metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[hexa­aqua­hexa­kis­(μ-pyridine-2,4-di­carboxyl­ato)tricopper(II)dieuropium(III)]

aDepartment of General Education Center, Yuanpei University, HsinChu, 30015 Taiwan, and bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei St, HsinChu, 30015 Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw

(Received 26 October 2010; accepted 1 November 2010; online 6 November 2010)

The asymmetric unit of the title heterometallic coordination polymer, [Cu3Eu2(C7H3NO4)6(H2O)6]n, contains one EuIII and two CuII atoms, three pyridine-2,4-dicarboxylate (pdc)2− anions and three water molecules. One CuII atom is located on an inversion center and is N,O-chelated by two pdc2− anions in the equatorial plane and further coordinated by two carboxyl­ate O atoms from another two pdc anions in the axial positions, with an elongated octa­hedral geometry [Cu—O = 2.409 (3) Å in the axial direction]; the other Cu atom is N,O-chelated by two pdc anions in the coordination basal plane and coordinated by a carboxyl O atom at the apical position with a distorted square-pyramidal geometry [Cu—O = 2.359 (3) Å in the apical direction]. The Eu atom is eight-coordinated with a distorted square-anti­prismatic geometry formed by five carboxyl­ate O atoms from five pdc anions and three water mol­ecules. The carboxyl­ate anions bridge adjacent Eu and Cu atoms, forming the coordination polymer. Inter- and intra­molecular O—H⋯O hydrogen bonding occurs in the structure. ππ stacking further consolidates the crystal structure, the centroid–centroid distance between parallel pyridine rings being 3.367 (2) Å.

Related literature

For structures and applications of related heterometallic lanthanide-transition metal coordination polymers, see: Huang et al. (2008a[Huang, Y.-G., Wu, M.-Y., Lian, F.-Y., Jiang, F.-L. & Hong, M.-C. (2008a). Inorg. Chem. Commun. 11, 840-842.],b[Huang, Y.-G., Wu, M.-Y., Wei, W., Gao, Q., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2008b). J. Mol. Struct. 885, 23-27.]). For the coordination modes of the pyridine-2,6-dicarboxyl­ate ligand, see: Ma et al. (2010[Ma, D.-Y., Wang, W.-X. & Li, Y.-W. (2010). J. Coord. Chem. 63, 448-456.]); Zhao et al. (2007[Zhao, X.-Q., Zhao, B., Ma, Y., Shi, W., Cheng, P., Jiang, Z.-H., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 5832-5834.]); Wang et al. (2007[Wang, F.-Q., Zheng, X.-J., Wan, Y.-H., Sun, C.-Y., Wang, Z.-M., Wang, K.-Z. & Jin, L.-P. (2007). Inorg. Chem. 46, 2956-2958.]). For the coordination modes of the pyridine-2,5-dicarboxyl­ate ligand, see: Song et al. (2006[Song, Y.-S., Yan, B. & Weng, L.-H. (2006). Inorg. Chem. Commun. 9, 567-570.]); Wang et al. (2009[Wang, N., Yue, S.-T., Liu, Y.-L., Yang, H.-Y. & Wu, H.-Y. (2009). Cryst. Growth Des. 9, 368-371.]). For the coordination modes of the pyridine-2,3-dicarboxyl­ate ligand, see: Wang et al. (2010[Wang, N., Yue, S.-T., Wu, H.-Y., Li, X.-X. & Liu, Y.-L. (2010). Inorg. Chim. Acta, 363, 1008-1012.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu3Eu2(C7H3NO4)6(H2O)6]

  • Mr = 1593.29

  • Triclinic, [P \overline 1]

  • a = 9.4296 (10) Å

  • b = 10.7002 (11) Å

  • c = 12.2874 (13) Å

  • α = 86.186 (2)°

  • β = 81.556 (2)°

  • γ = 86.561 (2)°

  • V = 1222.0 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 3.92 mm−1

  • T = 294 K

  • 0.24 × 0.20 × 0.20 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.659, Tmax = 0.977

  • 12982 measured reflections

  • 5780 independent reflections

  • 4828 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.066

  • S = 0.98

  • 5780 reflections

  • 376 parameters

  • H-atom parameters constrained

  • Δρmax = 1.69 e Å−3

  • Δρmin = −0.94 e Å−3

Table 1
Selected bond lengths (Å)

Eu1—O6i 2.485 (2)
Eu1—O8 2.386 (3)
Eu1—O10ii 2.404 (2)
Eu1—O11iii 2.385 (2)
Eu1—O12i 2.328 (2)
Eu1—O13 2.454 (3)
Eu1—O14 2.442 (3)
Eu1—O15 2.510 (3)
Cu1—O1 1.932 (3)
Cu1—O5iv 1.944 (2)
Cu1—O7 2.359 (3)
Cu1—N1 1.975 (3)
Cu1—N2iv 1.975 (3)
Cu2—O2 2.409 (3)
Cu2—O9 1.968 (2)
Cu2—N3 1.969 (3)
Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x+1, -y+2, -z; (iii) x, y, z+1; (iv) -x, -y+1, -z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O13—H13A⋯O5i 0.82 2.00 2.769 (3) 155
O13—H13B⋯O15v 0.82 2.02 2.822 (4) 164
O14—H14A⋯O7 0.82 1.89 2.690 (4) 164
O14—H14B⋯O4vi 0.82 1.88 2.667 (4) 161
O15—H15A⋯O3vii 0.82 1.83 2.630 (4) 164
O15—H15B⋯O4vi 0.82 2.06 2.814 (4) 153
Symmetry codes: (i) -x+1, -y+1, -z; (v) -x+1, -y+1, -z+1; (vi) -x, -y+2, -z+1; (vii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

In recent years, many research groups have devoted their work to the design and synthesis of lanthanide–transition(3 d-4f) heterometallic coordination frameworks with bridging multifunctional organic ligands, such as pyridinedicarboxylic acid (Ma et al., 2010; Song et al., 2006; Wang et al.,2007; Wang et al., 2009; Wang et al., 2010; Zhao et al.,2007). Pyridine-2,4-dicarboxylic acid (pdaH2) ligand is a good candidate due to its flexible and various coordination donors containing either N– or O–atom donors. Some examples of coordination with pdaH2 have been reported (Huang et al., 2008a; Huang et al., 2008b.).

Herein we report a new 3 d-4f heterometallic coordination polymer based on pdaH2 ligand, formulated as [Eu2Cu3(C7H3NO4)6(H2O)6]n. The symmetric unit of the title compound contains one octa-coordinated EuIII atom and two types of environments of CuII center, the penta-coordinate CuII atom is in a square- pyramidal geometry, the other CuII atom is in a slightly distorted octahedral geometry. The EuIII ion presents a EuO8 square antiprismatic coordination geometry, formed by five mono-dentate pda O atoms and three coordinate water molecules, the Cu1IIion presents a CuN2O3 square- pyramidal coordination geometry, formed by two bidentate pda (–NO–) ligand (2-carboxy) in the equatorial plane, and one O atom from monodentate pda (4-carboxy) ligand at the axial sites, the other Cu2II ion presents a slightly distorted (CuN2O4) octahedral coordination geometry, formed by two bidentate pda (–NO–) ligand (2-carboxy) in the equatorial plane, and two monodentate pda(2-carboxy) ligands at the axial sites (Table 1, Fig 1). The pda One carboxyl group bridges the neighboring Eu or Cu cations, forming the 3-D polymeric architecture.

In the title crystal structure, a three-dimensional network is formed via intra- intermolecular O—H···O hydrogen bonds (Table 2, Fig. 2). In addition, C—H···O hydrogen bonds (full details and symmetry codes are given in Table 2), C7—O3···Cg8 (N3/C15—C19) interactions are also present. The π···π, π···Metal stacking interactions are also observed, the centroid-centroid distance between the pyridine rings being 3.367 (2)Å [Cg7iv···Cg7 (N2/C8—C12)] [symmetry codes: -x, 1 - y, -z]. The Cg1 (Cu1/O1—N1—C1—C6)···Cu1 interaction is 3.905Å [symmetry codes: -x, 2 - y, -z].

Related literature top

For structures and applications of related heterometallic lanthanide-transition metal coordination polymers, see: Huang et al. (2008a,b). For the coordination modes of the pyridine-2,6-dicarboxylate ligand, see: Ma et al. (2010); Zhao et al. (2007); Wang et al. (2007). For the coordination modes of the pyridine-2,5-dicarboxylate ligand, see: Song et al. (2006); Wang et al. (2009). For the coordination modes of the pyridine-2,3-dicarboxylate ligand, see: Wang et al. (2010).

Experimental top

A mixture of europium chloride hexahydrate (0.25 mmol, 0.0916 g), copper acetate hydrate (0.25 mmol, 0.050 g), pyridine-2,4-dicarboxylic acid (0.25 mmol, 0.0418 g) and 10 ml H2O were put in a 23-ml Teflon liner reactor and heated at 418 K in oven for 48 h. The resulting solution was slowly cooled to room temperature. The blue transparent single crystals of the title complex were obtained in 43.21% yield (based on Eu).

Refinement top

Water H atoms wre located in a difference Fourier map and refined with the distances constraints of O—H = 0.82 Å, Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic), and refined using a riding model with Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years, many research groups have devoted their work to the design and synthesis of lanthanide–transition(3 d-4f) heterometallic coordination frameworks with bridging multifunctional organic ligands, such as pyridinedicarboxylic acid (Ma et al., 2010; Song et al., 2006; Wang et al.,2007; Wang et al., 2009; Wang et al., 2010; Zhao et al.,2007). Pyridine-2,4-dicarboxylic acid (pdaH2) ligand is a good candidate due to its flexible and various coordination donors containing either N– or O–atom donors. Some examples of coordination with pdaH2 have been reported (Huang et al., 2008a; Huang et al., 2008b.).

Herein we report a new 3 d-4f heterometallic coordination polymer based on pdaH2 ligand, formulated as [Eu2Cu3(C7H3NO4)6(H2O)6]n. The symmetric unit of the title compound contains one octa-coordinated EuIII atom and two types of environments of CuII center, the penta-coordinate CuII atom is in a square- pyramidal geometry, the other CuII atom is in a slightly distorted octahedral geometry. The EuIII ion presents a EuO8 square antiprismatic coordination geometry, formed by five mono-dentate pda O atoms and three coordinate water molecules, the Cu1IIion presents a CuN2O3 square- pyramidal coordination geometry, formed by two bidentate pda (–NO–) ligand (2-carboxy) in the equatorial plane, and one O atom from monodentate pda (4-carboxy) ligand at the axial sites, the other Cu2II ion presents a slightly distorted (CuN2O4) octahedral coordination geometry, formed by two bidentate pda (–NO–) ligand (2-carboxy) in the equatorial plane, and two monodentate pda(2-carboxy) ligands at the axial sites (Table 1, Fig 1). The pda One carboxyl group bridges the neighboring Eu or Cu cations, forming the 3-D polymeric architecture.

In the title crystal structure, a three-dimensional network is formed via intra- intermolecular O—H···O hydrogen bonds (Table 2, Fig. 2). In addition, C—H···O hydrogen bonds (full details and symmetry codes are given in Table 2), C7—O3···Cg8 (N3/C15—C19) interactions are also present. The π···π, π···Metal stacking interactions are also observed, the centroid-centroid distance between the pyridine rings being 3.367 (2)Å [Cg7iv···Cg7 (N2/C8—C12)] [symmetry codes: -x, 1 - y, -z]. The Cg1 (Cu1/O1—N1—C1—C6)···Cu1 interaction is 3.905Å [symmetry codes: -x, 2 - y, -z].

For structures and applications of related heterometallic lanthanide-transition metal coordination polymers, see: Huang et al. (2008a,b). For the coordination modes of the pyridine-2,6-dicarboxylate ligand, see: Ma et al. (2010); Zhao et al. (2007); Wang et al. (2007). For the coordination modes of the pyridine-2,5-dicarboxylate ligand, see: Song et al. (2006); Wang et al. (2009). For the coordination modes of the pyridine-2,3-dicarboxylate ligand, see: Wang et al. (2010).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y + 2, -z; (iv) -x, -y + 1, -z].
[Figure 2] Fig. 2. The molecular packing for the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
Poly[hexaaquahexakis(µ-pyridine-2,4-dicarboxylato)tricopper(II)dieuropium(III)] top
Crystal data top
[Cu3Eu2(C7H3NO4)6(H2O)6]Z = 1
Mr = 1593.29F(000) = 777
Triclinic, P1Dx = 2.165 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.4296 (10) ÅCell parameters from 6583 reflections
b = 10.7002 (11) Åθ = 2.5–25.0°
c = 12.2874 (13) ŵ = 3.92 mm1
α = 86.186 (2)°T = 294 K
β = 81.556 (2)°Equant, blue
γ = 86.561 (2)°0.24 × 0.20 × 0.20 mm
V = 1222.0 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
5780 independent reflections
Radiation source: fine-focus sealed tube4828 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 9 pixels mm-1θmax = 28.3°, θmin = 1.7°
φ and ω scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
k = 1313
Tmin = 0.659, Tmax = 0.977l = 1516
12982 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.066H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0323P)2]
where P = (Fo2 + 2Fc2)/3
5780 reflections(Δ/σ)max = 0.001
376 parametersΔρmax = 1.69 e Å3
0 restraintsΔρmin = 0.94 e Å3
Crystal data top
[Cu3Eu2(C7H3NO4)6(H2O)6]γ = 86.561 (2)°
Mr = 1593.29V = 1222.0 (2) Å3
Triclinic, P1Z = 1
a = 9.4296 (10) ÅMo Kα radiation
b = 10.7002 (11) ŵ = 3.92 mm1
c = 12.2874 (13) ÅT = 294 K
α = 86.186 (2)°0.24 × 0.20 × 0.20 mm
β = 81.556 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
5780 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4828 reflections with I > 2σ(I)
Tmin = 0.659, Tmax = 0.977Rint = 0.044
12982 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.066H-atom parameters constrained
S = 0.98Δρmax = 1.69 e Å3
5780 reflectionsΔρmin = 0.94 e Å3
376 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Eu10.42924 (2)0.65169 (1)0.35169 (1)0.0161 (1)
Cu10.04296 (4)0.81387 (4)0.11987 (3)0.0220 (1)
Cu20.500001.000000.000000.0188 (2)
O10.1188 (3)0.8879 (2)0.0288 (2)0.0274 (8)
O20.2474 (3)1.0583 (2)0.0150 (2)0.0272 (8)
O30.1716 (3)1.3256 (3)0.3467 (2)0.0406 (10)
O40.0222 (3)1.2972 (3)0.4696 (3)0.0524 (11)
O50.2216 (2)0.2480 (2)0.19845 (19)0.0238 (7)
O60.3969 (2)0.3742 (2)0.18098 (19)0.0236 (8)
O70.0882 (3)0.6635 (2)0.2196 (2)0.0313 (8)
O80.3149 (3)0.5865 (2)0.2057 (2)0.0258 (8)
O90.5336 (3)1.1177 (2)0.13010 (19)0.0230 (7)
O100.5037 (3)1.1358 (2)0.30699 (19)0.0235 (7)
O110.3895 (3)0.7209 (2)0.46529 (19)0.0254 (8)
O120.4790 (3)0.5533 (2)0.3775 (2)0.0269 (8)
O130.6647 (3)0.6702 (3)0.4101 (2)0.0318 (9)
O140.2105 (3)0.7873 (2)0.3621 (2)0.0285 (8)
O150.2311 (3)0.5207 (2)0.4481 (2)0.0262 (8)
N10.0265 (3)0.9489 (3)0.2186 (2)0.0222 (9)
N20.0738 (3)0.3055 (3)0.0108 (2)0.0190 (8)
N30.4749 (3)0.8802 (3)0.1097 (2)0.0179 (8)
C10.0834 (3)1.0218 (3)0.1776 (3)0.0193 (10)
C20.1182 (4)1.1211 (3)0.2322 (3)0.0232 (10)
C30.0356 (4)1.1510 (3)0.3314 (3)0.0260 (11)
C40.0795 (4)1.0771 (4)0.3712 (3)0.0344 (12)
C50.1064 (4)0.9764 (4)0.3138 (3)0.0314 (12)
C60.1590 (4)0.9878 (3)0.0650 (3)0.0213 (10)
C70.0646 (4)1.2678 (4)0.3881 (3)0.0282 (12)
C80.0144 (4)0.3380 (3)0.0799 (3)0.0214 (10)
C90.0190 (4)0.4295 (3)0.1443 (3)0.0225 (10)
C100.1511 (4)0.4835 (3)0.1200 (3)0.0200 (10)
C110.2450 (3)0.4447 (3)0.0287 (3)0.0199 (10)
C120.2009 (3)0.3591 (3)0.0364 (3)0.0177 (9)
C130.2824 (3)0.3236 (3)0.1467 (3)0.0187 (10)
C140.1878 (4)0.5861 (3)0.1875 (3)0.0209 (10)
C150.4789 (3)0.9361 (3)0.2116 (3)0.0177 (9)
C160.4629 (4)0.8712 (3)0.3016 (3)0.0195 (10)
C170.4471 (4)0.7427 (3)0.2868 (3)0.0193 (10)
C180.4458 (4)0.6855 (3)0.1819 (3)0.0248 (10)
C190.4564 (4)0.7580 (3)0.0948 (3)0.0233 (10)
C200.5063 (3)1.0751 (3)0.2176 (3)0.0178 (9)
C210.4380 (4)0.6657 (3)0.3837 (3)0.0195 (10)
H2A0.196301.168000.203200.0280*
H4A0.138201.095500.436500.0410*
H5A0.182200.926600.342200.0380*
H8A0.100000.297900.099700.0260*
H9A0.046600.455000.203800.0270*
H11A0.336000.476000.012200.0240*
H13A0.718300.700100.357400.0480*
H13B0.703600.609600.440300.0480*
H14A0.166900.763000.315000.0430*
H14B0.155200.776900.419600.0430*
H15A0.196800.465900.418000.0390*
H15B0.156300.552200.480000.0390*
H16A0.462600.912300.370700.0230*
H18A0.438000.599200.170400.0300*
H19A0.450300.720200.024000.0280*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Eu10.0202 (1)0.0122 (1)0.0166 (1)0.0010 (1)0.0040 (1)0.0033 (1)
Cu10.0214 (2)0.0212 (2)0.0238 (2)0.0061 (2)0.0003 (2)0.0088 (2)
Cu20.0269 (3)0.0140 (3)0.0167 (3)0.0032 (2)0.0048 (2)0.0041 (2)
O10.0258 (13)0.0283 (15)0.0280 (14)0.0073 (11)0.0036 (11)0.0125 (11)
O20.0224 (13)0.0206 (14)0.0364 (15)0.0039 (10)0.0047 (11)0.0022 (11)
O30.0470 (18)0.0376 (17)0.0378 (16)0.0199 (14)0.0054 (14)0.0160 (13)
O40.0512 (19)0.046 (2)0.057 (2)0.0178 (15)0.0228 (16)0.0343 (16)
O50.0226 (12)0.0271 (14)0.0222 (12)0.0056 (10)0.0001 (10)0.0089 (10)
O60.0211 (12)0.0235 (14)0.0258 (13)0.0055 (10)0.0027 (10)0.0073 (10)
O70.0308 (14)0.0296 (15)0.0369 (15)0.0100 (12)0.0139 (12)0.0169 (12)
O80.0222 (13)0.0320 (15)0.0250 (13)0.0017 (11)0.0061 (11)0.0095 (11)
O90.0349 (14)0.0140 (12)0.0215 (12)0.0062 (10)0.0067 (11)0.0016 (10)
O100.0352 (14)0.0145 (12)0.0207 (12)0.0031 (10)0.0032 (11)0.0002 (10)
O110.0367 (14)0.0211 (13)0.0190 (12)0.0028 (11)0.0064 (11)0.0042 (10)
O120.0392 (15)0.0133 (13)0.0285 (14)0.0033 (11)0.0062 (12)0.0056 (10)
O130.0287 (14)0.0401 (17)0.0280 (14)0.0078 (12)0.0103 (11)0.0068 (12)
O140.0282 (14)0.0287 (15)0.0301 (14)0.0032 (11)0.0076 (11)0.0084 (11)
O150.0264 (13)0.0219 (13)0.0304 (14)0.0060 (10)0.0002 (11)0.0076 (11)
N10.0215 (15)0.0211 (16)0.0239 (15)0.0018 (12)0.0000 (12)0.0070 (12)
N20.0182 (14)0.0165 (14)0.0220 (15)0.0014 (11)0.0025 (12)0.0018 (11)
N30.0223 (14)0.0156 (14)0.0159 (14)0.0019 (11)0.0018 (11)0.0034 (11)
C10.0178 (16)0.0178 (17)0.0229 (17)0.0008 (13)0.0037 (14)0.0049 (13)
C20.0240 (18)0.0167 (17)0.0295 (19)0.0045 (14)0.0036 (15)0.0030 (14)
C30.0252 (19)0.024 (2)0.029 (2)0.0025 (15)0.0016 (16)0.0078 (16)
C40.037 (2)0.034 (2)0.031 (2)0.0092 (18)0.0076 (17)0.0137 (17)
C50.029 (2)0.032 (2)0.032 (2)0.0102 (17)0.0068 (17)0.0101 (17)
C60.0179 (17)0.0220 (18)0.0242 (18)0.0047 (14)0.0054 (14)0.0030 (14)
C70.035 (2)0.022 (2)0.029 (2)0.0021 (16)0.0053 (17)0.0090 (16)
C80.0175 (16)0.0229 (19)0.0233 (17)0.0030 (13)0.0005 (14)0.0022 (14)
C90.0218 (17)0.0253 (19)0.0202 (17)0.0024 (14)0.0017 (14)0.0061 (14)
C100.0215 (17)0.0199 (18)0.0197 (17)0.0032 (14)0.0074 (14)0.0040 (13)
C110.0157 (16)0.0218 (18)0.0229 (17)0.0012 (13)0.0040 (14)0.0040 (14)
C120.0167 (16)0.0178 (17)0.0187 (16)0.0004 (13)0.0027 (13)0.0021 (13)
C130.0188 (16)0.0173 (17)0.0207 (17)0.0024 (13)0.0050 (14)0.0037 (13)
C140.0253 (18)0.0232 (18)0.0147 (16)0.0010 (14)0.0046 (14)0.0036 (13)
C150.0205 (16)0.0133 (16)0.0195 (16)0.0003 (13)0.0030 (13)0.0026 (13)
C160.0272 (18)0.0164 (17)0.0154 (16)0.0005 (13)0.0056 (14)0.0010 (13)
C170.0216 (17)0.0158 (17)0.0208 (17)0.0016 (13)0.0033 (14)0.0048 (13)
C180.040 (2)0.0151 (17)0.0200 (17)0.0041 (15)0.0046 (16)0.0028 (13)
C190.036 (2)0.0182 (18)0.0160 (16)0.0015 (15)0.0051 (15)0.0006 (13)
C200.0169 (16)0.0136 (16)0.0220 (17)0.0005 (12)0.0009 (13)0.0031 (13)
C210.0209 (17)0.0193 (18)0.0184 (16)0.0049 (13)0.0001 (14)0.0043 (13)
Geometric parameters (Å, º) top
Eu1—O6i2.485 (2)O15—H15B0.8200
Eu1—O82.386 (3)O15—H15A0.8200
Eu1—O10ii2.404 (2)N1—C51.335 (5)
Eu1—O11iii2.385 (2)N1—C11.352 (4)
Eu1—O12i2.328 (2)N2—C81.341 (4)
Eu1—O132.454 (3)N2—C121.346 (4)
Eu1—O142.442 (3)N3—C151.348 (4)
Eu1—O152.510 (3)N3—C191.327 (5)
Cu1—O11.932 (3)C1—C61.517 (5)
Cu1—O5iv1.944 (2)C1—C21.374 (5)
Cu1—O72.359 (3)C2—C31.392 (5)
Cu1—N11.975 (3)C3—C71.528 (5)
Cu1—N2iv1.975 (3)C3—C41.392 (5)
Cu2—O22.409 (3)C4—C51.382 (6)
Cu2—O91.968 (2)C8—C91.377 (5)
Cu2—N31.969 (3)C9—C101.389 (5)
Cu2—O2ii2.409 (3)C10—C111.393 (5)
Cu2—O9ii1.968 (2)C10—C141.505 (5)
Cu2—N3ii1.969 (3)C11—C121.376 (5)
O1—C61.283 (4)C12—C131.516 (5)
O2—C61.227 (4)C15—C201.520 (5)
O3—C71.242 (5)C15—C161.375 (5)
O4—C71.242 (5)C16—C171.389 (5)
O5—C131.272 (4)C17—C211.508 (5)
O6—C131.242 (4)C17—C181.388 (5)
O7—C141.251 (4)C18—C191.381 (5)
O8—C141.251 (5)C2—H2A0.9300
O9—C201.261 (4)C4—H4A0.9300
O10—C201.241 (4)C5—H5A0.9300
O11—C211.260 (4)C8—H8A0.9300
O12—C211.242 (4)C9—H9A0.9300
O13—H13B0.8200C11—H11A0.9300
O13—H13A0.8200C16—H16A0.9300
O14—H14A0.8200C18—H18A0.9300
O14—H14B0.8200C19—H19A0.9300
O8—Eu1—O13143.07 (9)H15A—O15—H15B99.00
O8—Eu1—O1476.92 (8)Eu1—O15—H15A123.00
O8—Eu1—O1575.96 (8)Eu1—O15—H15B122.00
O8—Eu1—O11iii144.45 (9)C1—N1—C5118.9 (3)
O6i—Eu1—O868.55 (8)Cu1—N1—C1111.1 (2)
O8—Eu1—O12i88.94 (8)Cu1—N1—C5130.0 (3)
O8—Eu1—O10ii108.10 (8)Cu1iv—N2—C8128.5 (2)
O13—Eu1—O14133.64 (9)C8—N2—C12119.2 (3)
O13—Eu1—O15126.29 (9)Cu1iv—N2—C12112.3 (2)
O11iii—Eu1—O1372.28 (9)Cu2—N3—C19128.7 (2)
O6i—Eu1—O1375.67 (8)Cu2—N3—C15111.9 (2)
O12i—Eu1—O1374.51 (10)C15—N3—C19119.4 (3)
O10ii—Eu1—O1372.65 (10)N1—C1—C6114.2 (3)
O14—Eu1—O1573.99 (8)C2—C1—C6123.6 (3)
O11iii—Eu1—O1474.60 (9)N1—C1—C2122.2 (3)
O6i—Eu1—O14124.22 (8)C1—C2—C3119.5 (3)
O12i—Eu1—O14144.83 (9)C2—C3—C4117.7 (3)
O10ii—Eu1—O1471.70 (9)C2—C3—C7120.2 (3)
O11iii—Eu1—O1576.07 (8)C4—C3—C7122.0 (3)
O6i—Eu1—O15132.71 (7)C3—C4—C5120.0 (3)
O12i—Eu1—O1571.37 (9)N1—C5—C4121.7 (4)
O10ii—Eu1—O15143.28 (8)O1—C6—C1115.5 (3)
O6i—Eu1—O11iii146.55 (8)O1—C6—O2125.7 (3)
O11iii—Eu1—O12i102.40 (8)O2—C6—C1118.8 (3)
O10ii—Eu1—O11iii82.57 (8)O3—C7—C3116.6 (3)
O6i—Eu1—O12i77.62 (8)O3—C7—O4126.3 (4)
O6i—Eu1—O10ii79.02 (8)O4—C7—C3117.1 (3)
O10ii—Eu1—O12i143.40 (10)N2—C8—C9121.5 (3)
O1—Cu1—O797.47 (10)C8—C9—C10119.7 (3)
O1—Cu1—N184.50 (11)C9—C10—C11118.4 (3)
O1—Cu1—O5iv172.30 (10)C9—C10—C14120.4 (3)
O1—Cu1—N2iv94.73 (11)C11—C10—C14121.1 (3)
O1—Cu1—O2v92.14 (9)C10—C11—C12118.9 (3)
O7—Cu1—N193.91 (10)C11—C12—C13124.3 (3)
O5iv—Cu1—O790.08 (9)N2—C12—C13113.4 (3)
O7—Cu1—N2iv93.32 (10)N2—C12—C11122.1 (3)
O2v—Cu1—O7164.52 (8)O5—C13—C12115.7 (3)
O5iv—Cu1—N196.55 (10)O6—C13—C12118.4 (3)
N1—Cu1—N2iv172.76 (12)O5—C13—O6125.9 (3)
O2v—Cu1—N199.09 (10)O8—C14—C10117.1 (3)
O5iv—Cu1—N2iv83.28 (10)O7—C14—O8126.2 (3)
O2v—Cu1—O5iv80.16 (8)O7—C14—C10116.7 (3)
O2v—Cu1—N2iv73.73 (10)N3—C15—C20113.9 (3)
O2—Cu2—O988.97 (10)C16—C15—C20123.7 (3)
O2—Cu2—N388.99 (10)N3—C15—C16122.4 (3)
O2—Cu2—O2ii180.00C15—C16—C17118.4 (3)
O2—Cu2—O9ii91.03 (10)C16—C17—C21120.6 (3)
O2—Cu2—N3ii91.01 (10)C18—C17—C21120.5 (3)
O9—Cu2—N383.49 (11)C16—C17—C18118.9 (3)
O2ii—Cu2—O991.03 (10)C17—C18—C19119.3 (3)
O9—Cu2—O9ii180.00N3—C19—C18121.6 (3)
O9—Cu2—N3ii96.51 (10)O9—C20—C15115.9 (3)
O2ii—Cu2—N391.01 (10)O10—C20—C15118.3 (3)
O9ii—Cu2—N396.51 (11)O9—C20—O10125.7 (3)
N3—Cu2—N3ii180.00O12—C21—C17117.9 (3)
O2ii—Cu2—O9ii88.97 (10)O11—C21—O12124.9 (3)
O2ii—Cu2—N3ii88.99 (10)O11—C21—C17117.2 (3)
O9ii—Cu2—N3ii83.49 (10)C1—C2—H2A120.00
Cu1—O1—C6114.4 (2)C3—C2—H2A120.00
Cu2—O2—C6120.1 (2)C3—C4—H4A120.00
Cu1v—O2—Cu2138.98 (10)C5—C4—H4A120.00
Cu1v—O2—C694.1 (2)N1—C5—H5A119.00
Cu1iv—O5—C13115.0 (2)C4—C5—H5A119.00
Eu1i—O6—C13131.3 (2)N2—C8—H8A119.00
Cu1—O7—C14130.9 (2)C9—C8—H8A119.00
Eu1—O8—C14134.9 (2)C8—C9—H9A120.00
Cu2—O9—C20113.9 (2)C10—C9—H9A120.00
Eu1ii—O10—C20127.0 (2)C10—C11—H11A121.00
Eu1vi—O11—C21125.3 (2)C12—C11—H11A121.00
Eu1i—O12—C21173.8 (3)C15—C16—H16A121.00
H13A—O13—H13B112.00C17—C16—H16A121.00
Eu1—O13—H13A108.00C17—C18—H18A120.00
Eu1—O13—H13B120.00C19—C18—H18A120.00
H14A—O14—H14B104.00N3—C19—H19A119.00
Eu1—O14—H14A105.00C18—C19—H19A119.00
Eu1—O14—H14B114.00
O13—Eu1—O8—C14178.0 (3)Cu1—O7—C14—C1065.8 (4)
O14—Eu1—O8—C1427.5 (3)Eu1—O8—C14—O731.0 (5)
O15—Eu1—O8—C1449.0 (3)Eu1—O8—C14—C10149.5 (2)
O11iii—Eu1—O8—C149.9 (4)Cu2—O9—C20—O10171.5 (3)
O6i—Eu1—O8—C14162.9 (3)Cu2—O9—C20—C1510.4 (3)
O12i—Eu1—O8—C14120.0 (3)Eu1ii—O10—C20—O96.3 (5)
O10ii—Eu1—O8—C1493.0 (3)Eu1ii—O10—C20—C15171.72 (19)
O8—Eu1—O11iii—C21iii119.5 (3)Eu1vi—O11—C21—O1220.8 (5)
O13—Eu1—O11iii—C21iii55.5 (3)Eu1vi—O11—C21—C17159.0 (2)
O14—Eu1—O11iii—C21iii157.4 (3)Cu1—N1—C1—C2179.0 (3)
O15—Eu1—O11iii—C21iii80.5 (3)Cu1—N1—C1—C63.7 (3)
O8—Eu1—O6i—C13i152.9 (3)C5—N1—C1—C21.9 (5)
O13—Eu1—O6i—C13i36.4 (3)C5—N1—C1—C6175.5 (3)
O14—Eu1—O6i—C13i97.0 (3)Cu1—N1—C5—C4179.0 (3)
O15—Eu1—O6i—C13i163.0 (3)C1—N1—C5—C40.0 (5)
O8—Eu1—O10ii—C20ii10.3 (3)C12—N2—C8—C93.3 (5)
O13—Eu1—O10ii—C20ii130.9 (3)Cu1iv—N2—C8—C9175.7 (3)
O14—Eu1—O10ii—C20ii79.3 (3)C8—N2—C12—C111.3 (5)
O15—Eu1—O10ii—C20ii100.9 (3)C8—N2—C12—C13174.1 (3)
O7—Cu1—O1—C696.6 (2)Cu1iv—N2—C12—C11179.6 (3)
N1—Cu1—O1—C63.3 (2)Cu1iv—N2—C12—C135.0 (3)
N2iv—Cu1—O1—C6169.5 (3)Cu2—N3—C15—C16179.6 (3)
O2v—Cu1—O1—C695.6 (2)Cu2—N3—C15—C201.9 (3)
O1—Cu1—O7—C1448.9 (3)C19—N3—C15—C160.7 (5)
N1—Cu1—O7—C14133.9 (3)C19—N3—C15—C20177.8 (3)
O5iv—Cu1—O7—C14129.6 (3)Cu2—N3—C19—C18177.5 (3)
N2iv—Cu1—O7—C1446.3 (3)C15—N3—C19—C182.2 (5)
O1—Cu1—N1—C10.5 (2)N1—C1—C2—C32.1 (5)
O1—Cu1—N1—C5178.5 (3)C6—C1—C2—C3175.1 (3)
O7—Cu1—N1—C196.6 (2)N1—C1—C6—O16.7 (4)
O7—Cu1—N1—C584.4 (3)N1—C1—C6—O2170.7 (3)
O5iv—Cu1—N1—C1172.9 (2)C2—C1—C6—O1176.0 (3)
O5iv—Cu1—N1—C56.2 (3)C2—C1—C6—O26.7 (5)
O2v—Cu1—N1—C191.8 (2)C1—C2—C3—C40.4 (5)
O2v—Cu1—N1—C587.2 (3)C1—C2—C3—C7174.7 (3)
O7—Cu1—O5iv—C13iv98.6 (2)C2—C3—C4—C51.4 (6)
N1—Cu1—O5iv—C13iv167.5 (2)C7—C3—C4—C5176.3 (4)
O1—Cu1—N2iv—C8iv14.0 (3)C2—C3—C7—O36.4 (5)
O1—Cu1—N2iv—C12iv166.9 (2)C2—C3—C7—O4172.3 (4)
O7—Cu1—N2iv—C8iv83.8 (3)C4—C3—C7—O3178.8 (4)
O7—Cu1—N2iv—C12iv95.3 (2)C4—C3—C7—O42.5 (6)
O1—Cu1—O2v—C6v12.3 (2)C3—C4—C5—N11.6 (6)
N1—Cu1—O2v—C6v72.5 (2)N2—C8—C9—C104.7 (5)
O9—Cu2—O2—C6158.3 (3)C8—C9—C10—C111.4 (5)
O9—Cu2—O2—Cu1v15.88 (14)C8—C9—C10—C14178.3 (3)
N3—Cu2—O2—C674.8 (3)C9—C10—C11—C122.9 (5)
N3—Cu2—O2—Cu1v67.63 (15)C14—C10—C11—C12173.9 (3)
O9ii—Cu2—O2—C621.7 (3)C9—C10—C14—O737.3 (5)
N3ii—Cu2—O2—C6105.2 (3)C9—C10—C14—O8143.1 (3)
O2—Cu2—O9—C2080.0 (2)C11—C10—C14—O7139.4 (3)
N3—Cu2—O9—C209.1 (2)C11—C10—C14—O840.2 (5)
O2ii—Cu2—O9—C20100.0 (2)C10—C11—C12—N24.4 (5)
N3ii—Cu2—O9—C20170.9 (2)C10—C11—C12—C13170.5 (3)
O2—Cu2—N3—C1583.5 (2)N2—C12—C13—O50.9 (4)
O2—Cu2—N3—C1996.9 (3)N2—C12—C13—O6175.6 (3)
O9—Cu2—N3—C155.6 (2)C11—C12—C13—O5176.2 (3)
O9—Cu2—N3—C19174.1 (3)C11—C12—C13—O60.3 (5)
O2ii—Cu2—N3—C1596.5 (2)N3—C15—C16—C172.3 (5)
O2ii—Cu2—N3—C1983.1 (3)C20—C15—C16—C17176.1 (3)
O9ii—Cu2—N3—C15174.4 (2)N3—C15—C20—O95.8 (4)
O9ii—Cu2—N3—C196.0 (3)N3—C15—C20—O10176.0 (3)
Cu1—O1—C6—O2171.0 (3)C16—C15—C20—O9172.7 (3)
Cu1—O1—C6—C16.1 (4)C16—C15—C20—O105.5 (5)
Cu2—O2—C6—O176.7 (4)C15—C16—C17—C181.0 (5)
Cu2—O2—C6—C1106.3 (3)C15—C16—C17—C21176.4 (3)
Cu1v—O2—C6—O179.6 (4)C16—C17—C18—C191.7 (6)
Cu1v—O2—C6—C197.4 (3)C21—C17—C18—C19179.1 (3)
Cu1iv—O5—C13—O6179.9 (3)C16—C17—C21—O1127.2 (5)
Cu1iv—O5—C13—C123.9 (3)C16—C17—C21—O12152.6 (4)
Eu1i—O6—C13—O54.7 (5)C18—C17—C21—O11155.5 (4)
Eu1i—O6—C13—C12179.13 (19)C18—C17—C21—O1224.7 (5)
Cu1—O7—C14—O8113.8 (4)C17—C18—C19—N33.4 (6)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x, y, z+1; (iv) x, y+1, z; (v) x, y+2, z; (vi) x, y, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O5i0.822.002.769 (3)155
O13—H13B···O15vii0.822.022.822 (4)164
O14—H14A···O70.821.892.690 (4)164
O14—H14B···O4viii0.821.882.667 (4)161
O15—H15A···O3ix0.821.832.630 (4)164
O15—H15B···O4viii0.822.062.814 (4)153
C18—H18A···O60.932.483.389 (4)167
Symmetry codes: (i) x+1, y+1, z; (vii) x+1, y+1, z+1; (viii) x, y+2, z+1; (ix) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu3Eu2(C7H3NO4)6(H2O)6]
Mr1593.29
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)9.4296 (10), 10.7002 (11), 12.2874 (13)
α, β, γ (°)86.186 (2), 81.556 (2), 86.561 (2)
V3)1222.0 (2)
Z1
Radiation typeMo Kα
µ (mm1)3.92
Crystal size (mm)0.24 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.659, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
12982, 5780, 4828
Rint0.044
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.066, 0.98
No. of reflections5780
No. of parameters376
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.69, 0.94

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Selected bond lengths (Å) top
Eu1—O6i2.485 (2)Cu1—O11.932 (3)
Eu1—O82.386 (3)Cu1—O5iv1.944 (2)
Eu1—O10ii2.404 (2)Cu1—O72.359 (3)
Eu1—O11iii2.385 (2)Cu1—N11.975 (3)
Eu1—O12i2.328 (2)Cu1—N2iv1.975 (3)
Eu1—O132.454 (3)Cu2—O22.409 (3)
Eu1—O142.442 (3)Cu2—O91.968 (2)
Eu1—O152.510 (3)Cu2—N31.969 (3)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x, y, z+1; (iv) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O13—H13A···O5i0.822.002.769 (3)155
O13—H13B···O15v0.822.022.822 (4)164
O14—H14A···O70.821.892.690 (4)164
O14—H14B···O4vi0.821.882.667 (4)161
O15—H15A···O3vii0.821.832.630 (4)164
O15—H15B···O4vi0.822.062.814 (4)153
Symmetry codes: (i) x+1, y+1, z; (v) x+1, y+1, z+1; (vi) x, y+2, z+1; (vii) x, y1, z.
 

Acknowledgements

This work was financial supported by Yuanpei University, Taiwan.

References

First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, Y.-G., Wu, M.-Y., Lian, F.-Y., Jiang, F.-L. & Hong, M.-C. (2008a). Inorg. Chem. Commun. 11, 840–842.  Web of Science CSD CrossRef CAS Google Scholar
First citationHuang, Y.-G., Wu, M.-Y., Wei, W., Gao, Q., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2008b). J. Mol. Struct. 885, 23–27.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, D.-Y., Wang, W.-X. & Li, Y.-W. (2010). J. Coord. Chem. 63, 448–456.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSong, Y.-S., Yan, B. & Weng, L.-H. (2006). Inorg. Chem. Commun. 9, 567–570.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, N., Yue, S.-T., Liu, Y.-L., Yang, H.-Y. & Wu, H.-Y. (2009). Cryst. Growth Des. 9, 368–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, N., Yue, S.-T., Wu, H.-Y., Li, X.-X. & Liu, Y.-L. (2010). Inorg. Chim. Acta, 363, 1008–1012.  Web of Science CrossRef CAS Google Scholar
First citationWang, F.-Q., Zheng, X.-J., Wan, Y.-H., Sun, C.-Y., Wang, Z.-M., Wang, K.-Z. & Jin, L.-P. (2007). Inorg. Chem. 46, 2956–2958.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhao, X.-Q., Zhao, B., Ma, Y., Shi, W., Cheng, P., Jiang, Z.-H., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 5832–5834.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds