0.32
Data collection
DiffractometerBruker SMART CCD 1000 area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.955, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
12756, 4650, 2502
Rint0.044
(sin θ/λ)max1)0.640
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.116, 0.99
No. of reflections4650
No. of parameters295
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.18

Computer programs: SMART (Bruker, 1999), SAINT-Plus (Bruker, 1999), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O1Wi0.822.062.833 (2)156
O7—H7···O1ii0.822.032.801 (2)157
O1W—H1A···O70.862.383.162 (2)152
O1W—H1B···O2iii0.872.052.888 (2)160
C13—H13···O7iv0.932.543.390 (3)151
C23—H23C···O1v0.962.503.445 (3)167
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+2, y+1/2, z+3/2; (iii) x+1, y+1/2, z+3/2; (iv) x+2, y1/2, z+3/2; (v) x+2, y+1, z+2.
 

Acknowledgements

We thank the projects of China National Natural Science Funds, Guangdong Provincial Science Foundation and the 211 Project of Guangdong Province, China.

References

First citationAbaee, M. S., Mojtahedi, M. M., Sharifi, R., Zahedi, M. M., Mesbah, A. W. & Massa, W. (2008). J. Chem. Res. pp. 388–389.  Google Scholar
First citationBruker (1999). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDu, Z.-Y., Bao, Y.-D., Liu, Z., Mao, X.-P., Ma, L., Huang, Z.-S., Gu, L.-Q. & Chan, A. S. C. (2006a). Arch. Pharm. (Weinheim), 339, 123–128.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDu, Z.-Y., Liu, R.-R., Shao, W.-Y., Mao, X.-P., Ma, L., Gu, L.-Q. & Huang, Z.-S. (2006b). Eur. J. Med. Chem. 42, 213–218.  Web of Science CrossRef Google Scholar
First citationLiu, Z., Du, Z.-Y., Huang, Z.-S., Lee, K. S. & Gu, L.-Q. (2008). Biosci. Biotech. Biochem. 72, 2214–2218.  Web of Science CrossRef CAS Google Scholar
First citationMaheshwari, R. K., Singh, A. K., Gaddipati, J. & Srimal, R. C. (2006). Life Sci. 78, 2081–2087.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoussef, K. M., El-Sherbeny, M. A., El-Shafie, F. S., Farag, H. A., Al-Deeb, O. A. & Awadalla, S. A. (2004). Arch. Pharm. Pharm. Med. Chem. 337, 42–54.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds