organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Ethyl 2-methyl 8-bromo-2-phenyl-1,2,3,3a,4,9b-hexa­hydro­chromeno[4,3-b]pyrrole-2,3-di­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 23 October 2010; accepted 31 October 2010; online 6 November 2010)

The title compound, C22H22BrNO5, was synthesized by the intra­molecular cyclo­addition reaction of (E)-ethyl 4-(4-bromo-2-formyl­phen­oxy)but-2-enoate and methyl 2-amino-2-phenyl­acetate. The pyrrolidine and 3,4-dihydro-2H-pyran rings exhibit envelope conformations. The two benzene rings are twisted to each other at a dihedral angle of 59.36 (18)°. The eth­oxy group of the ester unit is disordered over two sites with an occupancy ratio of 0.503 (11):0.497 (11). Weak inter­molecular C—H⋯O hydrogen bonding is present in the crystal structure.

Related literature

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005[Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.]); Grigg (1995[Grigg, R. (1995). Tetrahedron Asymmetry, 6, 2475-2486.]); Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377-1383.]); Nair & Suja (2007[Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.]); Pandey et al. (2006[Pandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484-4517.]); Sardina & Rapoport (1996[Sardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825-1872.]); Witherup et al. (1995[Witherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682-6685.]). For a related structure, see: Yu et al. (2007[Yu, Z.-F., Li, J., Sun, J.-W. & Yu, L. (2007). Acta Cryst. E63, o17-o18.]).

[Scheme 1]

Experimental

Crystal data
  • C22H22BrNO5

  • Mr = 460.32

  • Monoclinic, P 2/c

  • a = 11.1046 (8) Å

  • b = 11.1633 (6) Å

  • c = 17.9779 (9) Å

  • β = 107.856 (6)°

  • V = 2121.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.97 mm−1

  • T = 293 K

  • 0.50 × 0.42 × 0.38 mm

Data collection
  • Oxford diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.439, Tmax = 0.521

  • 10601 measured reflections

  • 3609 independent reflections

  • 2015 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.137

  • S = 1.06

  • 3609 reflections

  • 293 parameters

  • 47 restraints

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.36 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯O5i 0.98 2.37 3.317 (5) 163 (1)
Symmetry code: (i) -x+1, -y, -z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Pyrrolidine containing compounds are an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products. (Coldham et al., 2005; Grigg et al., 1995; Kravchenko et al., 2005; Nair et al., 2007; Pandey et al., 2006; Sardina et al., 1996; Witherup et al. 1995). Its crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The dihedral angle between the C1—C6 and C12—C17 benzene planes is 59.38 (8)°. The crystal packing is stabilized by C—H···0 hydrogen bonding (Table 1).

Related literature top

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Grigg (1995); Kravchenko et al. (2005); Nair & Suja (2007); Pandey et al. (2006); Sardina & Rapoport (1996); Witherup et al. (1995). For a related structure, see: Yu et al. (2007).

Experimental top

(E)-Ethyl 4-(4-bromo-2-formylphenoxy)but-2-enoate (0.0374 g, 0.12 mmol) and phosphenous acid (5 mg, 0.01 mmol) were added to a solution of methyl 2-amino-2-phenylacetate (0.016 g, 0.1 mmol) in dichloromethane (1 ml). After the mixture had been stirred at 298 K for 24 h, the reaction was quenched with a saturated solution of sodium bicarbonate (5 ml). The mixture was extracted with ethyl acetate, evaporated and separated by flash chromatograghy. A colourless powder was obtained. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

Refinement top

H atom on N atom was located in a difference Fourier map and refined isotropically. Other H atoms were placed in calculated positions with C—H = 0.93–0.98 Å, and refined using a riding model, with Uiso(H) =1.2Ueq(C).

Structure description top

Pyrrolidine containing compounds are an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products. (Coldham et al., 2005; Grigg et al., 1995; Kravchenko et al., 2005; Nair et al., 2007; Pandey et al., 2006; Sardina et al., 1996; Witherup et al. 1995). Its crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The dihedral angle between the C1—C6 and C12—C17 benzene planes is 59.38 (8)°. The crystal packing is stabilized by C—H···0 hydrogen bonding (Table 1).

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Grigg (1995); Kravchenko et al. (2005); Nair & Suja (2007); Pandey et al. (2006); Sardina & Rapoport (1996); Witherup et al. (1995). For a related structure, see: Yu et al. (2007).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
3-Ethyl 2-methyl 8-bromo-2-phenyl- 1,2,3,3a,4,9b-hexahydrochromeno[4,3-b]pyrrole-2,3-dicarboxylate top
Crystal data top
C22H22BrNO5F(000) = 944
Mr = 460.32Dx = 1.441 Mg m3
Monoclinic, P2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ycCell parameters from 4173 reflections
a = 11.1046 (8) Åθ = 3.0–29.1°
b = 11.1633 (6) ŵ = 1.97 mm1
c = 17.9779 (9) ÅT = 293 K
β = 107.856 (6)°Block, colorless
V = 2121.3 (2) Å30.50 × 0.42 × 0.38 mm
Z = 4
Data collection top
Oxford diffraction Gemini S Ultra
diffractometer
3609 independent reflections
Radiation source: Enhance (Mo) X-ray Source2015 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 15.9149 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 1013
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.439, Tmax = 0.521l = 2114
10601 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.137 w = 1/[σ2(Fo2) + (0.070P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
3609 reflectionsΔρmax = 0.53 e Å3
293 parametersΔρmin = 0.36 e Å3
47 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0095 (11)
Crystal data top
C22H22BrNO5V = 2121.3 (2) Å3
Mr = 460.32Z = 4
Monoclinic, P2/cMo Kα radiation
a = 11.1046 (8) ŵ = 1.97 mm1
b = 11.1633 (6) ÅT = 293 K
c = 17.9779 (9) Å0.50 × 0.42 × 0.38 mm
β = 107.856 (6)°
Data collection top
Oxford diffraction Gemini S Ultra
diffractometer
3609 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
2015 reflections with I > 2σ(I)
Tmin = 0.439, Tmax = 0.521Rint = 0.027
10601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04747 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 1.06Δρmax = 0.53 e Å3
3609 reflectionsΔρmin = 0.36 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.72424 (6)0.38095 (6)0.29704 (3)0.1076 (4)
O10.6457 (3)0.3997 (2)0.04947 (15)0.0595 (8)
O20.4138 (4)0.0088 (4)0.1551 (2)0.1059 (12)
O40.1640 (3)0.0047 (2)0.11722 (17)0.0635 (8)
O50.3115 (4)0.0409 (3)0.0070 (2)0.1175 (15)
N10.3815 (3)0.1909 (3)0.01891 (15)0.0449 (8)
H10.42430.12310.04200.054*
C10.6979 (4)0.3818 (3)0.1873 (2)0.0533 (11)
C20.7856 (4)0.4379 (3)0.1590 (2)0.0551 (11)
H20.85770.47230.19320.066*
C30.7649 (4)0.4422 (3)0.0789 (2)0.0511 (10)
H30.82300.48030.05900.061*
C40.6575 (4)0.3898 (3)0.0286 (2)0.0448 (10)
C50.5689 (3)0.3342 (3)0.0584 (2)0.0410 (9)
C60.5906 (4)0.3296 (3)0.1377 (2)0.0473 (10)
H60.53320.29130.15790.057*
C70.4515 (3)0.2897 (3)0.00127 (18)0.0367 (9)
H70.39310.35770.01540.044*
C80.4777 (3)0.2507 (3)0.07426 (19)0.0442 (9)
H80.53860.18450.06170.053*
C90.5333 (4)0.3526 (3)0.1078 (2)0.0553 (11)
H9B0.55560.32470.15300.066*
H9A0.47090.41580.12480.066*
C100.3478 (3)0.2018 (3)0.1234 (2)0.0475 (10)
H100.29770.26780.15350.057*
C110.2866 (3)0.1615 (3)0.0566 (2)0.0436 (10)
C120.1641 (3)0.2301 (3)0.0647 (2)0.0387 (9)
C130.0758 (3)0.2521 (3)0.1367 (2)0.0466 (10)
H130.09130.22540.18190.056*
C140.0350 (4)0.3130 (4)0.1424 (2)0.0563 (11)
H140.09260.32850.19120.068*
C150.0600 (4)0.3508 (3)0.0757 (3)0.0593 (11)
H150.13550.39000.07920.071*
C160.0266 (4)0.3306 (3)0.0044 (2)0.0570 (11)
H160.01080.35810.04060.068*
C170.1375 (4)0.2696 (3)0.0017 (2)0.0457 (9)
H170.19480.25490.05070.055*
C180.2588 (4)0.0276 (4)0.0581 (2)0.0618 (12)
C190.1333 (5)0.1312 (3)0.1246 (3)0.0905 (17)
H19B0.06270.14430.17060.136*
H19A0.11190.15760.07940.136*
H19C0.20500.17570.12870.136*
C200.3562 (4)0.1050 (5)0.1778 (3)0.0756 (15)
O3A0.2757 (11)0.1020 (10)0.2478 (4)0.077 (4)0.503 (11)
C21A0.2932 (13)0.0032 (13)0.2963 (6)0.085 (4)0.503 (11)
H21A0.37370.00100.30690.102*0.503 (11)
H21D0.28280.07960.27330.102*0.503 (11)
C22A0.1844 (14)0.0266 (14)0.3665 (7)0.114 (5)0.503 (11)
H22A0.16440.04150.40070.137*0.503 (11)
H22B0.20650.09310.39350.137*0.503 (11)
H22C0.11220.04720.35040.137*0.503 (11)
O3B0.3037 (11)0.1466 (10)0.2494 (4)0.076 (4)0.497 (11)
C21B0.2937 (12)0.0691 (13)0.3194 (7)0.087 (4)0.497 (11)
H21B0.27330.11820.36620.104*0.497 (11)
H21C0.37400.02990.31350.104*0.497 (11)
C22B0.1929 (17)0.0226 (13)0.3272 (11)0.119 (5)0.497 (11)
H22D0.20150.08450.36240.143*0.497 (11)
H22E0.11140.01450.34740.143*0.497 (11)
H22F0.20110.05680.27690.143*0.497 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1153 (6)0.1448 (6)0.0475 (3)0.0492 (4)0.0024 (3)0.0107 (3)
O10.0545 (19)0.0725 (19)0.0533 (18)0.0083 (14)0.0191 (14)0.0055 (13)
O20.088 (3)0.098 (3)0.127 (3)0.007 (2)0.026 (2)0.052 (2)
O40.0518 (19)0.0337 (16)0.089 (2)0.0030 (13)0.0016 (15)0.0052 (13)
O50.119 (3)0.059 (2)0.123 (3)0.009 (2)0.039 (2)0.015 (2)
N10.0409 (19)0.0413 (18)0.0432 (17)0.0029 (15)0.0008 (14)0.0036 (14)
C10.058 (3)0.051 (2)0.042 (2)0.004 (2)0.003 (2)0.0067 (18)
C20.047 (3)0.041 (2)0.068 (3)0.003 (2)0.005 (2)0.008 (2)
C30.038 (3)0.043 (2)0.074 (3)0.0021 (18)0.018 (2)0.004 (2)
C40.044 (3)0.035 (2)0.055 (3)0.0114 (19)0.014 (2)0.0039 (18)
C50.040 (2)0.030 (2)0.052 (2)0.0079 (17)0.0133 (19)0.0003 (17)
C60.049 (3)0.045 (2)0.047 (2)0.0046 (19)0.0130 (19)0.0014 (18)
C70.037 (2)0.034 (2)0.0370 (19)0.0028 (17)0.0082 (17)0.0018 (15)
C80.036 (2)0.042 (2)0.054 (2)0.0083 (17)0.0133 (18)0.0024 (18)
C90.058 (3)0.063 (3)0.047 (2)0.006 (2)0.020 (2)0.0011 (19)
C100.043 (2)0.056 (3)0.041 (2)0.0141 (19)0.0085 (18)0.0065 (18)
C110.036 (2)0.038 (2)0.050 (2)0.0032 (17)0.0018 (17)0.0037 (17)
C120.039 (2)0.0276 (19)0.046 (2)0.0025 (16)0.0078 (18)0.0004 (16)
C130.044 (3)0.050 (2)0.043 (2)0.0046 (19)0.0091 (18)0.0048 (17)
C140.047 (3)0.059 (3)0.056 (3)0.009 (2)0.005 (2)0.006 (2)
C150.044 (3)0.052 (3)0.085 (3)0.010 (2)0.024 (2)0.006 (2)
C160.062 (3)0.055 (3)0.061 (3)0.004 (2)0.029 (2)0.003 (2)
C170.045 (3)0.044 (2)0.049 (2)0.0008 (19)0.0160 (19)0.0012 (17)
C180.057 (3)0.043 (3)0.067 (3)0.013 (2)0.007 (2)0.002 (2)
C190.080 (4)0.038 (3)0.134 (5)0.008 (2)0.004 (3)0.009 (2)
C200.046 (3)0.101 (4)0.076 (4)0.014 (3)0.012 (3)0.034 (3)
O3A0.076 (7)0.074 (6)0.064 (5)0.009 (5)0.006 (4)0.048 (4)
C21A0.096 (6)0.100 (7)0.060 (6)0.012 (6)0.024 (5)0.031 (5)
C22A0.128 (8)0.095 (8)0.103 (8)0.006 (6)0.011 (6)0.028 (6)
O3B0.062 (6)0.103 (9)0.058 (5)0.024 (6)0.012 (4)0.057 (5)
C21B0.088 (6)0.106 (7)0.065 (6)0.004 (6)0.022 (5)0.023 (6)
C22B0.120 (8)0.120 (9)0.116 (9)0.011 (7)0.034 (7)0.036 (7)
Geometric parameters (Å, º) top
Br1—C11.904 (4)C11—C121.530 (5)
O1—C41.374 (4)C12—C131.384 (4)
O1—C91.460 (5)C12—C171.387 (5)
O2—C201.253 (6)C13—C141.382 (5)
O4—C181.297 (4)C13—H130.9300
O4—C191.449 (4)C14—C151.377 (5)
O5—C181.201 (5)C14—H140.9300
N1—C71.458 (4)C15—C161.365 (6)
N1—C111.478 (4)C15—H150.9300
N1—H10.9221C16—C171.382 (5)
C1—C61.379 (5)C16—H160.9300
C1—C21.379 (6)C17—H170.9300
C2—C31.387 (5)C19—H19B0.9600
C2—H20.9300C19—H19A0.9600
C3—C41.387 (5)C19—H19C0.9600
C3—H30.9300C20—O3A1.301 (8)
C4—C51.400 (5)C20—O3B1.323 (8)
C5—C61.372 (5)O3A—C21A1.510 (9)
C5—C71.496 (5)C21A—C22A1.493 (10)
C6—H60.9300C21A—H21A0.9700
C7—C81.493 (5)C21A—H21D0.9700
C7—H70.9800C22A—H22A0.9600
C8—C91.505 (5)C22A—H22B0.9600
C8—C101.542 (5)C22A—H22C0.9600
C8—H80.9800O3B—C21B1.503 (9)
C9—H9B0.9700C21B—C22B1.491 (10)
C9—H9A0.9700C21B—H21B0.9700
C10—C201.480 (6)C21B—H21C0.9700
C10—C111.614 (5)C22B—H22D0.9600
C10—H100.9800C22B—H22E0.9600
C11—C181.524 (5)C22B—H22F0.9600
C4—O1—C9119.8 (3)C13—C12—C17118.1 (3)
C18—O4—C19117.1 (3)C13—C12—C11122.2 (3)
C7—N1—C11102.9 (3)C17—C12—C11119.7 (3)
C7—N1—H1119.4C14—C13—C12121.1 (3)
C11—N1—H1110.8C14—C13—H13119.5
C6—C1—C2121.4 (4)C12—C13—H13119.5
C6—C1—Br1119.7 (3)C15—C14—C13119.9 (4)
C2—C1—Br1118.8 (3)C15—C14—H14120.0
C1—C2—C3119.2 (4)C13—C14—H14120.0
C1—C2—H2120.4C16—C15—C14119.7 (4)
C3—C2—H2120.4C16—C15—H15120.2
C4—C3—C2119.8 (4)C14—C15—H15120.2
C4—C3—H3120.1C15—C16—C17120.7 (4)
C2—C3—H3120.1C15—C16—H16119.7
O1—C4—C3115.2 (3)C17—C16—H16119.7
O1—C4—C5124.6 (3)C16—C17—C12120.5 (3)
C3—C4—C5120.2 (4)C16—C17—H17119.7
C6—C5—C4119.6 (3)C12—C17—H17119.7
C6—C5—C7124.7 (3)O5—C18—O4122.2 (4)
C4—C5—C7115.7 (3)O5—C18—C11124.2 (4)
C5—C6—C1119.8 (4)O4—C18—C11113.4 (3)
C5—C6—H6120.1O4—C19—H19B109.5
C1—C6—H6120.1O4—C19—H19A109.5
N1—C7—C8105.1 (3)H19B—C19—H19A109.5
N1—C7—C5119.1 (3)O4—C19—H19C109.5
C8—C7—C5111.4 (3)H19B—C19—H19C109.5
N1—C7—H7106.8H19A—C19—H19C109.5
C8—C7—H7106.8O2—C20—O3A115.1 (6)
C5—C7—H7106.8O2—C20—O3B130.2 (6)
C7—C8—C9110.3 (3)O2—C20—C10122.7 (5)
C7—C8—C10101.9 (3)O3A—C20—C10119.7 (6)
C9—C8—C10117.7 (3)O3B—C20—C10106.8 (6)
C7—C8—H8108.9C20—O3A—C21A114.0 (8)
C9—C8—H8108.9C22A—C21A—O3A95.8 (8)
C10—C8—H8108.9C22A—C21A—H21A112.6
O1—C9—C8110.5 (3)O3A—C21A—H21A112.6
O1—C9—H9B109.6C22A—C21A—H21D112.6
C8—C9—H9B109.6O3A—C21A—H21D112.6
O1—C9—H9A109.6H21A—C21A—H21D110.1
C8—C9—H9A109.6C20—O3B—C21B120.7 (9)
H9B—C9—H9A108.1C22B—C21B—O3B109.6 (10)
C20—C10—C8113.6 (3)C22B—C21B—H21B109.8
C20—C10—C11114.5 (4)O3B—C21B—H21B109.8
C8—C10—C11101.9 (3)C22B—C21B—H21C109.8
C20—C10—H10108.9O3B—C21B—H21C109.8
C8—C10—H10108.9H21B—C21B—H21C108.2
C11—C10—H10108.9C21B—C22B—H22D109.5
N1—C11—C18108.5 (3)C21B—C22B—H22E109.5
N1—C11—C12109.8 (3)H22D—C22B—H22E109.5
C18—C11—C12108.7 (3)C21B—C22B—H22F109.5
N1—C11—C10106.1 (3)H22D—C22B—H22F109.5
C18—C11—C10112.9 (3)H22E—C22B—H22F109.5
C12—C11—C10110.8 (3)
C6—C1—C2—C30.3 (6)C20—C10—C11—C12117.3 (3)
Br1—C1—C2—C3177.9 (3)C8—C10—C11—C12119.7 (3)
C1—C2—C3—C40.4 (6)N1—C11—C12—C13158.3 (3)
C9—O1—C4—C3177.2 (3)C18—C11—C12—C1383.2 (4)
C9—O1—C4—C51.3 (5)C10—C11—C12—C1341.4 (4)
C2—C3—C4—O1179.6 (3)N1—C11—C12—C1723.5 (4)
C2—C3—C4—C51.1 (5)C18—C11—C12—C1795.1 (4)
O1—C4—C5—C6180.0 (3)C10—C11—C12—C17140.4 (3)
C3—C4—C5—C61.6 (5)C17—C12—C13—C140.9 (5)
O1—C4—C5—C73.3 (5)C11—C12—C13—C14179.2 (3)
C3—C4—C5—C7175.1 (3)C12—C13—C14—C151.3 (6)
C4—C5—C6—C11.5 (5)C13—C14—C15—C161.8 (6)
C7—C5—C6—C1174.9 (3)C14—C15—C16—C171.8 (6)
C2—C1—C6—C50.9 (6)C15—C16—C17—C121.4 (6)
Br1—C1—C6—C5177.4 (3)C13—C12—C17—C161.0 (5)
C11—N1—C7—C845.9 (3)C11—C12—C17—C16179.3 (3)
C11—N1—C7—C5171.6 (3)C19—O4—C18—O57.6 (7)
C6—C5—C7—N129.2 (5)C19—O4—C18—C11178.1 (4)
C4—C5—C7—N1154.4 (3)N1—C11—C18—O53.3 (6)
C6—C5—C7—C8151.8 (3)C12—C11—C18—O5122.7 (5)
C4—C5—C7—C831.7 (4)C10—C11—C18—O5114.1 (5)
N1—C7—C8—C9171.7 (3)N1—C11—C18—O4170.9 (3)
C5—C7—C8—C957.9 (4)C12—C11—C18—O451.5 (4)
N1—C7—C8—C1046.0 (3)C10—C11—C18—O471.8 (4)
C5—C7—C8—C10176.4 (3)C8—C10—C20—O259.3 (6)
C4—O1—C9—C827.3 (4)C11—C10—C20—O257.1 (6)
C7—C8—C9—O155.1 (4)C8—C10—C20—O3A139.9 (8)
C10—C8—C9—O1171.3 (3)C11—C10—C20—O3A103.6 (9)
C7—C8—C10—C20150.5 (4)C8—C10—C20—O3B115.1 (7)
C9—C8—C10—C2088.9 (5)C11—C10—C20—O3B128.4 (7)
C7—C8—C10—C1126.8 (3)O2—C20—O3A—C21A16.4 (14)
C9—C8—C10—C11147.5 (3)O3B—C20—O3A—C21A115 (3)
C7—N1—C11—C18148.3 (3)C10—C20—O3A—C21A178.5 (9)
C7—N1—C11—C1293.0 (3)C20—O3A—C21A—C22A178.4 (15)
C7—N1—C11—C1026.7 (3)O2—C20—O3B—C21B7.6 (16)
C20—C10—C11—N1123.6 (4)O3A—C20—O3B—C21B54.6 (19)
C8—C10—C11—N10.5 (3)C10—C20—O3B—C21B178.5 (9)
C20—C10—C11—C184.8 (4)C20—O3B—C21B—C22B74 (2)
C8—C10—C11—C18118.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5i0.982.373.317 (5)163 (1)
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC22H22BrNO5
Mr460.32
Crystal system, space groupMonoclinic, P2/c
Temperature (K)293
a, b, c (Å)11.1046 (8), 11.1633 (6), 17.9779 (9)
β (°) 107.856 (6)
V3)2121.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.97
Crystal size (mm)0.50 × 0.42 × 0.38
Data collection
DiffractometerOxford diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.439, 0.521
No. of measured, independent and
observed [I > 2σ(I)] reflections
10601, 3609, 2015
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.06
No. of reflections3609
No. of parameters293
No. of restraints47
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.36

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O5i0.982.373.317 (5)162.8 (8)
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The diffraction measurements were made at The Centre for Testing and Analysis, Chengdu Branch, Chinese Academy of Sciences. We acknowledge financial support from China West Normal University.

References

First citationColdham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765–2810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrigg, R. (1995). Tetrahedron Asymmetry, 6, 2475–2486.  CrossRef CAS Web of Science Google Scholar
First citationKravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377–1383.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247–12275.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484–4517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825–1872.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.  CrossRef CAS Web of Science Google Scholar
First citationYu, Z.-F., Li, J., Sun, J.-W. & Yu, L. (2007). Acta Cryst. E63, o17–o18.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds