metal-organic compounds
Poly[hexaaquahexakis(μ-pyridine-2,4-dicarboxylato)tricopper(II)dieuropium(III)]
aDepartment of General Education Center, Yuanpei University, HsinChu, 30015 Taiwan, and bDepartment of Biotechnology, Yuanpei University, No. 306, Yuanpei St, HsinChu, 30015 Taiwan
*Correspondence e-mail: fmshen@mail.ypu.edu.tw
The 3Eu2(C7H3NO4)6(H2O)6]n, contains one EuIII and two CuII atoms, three pyridine-2,4-dicarboxylate (pdc)2− anions and three water molecules. One CuII atom is located on an inversion center and is N,O-chelated by two pdc2− anions in the equatorial plane and further coordinated by two carboxylate O atoms from another two pdc anions in the axial positions, with an elongated octahedral geometry [Cu—O = 2.409 (3) Å in the axial direction]; the other Cu atom is N,O-chelated by two pdc anions in the coordination basal plane and coordinated by a carboxyl O atom at the apical position with a distorted square-pyramidal geometry [Cu—O = 2.359 (3) Å in the apical direction]. The Eu atom is eight-coordinated with a distorted square-antiprismatic geometry formed by five carboxylate O atoms from five pdc anions and three water molecules. The carboxylate anions bridge adjacent Eu and Cu atoms, forming the coordination polymer. Inter- and intramolecular O—H⋯O hydrogen bonding occurs in the structure. π–π stacking further consolidates the the centroid–centroid distance between parallel pyridine rings being 3.367 (2) Å.
of the title heterometallic coordination polymer, [CuRelated literature
For structures and applications of related heterometallic lanthanide-transition metal coordination polymers, see: Huang et al. (2008a,b). For the coordination modes of the pyridine-2,6-dicarboxylate ligand, see: Ma et al. (2010); Zhao et al. (2007); Wang et al. (2007). For the coordination modes of the pyridine-2,5-dicarboxylate ligand, see: Song et al. (2006); Wang et al. (2009). For the coordination modes of the pyridine-2,3-dicarboxylate ligand, see: Wang et al. (2010).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2000); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.
Supporting information
https://doi.org/10.1107/S1600536810044594/xu5066sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810044594/xu5066Isup2.hkl
A mixture of europium chloride hexahydrate (0.25 mmol, 0.0916 g), copper acetate hydrate (0.25 mmol, 0.050 g), pyridine-2,4-dicarboxylic acid (0.25 mmol, 0.0418 g) and 10 ml H2O were put in a 23-ml Teflon liner reactor and heated at 418 K in oven for 48 h. The resulting solution was slowly cooled to room temperature. The blue transparent single crystals of the title complex were obtained in 43.21% yield (based on Eu).
Water H atoms wre located in a difference Fourier map and refined with the distances constraints of O—H = 0.82 Å, Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93 Å (aromatic), and refined using a riding model with Uiso(H) = 1.2Ueq(C).
In recent years, many research groups have devoted their work to the design and synthesis of lanthanide–transition(3 d-4f) heterometallic coordination frameworks with bridging multifunctional organic ligands, such as pyridinedicarboxylic acid (Ma et al., 2010; Song et al., 2006; Wang et al.,2007; Wang et al., 2009; Wang et al., 2010; Zhao et al.,2007). Pyridine-2,4-dicarboxylic acid (pdaH2) ligand is a good candidate due to its flexible and various coordination donors containing either N– or O–atom donors. Some examples of coordination with pdaH2 have been reported (Huang et al., 2008a; Huang et al., 2008b.).
Herein we report a new 3 d-4f heterometallic coordination polymer based on pdaH2 ligand, formulated as [Eu2Cu3(C7H3NO4)6(H2O)6]n. The symmetric unit of the title compound contains one octa-coordinated EuIII atom and two types of environments of CuII center, the penta-coordinate CuII atom is in a square- pyramidal geometry, the other CuII atom is in a slightly distorted octahedral geometry. The EuIII ion presents a EuO8 square antiprismatic coordination geometry, formed by five mono-dentate pda O atoms and three coordinate water molecules, the Cu1IIion presents a CuN2O3 square- pyramidal coordination geometry, formed by two bidentate pda (–NO–) ligand (2-carboxy) in the equatorial plane, and one O atom from monodentate pda (4-carboxy) ligand at the axial sites, the other Cu2II ion presents a slightly distorted (CuN2O4) octahedral coordination geometry, formed by two bidentate pda (–NO–) ligand (2-carboxy) in the equatorial plane, and two monodentate pda(2-carboxy) ligands at the axial sites (Table 1, Fig 1). The pda One carboxyl group bridges the neighboring Eu or Cu cations, forming the 3-D polymeric architecture.
In the title π···π, π···Metal stacking interactions are also observed, the centroid-centroid distance between the pyridine rings being 3.367 (2)Å [Cg7iv···Cg7 (N2/C8—C12)] [symmetry codes: -x, 1 - y, -z]. The Cg1 (Cu1/O1—N1—C1—C6)···Cu1 interaction is 3.905Å [symmetry codes: -x, 2 - y, -z].
a three-dimensional network is formed via intra- intermolecular O—H···O hydrogen bonds (Table 2, Fig. 2). In addition, C—H···O hydrogen bonds (full details and symmetry codes are given in Table 2), C7—O3···Cg8 (N3/C15—C19) interactions are also present. TheFor structures and applications of related heterometallic lanthanide-transition metal coordination polymers, see: Huang et al. (2008a,b). For the coordination modes of the pyridine-2,6-dicarboxylate ligand, see: Ma et al. (2010); Zhao et al. (2007); Wang et al. (2007). For the coordination modes of the pyridine-2,5-dicarboxylate ligand, see: Song et al. (2006); Wang et al. (2009). For the coordination modes of the pyridine-2,3-dicarboxylate ligand, see: Wang et al. (2010).
Data collection: SMART (Bruker, 2000); cell
SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level. H atoms have been omitted for clarity. [Symmetry codes: (i) x, y, z + 1; (ii) -x + 1, -y + 1, -z; (iii) -x + 1, -y + 2, -z; (iv) -x, -y + 1, -z]. | |
Fig. 2. The molecular packing for the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines. |
[Cu3Eu2(C7H3NO4)6(H2O)6] | Z = 1 |
Mr = 1593.29 | F(000) = 777 |
Triclinic, P1 | Dx = 2.165 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4296 (10) Å | Cell parameters from 6583 reflections |
b = 10.7002 (11) Å | θ = 2.5–25.0° |
c = 12.2874 (13) Å | µ = 3.92 mm−1 |
α = 86.186 (2)° | T = 294 K |
β = 81.556 (2)° | Equant, blue |
γ = 86.561 (2)° | 0.24 × 0.20 × 0.20 mm |
V = 1222.0 (2) Å3 |
Bruker SMART CCD area-detector diffractometer | 5780 independent reflections |
Radiation source: fine-focus sealed tube | 4828 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.044 |
Detector resolution: 9 pixels mm-1 | θmax = 28.3°, θmin = 1.7° |
φ and ω scans | h = −12→12 |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | k = −13→13 |
Tmin = 0.659, Tmax = 0.977 | l = −15→16 |
12982 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0323P)2] where P = (Fo2 + 2Fc2)/3 |
5780 reflections | (Δ/σ)max = 0.001 |
376 parameters | Δρmax = 1.69 e Å−3 |
0 restraints | Δρmin = −0.94 e Å−3 |
[Cu3Eu2(C7H3NO4)6(H2O)6] | γ = 86.561 (2)° |
Mr = 1593.29 | V = 1222.0 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 9.4296 (10) Å | Mo Kα radiation |
b = 10.7002 (11) Å | µ = 3.92 mm−1 |
c = 12.2874 (13) Å | T = 294 K |
α = 86.186 (2)° | 0.24 × 0.20 × 0.20 mm |
β = 81.556 (2)° |
Bruker SMART CCD area-detector diffractometer | 5780 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2000) | 4828 reflections with I > 2σ(I) |
Tmin = 0.659, Tmax = 0.977 | Rint = 0.044 |
12982 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.066 | H-atom parameters constrained |
S = 0.98 | Δρmax = 1.69 e Å−3 |
5780 reflections | Δρmin = −0.94 e Å−3 |
376 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Eu1 | 0.42924 (2) | 0.65169 (1) | 0.35169 (1) | 0.0161 (1) | |
Cu1 | −0.04296 (4) | 0.81387 (4) | 0.11987 (3) | 0.0220 (1) | |
Cu2 | 0.50000 | 1.00000 | 0.00000 | 0.0188 (2) | |
O1 | 0.1188 (3) | 0.8879 (2) | 0.0288 (2) | 0.0274 (8) | |
O2 | 0.2474 (3) | 1.0583 (2) | 0.0150 (2) | 0.0272 (8) | |
O3 | 0.1716 (3) | 1.3256 (3) | 0.3467 (2) | 0.0406 (10) | |
O4 | −0.0222 (3) | 1.2972 (3) | 0.4696 (3) | 0.0524 (11) | |
O5 | 0.2216 (2) | 0.2480 (2) | −0.19845 (19) | 0.0238 (7) | |
O6 | 0.3969 (2) | 0.3742 (2) | −0.18098 (19) | 0.0236 (8) | |
O7 | 0.0882 (3) | 0.6635 (2) | 0.2196 (2) | 0.0313 (8) | |
O8 | 0.3149 (3) | 0.5865 (2) | 0.2057 (2) | 0.0258 (8) | |
O9 | 0.5336 (3) | 1.1177 (2) | −0.13010 (19) | 0.0230 (7) | |
O10 | 0.5037 (3) | 1.1358 (2) | −0.30699 (19) | 0.0235 (7) | |
O11 | 0.3895 (3) | 0.7209 (2) | −0.46529 (19) | 0.0254 (8) | |
O12 | 0.4790 (3) | 0.5533 (2) | −0.3775 (2) | 0.0269 (8) | |
O13 | 0.6647 (3) | 0.6702 (3) | 0.4101 (2) | 0.0318 (9) | |
O14 | 0.2105 (3) | 0.7873 (2) | 0.3621 (2) | 0.0285 (8) | |
O15 | 0.2311 (3) | 0.5207 (2) | 0.4481 (2) | 0.0262 (8) | |
N1 | −0.0265 (3) | 0.9489 (3) | 0.2186 (2) | 0.0222 (9) | |
N2 | 0.0738 (3) | 0.3055 (3) | −0.0108 (2) | 0.0190 (8) | |
N3 | 0.4749 (3) | 0.8802 (3) | −0.1097 (2) | 0.0179 (8) | |
C1 | 0.0834 (3) | 1.0218 (3) | 0.1776 (3) | 0.0193 (10) | |
C2 | 0.1182 (4) | 1.1211 (3) | 0.2322 (3) | 0.0232 (10) | |
C3 | 0.0356 (4) | 1.1510 (3) | 0.3314 (3) | 0.0260 (11) | |
C4 | −0.0795 (4) | 1.0771 (4) | 0.3712 (3) | 0.0344 (12) | |
C5 | −0.1064 (4) | 0.9764 (4) | 0.3138 (3) | 0.0314 (12) | |
C6 | 0.1590 (4) | 0.9878 (3) | 0.0650 (3) | 0.0213 (10) | |
C7 | 0.0646 (4) | 1.2678 (4) | 0.3881 (3) | 0.0282 (12) | |
C8 | −0.0144 (4) | 0.3380 (3) | 0.0799 (3) | 0.0214 (10) | |
C9 | 0.0190 (4) | 0.4295 (3) | 0.1443 (3) | 0.0225 (10) | |
C10 | 0.1511 (4) | 0.4835 (3) | 0.1200 (3) | 0.0200 (10) | |
C11 | 0.2450 (3) | 0.4447 (3) | 0.0287 (3) | 0.0199 (10) | |
C12 | 0.2009 (3) | 0.3591 (3) | −0.0364 (3) | 0.0177 (9) | |
C13 | 0.2824 (3) | 0.3236 (3) | −0.1467 (3) | 0.0187 (10) | |
C14 | 0.1878 (4) | 0.5861 (3) | 0.1875 (3) | 0.0209 (10) | |
C15 | 0.4789 (3) | 0.9361 (3) | −0.2116 (3) | 0.0177 (9) | |
C16 | 0.4629 (4) | 0.8712 (3) | −0.3016 (3) | 0.0195 (10) | |
C17 | 0.4471 (4) | 0.7427 (3) | −0.2868 (3) | 0.0193 (10) | |
C18 | 0.4458 (4) | 0.6855 (3) | −0.1819 (3) | 0.0248 (10) | |
C19 | 0.4564 (4) | 0.7580 (3) | −0.0948 (3) | 0.0233 (10) | |
C20 | 0.5063 (3) | 1.0751 (3) | −0.2176 (3) | 0.0178 (9) | |
C21 | 0.4380 (4) | 0.6657 (3) | −0.3837 (3) | 0.0195 (10) | |
H2A | 0.19630 | 1.16800 | 0.20320 | 0.0280* | |
H4A | −0.13820 | 1.09550 | 0.43650 | 0.0410* | |
H5A | −0.18220 | 0.92660 | 0.34220 | 0.0380* | |
H8A | −0.10000 | 0.29790 | 0.09970 | 0.0260* | |
H9A | −0.04660 | 0.45500 | 0.20380 | 0.0270* | |
H11A | 0.33600 | 0.47600 | 0.01220 | 0.0240* | |
H13A | 0.71830 | 0.70010 | 0.35740 | 0.0480* | |
H13B | 0.70360 | 0.60960 | 0.44030 | 0.0480* | |
H14A | 0.16690 | 0.76300 | 0.31500 | 0.0430* | |
H14B | 0.15520 | 0.77690 | 0.41960 | 0.0430* | |
H15A | 0.19680 | 0.46590 | 0.41800 | 0.0390* | |
H15B | 0.15630 | 0.55220 | 0.48000 | 0.0390* | |
H16A | 0.46260 | 0.91230 | −0.37070 | 0.0230* | |
H18A | 0.43800 | 0.59920 | −0.17040 | 0.0300* | |
H19A | 0.45030 | 0.72020 | −0.02400 | 0.0280* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Eu1 | 0.0202 (1) | 0.0122 (1) | 0.0166 (1) | −0.0010 (1) | −0.0040 (1) | −0.0033 (1) |
Cu1 | 0.0214 (2) | 0.0212 (2) | 0.0238 (2) | −0.0061 (2) | 0.0003 (2) | −0.0088 (2) |
Cu2 | 0.0269 (3) | 0.0140 (3) | 0.0167 (3) | −0.0032 (2) | −0.0048 (2) | −0.0041 (2) |
O1 | 0.0258 (13) | 0.0283 (15) | 0.0280 (14) | −0.0073 (11) | 0.0036 (11) | −0.0125 (11) |
O2 | 0.0224 (13) | 0.0206 (14) | 0.0364 (15) | −0.0039 (10) | 0.0047 (11) | −0.0022 (11) |
O3 | 0.0470 (18) | 0.0376 (17) | 0.0378 (16) | −0.0199 (14) | 0.0054 (14) | −0.0160 (13) |
O4 | 0.0512 (19) | 0.046 (2) | 0.057 (2) | −0.0178 (15) | 0.0228 (16) | −0.0343 (16) |
O5 | 0.0226 (12) | 0.0271 (14) | 0.0222 (12) | −0.0056 (10) | −0.0001 (10) | −0.0089 (10) |
O6 | 0.0211 (12) | 0.0235 (14) | 0.0258 (13) | −0.0055 (10) | 0.0027 (10) | −0.0073 (10) |
O7 | 0.0308 (14) | 0.0296 (15) | 0.0369 (15) | 0.0100 (12) | −0.0139 (12) | −0.0169 (12) |
O8 | 0.0222 (13) | 0.0320 (15) | 0.0250 (13) | −0.0017 (11) | −0.0061 (11) | −0.0095 (11) |
O9 | 0.0349 (14) | 0.0140 (12) | 0.0215 (12) | −0.0062 (10) | −0.0067 (11) | −0.0016 (10) |
O10 | 0.0352 (14) | 0.0145 (12) | 0.0207 (12) | −0.0031 (10) | −0.0032 (11) | −0.0002 (10) |
O11 | 0.0367 (14) | 0.0211 (13) | 0.0190 (12) | 0.0028 (11) | −0.0064 (11) | −0.0042 (10) |
O12 | 0.0392 (15) | 0.0133 (13) | 0.0285 (14) | 0.0033 (11) | −0.0062 (12) | −0.0056 (10) |
O13 | 0.0287 (14) | 0.0401 (17) | 0.0280 (14) | −0.0078 (12) | −0.0103 (11) | 0.0068 (12) |
O14 | 0.0282 (14) | 0.0287 (15) | 0.0301 (14) | 0.0032 (11) | −0.0076 (11) | −0.0084 (11) |
O15 | 0.0264 (13) | 0.0219 (13) | 0.0304 (14) | −0.0060 (10) | 0.0002 (11) | −0.0076 (11) |
N1 | 0.0215 (15) | 0.0211 (16) | 0.0239 (15) | −0.0018 (12) | 0.0000 (12) | −0.0070 (12) |
N2 | 0.0182 (14) | 0.0165 (14) | 0.0220 (15) | 0.0014 (11) | −0.0025 (12) | −0.0018 (11) |
N3 | 0.0223 (14) | 0.0156 (14) | 0.0159 (14) | −0.0019 (11) | −0.0018 (11) | −0.0034 (11) |
C1 | 0.0178 (16) | 0.0178 (17) | 0.0229 (17) | 0.0008 (13) | −0.0037 (14) | −0.0049 (13) |
C2 | 0.0240 (18) | 0.0167 (17) | 0.0295 (19) | −0.0045 (14) | −0.0036 (15) | −0.0030 (14) |
C3 | 0.0252 (19) | 0.024 (2) | 0.029 (2) | −0.0025 (15) | −0.0016 (16) | −0.0078 (16) |
C4 | 0.037 (2) | 0.034 (2) | 0.031 (2) | −0.0092 (18) | 0.0076 (17) | −0.0137 (17) |
C5 | 0.029 (2) | 0.032 (2) | 0.032 (2) | −0.0102 (17) | 0.0068 (17) | −0.0101 (17) |
C6 | 0.0179 (17) | 0.0220 (18) | 0.0242 (18) | 0.0047 (14) | −0.0054 (14) | −0.0030 (14) |
C7 | 0.035 (2) | 0.022 (2) | 0.029 (2) | −0.0021 (16) | −0.0053 (17) | −0.0090 (16) |
C8 | 0.0175 (16) | 0.0229 (19) | 0.0233 (17) | −0.0030 (13) | −0.0005 (14) | −0.0022 (14) |
C9 | 0.0218 (17) | 0.0253 (19) | 0.0202 (17) | 0.0024 (14) | −0.0017 (14) | −0.0061 (14) |
C10 | 0.0215 (17) | 0.0199 (18) | 0.0197 (17) | 0.0032 (14) | −0.0074 (14) | −0.0040 (13) |
C11 | 0.0157 (16) | 0.0218 (18) | 0.0229 (17) | −0.0012 (13) | −0.0040 (14) | −0.0040 (14) |
C12 | 0.0167 (16) | 0.0178 (17) | 0.0187 (16) | 0.0004 (13) | −0.0027 (13) | −0.0021 (13) |
C13 | 0.0188 (16) | 0.0173 (17) | 0.0207 (17) | 0.0024 (13) | −0.0050 (14) | −0.0037 (13) |
C14 | 0.0253 (18) | 0.0232 (18) | 0.0147 (16) | 0.0010 (14) | −0.0046 (14) | −0.0036 (13) |
C15 | 0.0205 (16) | 0.0133 (16) | 0.0195 (16) | −0.0003 (13) | −0.0030 (13) | −0.0026 (13) |
C16 | 0.0272 (18) | 0.0164 (17) | 0.0154 (16) | 0.0005 (13) | −0.0056 (14) | −0.0010 (13) |
C17 | 0.0216 (17) | 0.0158 (17) | 0.0208 (17) | 0.0016 (13) | −0.0033 (14) | −0.0048 (13) |
C18 | 0.040 (2) | 0.0151 (17) | 0.0200 (17) | −0.0041 (15) | −0.0046 (16) | −0.0028 (13) |
C19 | 0.036 (2) | 0.0182 (18) | 0.0160 (16) | −0.0015 (15) | −0.0051 (15) | 0.0006 (13) |
C20 | 0.0169 (16) | 0.0136 (16) | 0.0220 (17) | −0.0005 (12) | 0.0009 (13) | −0.0031 (13) |
C21 | 0.0209 (17) | 0.0193 (18) | 0.0184 (16) | −0.0049 (13) | −0.0001 (14) | −0.0043 (13) |
Eu1—O6i | 2.485 (2) | O15—H15B | 0.8200 |
Eu1—O8 | 2.386 (3) | O15—H15A | 0.8200 |
Eu1—O10ii | 2.404 (2) | N1—C5 | 1.335 (5) |
Eu1—O11iii | 2.385 (2) | N1—C1 | 1.352 (4) |
Eu1—O12i | 2.328 (2) | N2—C8 | 1.341 (4) |
Eu1—O13 | 2.454 (3) | N2—C12 | 1.346 (4) |
Eu1—O14 | 2.442 (3) | N3—C15 | 1.348 (4) |
Eu1—O15 | 2.510 (3) | N3—C19 | 1.327 (5) |
Cu1—O1 | 1.932 (3) | C1—C6 | 1.517 (5) |
Cu1—O5iv | 1.944 (2) | C1—C2 | 1.374 (5) |
Cu1—O7 | 2.359 (3) | C2—C3 | 1.392 (5) |
Cu1—N1 | 1.975 (3) | C3—C7 | 1.528 (5) |
Cu1—N2iv | 1.975 (3) | C3—C4 | 1.392 (5) |
Cu2—O2 | 2.409 (3) | C4—C5 | 1.382 (6) |
Cu2—O9 | 1.968 (2) | C8—C9 | 1.377 (5) |
Cu2—N3 | 1.969 (3) | C9—C10 | 1.389 (5) |
Cu2—O2ii | 2.409 (3) | C10—C11 | 1.393 (5) |
Cu2—O9ii | 1.968 (2) | C10—C14 | 1.505 (5) |
Cu2—N3ii | 1.969 (3) | C11—C12 | 1.376 (5) |
O1—C6 | 1.283 (4) | C12—C13 | 1.516 (5) |
O2—C6 | 1.227 (4) | C15—C20 | 1.520 (5) |
O3—C7 | 1.242 (5) | C15—C16 | 1.375 (5) |
O4—C7 | 1.242 (5) | C16—C17 | 1.389 (5) |
O5—C13 | 1.272 (4) | C17—C21 | 1.508 (5) |
O6—C13 | 1.242 (4) | C17—C18 | 1.388 (5) |
O7—C14 | 1.251 (4) | C18—C19 | 1.381 (5) |
O8—C14 | 1.251 (5) | C2—H2A | 0.9300 |
O9—C20 | 1.261 (4) | C4—H4A | 0.9300 |
O10—C20 | 1.241 (4) | C5—H5A | 0.9300 |
O11—C21 | 1.260 (4) | C8—H8A | 0.9300 |
O12—C21 | 1.242 (4) | C9—H9A | 0.9300 |
O13—H13B | 0.8200 | C11—H11A | 0.9300 |
O13—H13A | 0.8200 | C16—H16A | 0.9300 |
O14—H14A | 0.8200 | C18—H18A | 0.9300 |
O14—H14B | 0.8200 | C19—H19A | 0.9300 |
O8—Eu1—O13 | 143.07 (9) | H15A—O15—H15B | 99.00 |
O8—Eu1—O14 | 76.92 (8) | Eu1—O15—H15A | 123.00 |
O8—Eu1—O15 | 75.96 (8) | Eu1—O15—H15B | 122.00 |
O8—Eu1—O11iii | 144.45 (9) | C1—N1—C5 | 118.9 (3) |
O6i—Eu1—O8 | 68.55 (8) | Cu1—N1—C1 | 111.1 (2) |
O8—Eu1—O12i | 88.94 (8) | Cu1—N1—C5 | 130.0 (3) |
O8—Eu1—O10ii | 108.10 (8) | Cu1iv—N2—C8 | 128.5 (2) |
O13—Eu1—O14 | 133.64 (9) | C8—N2—C12 | 119.2 (3) |
O13—Eu1—O15 | 126.29 (9) | Cu1iv—N2—C12 | 112.3 (2) |
O11iii—Eu1—O13 | 72.28 (9) | Cu2—N3—C19 | 128.7 (2) |
O6i—Eu1—O13 | 75.67 (8) | Cu2—N3—C15 | 111.9 (2) |
O12i—Eu1—O13 | 74.51 (10) | C15—N3—C19 | 119.4 (3) |
O10ii—Eu1—O13 | 72.65 (10) | N1—C1—C6 | 114.2 (3) |
O14—Eu1—O15 | 73.99 (8) | C2—C1—C6 | 123.6 (3) |
O11iii—Eu1—O14 | 74.60 (9) | N1—C1—C2 | 122.2 (3) |
O6i—Eu1—O14 | 124.22 (8) | C1—C2—C3 | 119.5 (3) |
O12i—Eu1—O14 | 144.83 (9) | C2—C3—C4 | 117.7 (3) |
O10ii—Eu1—O14 | 71.70 (9) | C2—C3—C7 | 120.2 (3) |
O11iii—Eu1—O15 | 76.07 (8) | C4—C3—C7 | 122.0 (3) |
O6i—Eu1—O15 | 132.71 (7) | C3—C4—C5 | 120.0 (3) |
O12i—Eu1—O15 | 71.37 (9) | N1—C5—C4 | 121.7 (4) |
O10ii—Eu1—O15 | 143.28 (8) | O1—C6—C1 | 115.5 (3) |
O6i—Eu1—O11iii | 146.55 (8) | O1—C6—O2 | 125.7 (3) |
O11iii—Eu1—O12i | 102.40 (8) | O2—C6—C1 | 118.8 (3) |
O10ii—Eu1—O11iii | 82.57 (8) | O3—C7—C3 | 116.6 (3) |
O6i—Eu1—O12i | 77.62 (8) | O3—C7—O4 | 126.3 (4) |
O6i—Eu1—O10ii | 79.02 (8) | O4—C7—C3 | 117.1 (3) |
O10ii—Eu1—O12i | 143.40 (10) | N2—C8—C9 | 121.5 (3) |
O1—Cu1—O7 | 97.47 (10) | C8—C9—C10 | 119.7 (3) |
O1—Cu1—N1 | 84.50 (11) | C9—C10—C11 | 118.4 (3) |
O1—Cu1—O5iv | 172.30 (10) | C9—C10—C14 | 120.4 (3) |
O1—Cu1—N2iv | 94.73 (11) | C11—C10—C14 | 121.1 (3) |
O1—Cu1—O2v | 92.14 (9) | C10—C11—C12 | 118.9 (3) |
O7—Cu1—N1 | 93.91 (10) | C11—C12—C13 | 124.3 (3) |
O5iv—Cu1—O7 | 90.08 (9) | N2—C12—C13 | 113.4 (3) |
O7—Cu1—N2iv | 93.32 (10) | N2—C12—C11 | 122.1 (3) |
O2v—Cu1—O7 | 164.52 (8) | O5—C13—C12 | 115.7 (3) |
O5iv—Cu1—N1 | 96.55 (10) | O6—C13—C12 | 118.4 (3) |
N1—Cu1—N2iv | 172.76 (12) | O5—C13—O6 | 125.9 (3) |
O2v—Cu1—N1 | 99.09 (10) | O8—C14—C10 | 117.1 (3) |
O5iv—Cu1—N2iv | 83.28 (10) | O7—C14—O8 | 126.2 (3) |
O2v—Cu1—O5iv | 80.16 (8) | O7—C14—C10 | 116.7 (3) |
O2v—Cu1—N2iv | 73.73 (10) | N3—C15—C20 | 113.9 (3) |
O2—Cu2—O9 | 88.97 (10) | C16—C15—C20 | 123.7 (3) |
O2—Cu2—N3 | 88.99 (10) | N3—C15—C16 | 122.4 (3) |
O2—Cu2—O2ii | 180.00 | C15—C16—C17 | 118.4 (3) |
O2—Cu2—O9ii | 91.03 (10) | C16—C17—C21 | 120.6 (3) |
O2—Cu2—N3ii | 91.01 (10) | C18—C17—C21 | 120.5 (3) |
O9—Cu2—N3 | 83.49 (11) | C16—C17—C18 | 118.9 (3) |
O2ii—Cu2—O9 | 91.03 (10) | C17—C18—C19 | 119.3 (3) |
O9—Cu2—O9ii | 180.00 | N3—C19—C18 | 121.6 (3) |
O9—Cu2—N3ii | 96.51 (10) | O9—C20—C15 | 115.9 (3) |
O2ii—Cu2—N3 | 91.01 (10) | O10—C20—C15 | 118.3 (3) |
O9ii—Cu2—N3 | 96.51 (11) | O9—C20—O10 | 125.7 (3) |
N3—Cu2—N3ii | 180.00 | O12—C21—C17 | 117.9 (3) |
O2ii—Cu2—O9ii | 88.97 (10) | O11—C21—O12 | 124.9 (3) |
O2ii—Cu2—N3ii | 88.99 (10) | O11—C21—C17 | 117.2 (3) |
O9ii—Cu2—N3ii | 83.49 (10) | C1—C2—H2A | 120.00 |
Cu1—O1—C6 | 114.4 (2) | C3—C2—H2A | 120.00 |
Cu2—O2—C6 | 120.1 (2) | C3—C4—H4A | 120.00 |
Cu1v—O2—Cu2 | 138.98 (10) | C5—C4—H4A | 120.00 |
Cu1v—O2—C6 | 94.1 (2) | N1—C5—H5A | 119.00 |
Cu1iv—O5—C13 | 115.0 (2) | C4—C5—H5A | 119.00 |
Eu1i—O6—C13 | 131.3 (2) | N2—C8—H8A | 119.00 |
Cu1—O7—C14 | 130.9 (2) | C9—C8—H8A | 119.00 |
Eu1—O8—C14 | 134.9 (2) | C8—C9—H9A | 120.00 |
Cu2—O9—C20 | 113.9 (2) | C10—C9—H9A | 120.00 |
Eu1ii—O10—C20 | 127.0 (2) | C10—C11—H11A | 121.00 |
Eu1vi—O11—C21 | 125.3 (2) | C12—C11—H11A | 121.00 |
Eu1i—O12—C21 | 173.8 (3) | C15—C16—H16A | 121.00 |
H13A—O13—H13B | 112.00 | C17—C16—H16A | 121.00 |
Eu1—O13—H13A | 108.00 | C17—C18—H18A | 120.00 |
Eu1—O13—H13B | 120.00 | C19—C18—H18A | 120.00 |
H14A—O14—H14B | 104.00 | N3—C19—H19A | 119.00 |
Eu1—O14—H14A | 105.00 | C18—C19—H19A | 119.00 |
Eu1—O14—H14B | 114.00 | ||
O13—Eu1—O8—C14 | −178.0 (3) | Cu1—O7—C14—C10 | −65.8 (4) |
O14—Eu1—O8—C14 | −27.5 (3) | Eu1—O8—C14—O7 | 31.0 (5) |
O15—Eu1—O8—C14 | 49.0 (3) | Eu1—O8—C14—C10 | −149.5 (2) |
O11iii—Eu1—O8—C14 | 9.9 (4) | Cu2—O9—C20—O10 | 171.5 (3) |
O6i—Eu1—O8—C14 | −162.9 (3) | Cu2—O9—C20—C15 | −10.4 (3) |
O12i—Eu1—O8—C14 | 120.0 (3) | Eu1ii—O10—C20—O9 | 6.3 (5) |
O10ii—Eu1—O8—C14 | −93.0 (3) | Eu1ii—O10—C20—C15 | −171.72 (19) |
O8—Eu1—O11iii—C21iii | 119.5 (3) | Eu1vi—O11—C21—O12 | −20.8 (5) |
O13—Eu1—O11iii—C21iii | −55.5 (3) | Eu1vi—O11—C21—C17 | 159.0 (2) |
O14—Eu1—O11iii—C21iii | 157.4 (3) | Cu1—N1—C1—C2 | −179.0 (3) |
O15—Eu1—O11iii—C21iii | 80.5 (3) | Cu1—N1—C1—C6 | 3.7 (3) |
O8—Eu1—O6i—C13i | 152.9 (3) | C5—N1—C1—C2 | 1.9 (5) |
O13—Eu1—O6i—C13i | −36.4 (3) | C5—N1—C1—C6 | −175.5 (3) |
O14—Eu1—O6i—C13i | 97.0 (3) | Cu1—N1—C5—C4 | −179.0 (3) |
O15—Eu1—O6i—C13i | −163.0 (3) | C1—N1—C5—C4 | 0.0 (5) |
O8—Eu1—O10ii—C20ii | −10.3 (3) | C12—N2—C8—C9 | 3.3 (5) |
O13—Eu1—O10ii—C20ii | 130.9 (3) | Cu1iv—N2—C8—C9 | −175.7 (3) |
O14—Eu1—O10ii—C20ii | −79.3 (3) | C8—N2—C12—C11 | 1.3 (5) |
O15—Eu1—O10ii—C20ii | −100.9 (3) | C8—N2—C12—C13 | −174.1 (3) |
O7—Cu1—O1—C6 | −96.6 (2) | Cu1iv—N2—C12—C11 | −179.6 (3) |
N1—Cu1—O1—C6 | −3.3 (2) | Cu1iv—N2—C12—C13 | 5.0 (3) |
N2iv—Cu1—O1—C6 | 169.5 (3) | Cu2—N3—C15—C16 | −179.6 (3) |
O2v—Cu1—O1—C6 | 95.6 (2) | Cu2—N3—C15—C20 | 1.9 (3) |
O1—Cu1—O7—C14 | −48.9 (3) | C19—N3—C15—C16 | 0.7 (5) |
N1—Cu1—O7—C14 | −133.9 (3) | C19—N3—C15—C20 | −177.8 (3) |
O5iv—Cu1—O7—C14 | 129.6 (3) | Cu2—N3—C19—C18 | −177.5 (3) |
N2iv—Cu1—O7—C14 | 46.3 (3) | C15—N3—C19—C18 | 2.2 (5) |
O1—Cu1—N1—C1 | −0.5 (2) | N1—C1—C2—C3 | −2.1 (5) |
O1—Cu1—N1—C5 | 178.5 (3) | C6—C1—C2—C3 | 175.1 (3) |
O7—Cu1—N1—C1 | 96.6 (2) | N1—C1—C6—O1 | −6.7 (4) |
O7—Cu1—N1—C5 | −84.4 (3) | N1—C1—C6—O2 | 170.7 (3) |
O5iv—Cu1—N1—C1 | −172.9 (2) | C2—C1—C6—O1 | 176.0 (3) |
O5iv—Cu1—N1—C5 | 6.2 (3) | C2—C1—C6—O2 | −6.7 (5) |
O2v—Cu1—N1—C1 | −91.8 (2) | C1—C2—C3—C4 | 0.4 (5) |
O2v—Cu1—N1—C5 | 87.2 (3) | C1—C2—C3—C7 | −174.7 (3) |
O7—Cu1—O5iv—C13iv | −98.6 (2) | C2—C3—C4—C5 | 1.4 (6) |
N1—Cu1—O5iv—C13iv | 167.5 (2) | C7—C3—C4—C5 | 176.3 (4) |
O1—Cu1—N2iv—C8iv | 14.0 (3) | C2—C3—C7—O3 | −6.4 (5) |
O1—Cu1—N2iv—C12iv | −166.9 (2) | C2—C3—C7—O4 | 172.3 (4) |
O7—Cu1—N2iv—C8iv | −83.8 (3) | C4—C3—C7—O3 | 178.8 (4) |
O7—Cu1—N2iv—C12iv | 95.3 (2) | C4—C3—C7—O4 | −2.5 (6) |
O1—Cu1—O2v—C6v | −12.3 (2) | C3—C4—C5—N1 | −1.6 (6) |
N1—Cu1—O2v—C6v | 72.5 (2) | N2—C8—C9—C10 | −4.7 (5) |
O9—Cu2—O2—C6 | 158.3 (3) | C8—C9—C10—C11 | 1.4 (5) |
O9—Cu2—O2—Cu1v | 15.88 (14) | C8—C9—C10—C14 | 178.3 (3) |
N3—Cu2—O2—C6 | 74.8 (3) | C9—C10—C11—C12 | 2.9 (5) |
N3—Cu2—O2—Cu1v | −67.63 (15) | C14—C10—C11—C12 | −173.9 (3) |
O9ii—Cu2—O2—C6 | −21.7 (3) | C9—C10—C14—O7 | −37.3 (5) |
N3ii—Cu2—O2—C6 | −105.2 (3) | C9—C10—C14—O8 | 143.1 (3) |
O2—Cu2—O9—C20 | −80.0 (2) | C11—C10—C14—O7 | 139.4 (3) |
N3—Cu2—O9—C20 | 9.1 (2) | C11—C10—C14—O8 | −40.2 (5) |
O2ii—Cu2—O9—C20 | 100.0 (2) | C10—C11—C12—N2 | −4.4 (5) |
N3ii—Cu2—O9—C20 | −170.9 (2) | C10—C11—C12—C13 | 170.5 (3) |
O2—Cu2—N3—C15 | 83.5 (2) | N2—C12—C13—O5 | −0.9 (4) |
O2—Cu2—N3—C19 | −96.9 (3) | N2—C12—C13—O6 | 175.6 (3) |
O9—Cu2—N3—C15 | −5.6 (2) | C11—C12—C13—O5 | −176.2 (3) |
O9—Cu2—N3—C19 | 174.1 (3) | C11—C12—C13—O6 | 0.3 (5) |
O2ii—Cu2—N3—C15 | −96.5 (2) | N3—C15—C16—C17 | −2.3 (5) |
O2ii—Cu2—N3—C19 | 83.1 (3) | C20—C15—C16—C17 | 176.1 (3) |
O9ii—Cu2—N3—C15 | 174.4 (2) | N3—C15—C20—O9 | 5.8 (4) |
O9ii—Cu2—N3—C19 | −6.0 (3) | N3—C15—C20—O10 | −176.0 (3) |
Cu1—O1—C6—O2 | −171.0 (3) | C16—C15—C20—O9 | −172.7 (3) |
Cu1—O1—C6—C1 | 6.1 (4) | C16—C15—C20—O10 | 5.5 (5) |
Cu2—O2—C6—O1 | −76.7 (4) | C15—C16—C17—C18 | 1.0 (5) |
Cu2—O2—C6—C1 | 106.3 (3) | C15—C16—C17—C21 | −176.4 (3) |
Cu1v—O2—C6—O1 | 79.6 (4) | C16—C17—C18—C19 | 1.7 (6) |
Cu1v—O2—C6—C1 | −97.4 (3) | C21—C17—C18—C19 | 179.1 (3) |
Cu1iv—O5—C13—O6 | 179.9 (3) | C16—C17—C21—O11 | −27.2 (5) |
Cu1iv—O5—C13—C12 | −3.9 (3) | C16—C17—C21—O12 | 152.6 (4) |
Eu1i—O6—C13—O5 | −4.7 (5) | C18—C17—C21—O11 | 155.5 (4) |
Eu1i—O6—C13—C12 | 179.13 (19) | C18—C17—C21—O12 | −24.7 (5) |
Cu1—O7—C14—O8 | 113.8 (4) | C17—C18—C19—N3 | −3.4 (6) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x, y, z+1; (iv) −x, −y+1, −z; (v) −x, −y+2, −z; (vi) x, y, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13A···O5i | 0.82 | 2.00 | 2.769 (3) | 155 |
O13—H13B···O15vii | 0.82 | 2.02 | 2.822 (4) | 164 |
O14—H14A···O7 | 0.82 | 1.89 | 2.690 (4) | 164 |
O14—H14B···O4viii | 0.82 | 1.88 | 2.667 (4) | 161 |
O15—H15A···O3ix | 0.82 | 1.83 | 2.630 (4) | 164 |
O15—H15B···O4viii | 0.82 | 2.06 | 2.814 (4) | 153 |
C18—H18A···O6 | 0.93 | 2.48 | 3.389 (4) | 167 |
Symmetry codes: (i) −x+1, −y+1, −z; (vii) −x+1, −y+1, −z+1; (viii) −x, −y+2, −z+1; (ix) x, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu3Eu2(C7H3NO4)6(H2O)6] |
Mr | 1593.29 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 9.4296 (10), 10.7002 (11), 12.2874 (13) |
α, β, γ (°) | 86.186 (2), 81.556 (2), 86.561 (2) |
V (Å3) | 1222.0 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 3.92 |
Crystal size (mm) | 0.24 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2000) |
Tmin, Tmax | 0.659, 0.977 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12982, 5780, 4828 |
Rint | 0.044 |
(sin θ/λ)max (Å−1) | 0.667 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.066, 0.98 |
No. of reflections | 5780 |
No. of parameters | 376 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.69, −0.94 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 1999), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).
Eu1—O6i | 2.485 (2) | Cu1—O1 | 1.932 (3) |
Eu1—O8 | 2.386 (3) | Cu1—O5iv | 1.944 (2) |
Eu1—O10ii | 2.404 (2) | Cu1—O7 | 2.359 (3) |
Eu1—O11iii | 2.385 (2) | Cu1—N1 | 1.975 (3) |
Eu1—O12i | 2.328 (2) | Cu1—N2iv | 1.975 (3) |
Eu1—O13 | 2.454 (3) | Cu2—O2 | 2.409 (3) |
Eu1—O14 | 2.442 (3) | Cu2—O9 | 1.968 (2) |
Eu1—O15 | 2.510 (3) | Cu2—N3 | 1.969 (3) |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1, −y+2, −z; (iii) x, y, z+1; (iv) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O13—H13A···O5i | 0.82 | 2.00 | 2.769 (3) | 155 |
O13—H13B···O15v | 0.82 | 2.02 | 2.822 (4) | 164 |
O14—H14A···O7 | 0.82 | 1.89 | 2.690 (4) | 164 |
O14—H14B···O4vi | 0.82 | 1.88 | 2.667 (4) | 161 |
O15—H15A···O3vii | 0.82 | 1.83 | 2.630 (4) | 164 |
O15—H15B···O4vi | 0.82 | 2.06 | 2.814 (4) | 153 |
Symmetry codes: (i) −x+1, −y+1, −z; (v) −x+1, −y+1, −z+1; (vi) −x, −y+2, −z+1; (vii) x, y−1, z. |
Acknowledgements
This work was financial supported by Yuanpei University, Taiwan.
References
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2000). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Huang, Y.-G., Wu, M.-Y., Lian, F.-Y., Jiang, F.-L. & Hong, M.-C. (2008a). Inorg. Chem. Commun. 11, 840–842. Web of Science CSD CrossRef CAS Google Scholar
Huang, Y.-G., Wu, M.-Y., Wei, W., Gao, Q., Yuan, D.-Q., Jiang, F.-L. & Hong, M.-C. (2008b). J. Mol. Struct. 885, 23–27. Web of Science CSD CrossRef CAS Google Scholar
Ma, D.-Y., Wang, W.-X. & Li, Y.-W. (2010). J. Coord. Chem. 63, 448–456. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Song, Y.-S., Yan, B. & Weng, L.-H. (2006). Inorg. Chem. Commun. 9, 567–570. Web of Science CSD CrossRef CAS Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Wang, N., Yue, S.-T., Liu, Y.-L., Yang, H.-Y. & Wu, H.-Y. (2009). Cryst. Growth Des. 9, 368–371. Web of Science CSD CrossRef CAS Google Scholar
Wang, N., Yue, S.-T., Wu, H.-Y., Li, X.-X. & Liu, Y.-L. (2010). Inorg. Chim. Acta, 363, 1008–1012. Web of Science CrossRef CAS Google Scholar
Wang, F.-Q., Zheng, X.-J., Wan, Y.-H., Sun, C.-Y., Wang, Z.-M., Wang, K.-Z. & Jin, L.-P. (2007). Inorg. Chem. 46, 2956–2958. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhao, X.-Q., Zhao, B., Ma, Y., Shi, W., Cheng, P., Jiang, Z.-H., Liao, D.-Z. & Yan, S.-P. (2007). Inorg. Chem. 46, 5832–5834. Web of Science CSD CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
In recent years, many research groups have devoted their work to the design and synthesis of lanthanide–transition(3 d-4f) heterometallic coordination frameworks with bridging multifunctional organic ligands, such as pyridinedicarboxylic acid (Ma et al., 2010; Song et al., 2006; Wang et al.,2007; Wang et al., 2009; Wang et al., 2010; Zhao et al.,2007). Pyridine-2,4-dicarboxylic acid (pdaH2) ligand is a good candidate due to its flexible and various coordination donors containing either N– or O–atom donors. Some examples of coordination with pdaH2 have been reported (Huang et al., 2008a; Huang et al., 2008b.).
Herein we report a new 3 d-4f heterometallic coordination polymer based on pdaH2 ligand, formulated as [Eu2Cu3(C7H3NO4)6(H2O)6]n. The symmetric unit of the title compound contains one octa-coordinated EuIII atom and two types of environments of CuII center, the penta-coordinate CuII atom is in a square- pyramidal geometry, the other CuII atom is in a slightly distorted octahedral geometry. The EuIII ion presents a EuO8 square antiprismatic coordination geometry, formed by five mono-dentate pda O atoms and three coordinate water molecules, the Cu1IIion presents a CuN2O3 square- pyramidal coordination geometry, formed by two bidentate pda (–NO–) ligand (2-carboxy) in the equatorial plane, and one O atom from monodentate pda (4-carboxy) ligand at the axial sites, the other Cu2II ion presents a slightly distorted (CuN2O4) octahedral coordination geometry, formed by two bidentate pda (–NO–) ligand (2-carboxy) in the equatorial plane, and two monodentate pda(2-carboxy) ligands at the axial sites (Table 1, Fig 1). The pda One carboxyl group bridges the neighboring Eu or Cu cations, forming the 3-D polymeric architecture.
In the title crystal structure, a three-dimensional network is formed via intra- intermolecular O—H···O hydrogen bonds (Table 2, Fig. 2). In addition, C—H···O hydrogen bonds (full details and symmetry codes are given in Table 2), C7—O3···Cg8 (N3/C15—C19) interactions are also present. The π···π, π···Metal stacking interactions are also observed, the centroid-centroid distance between the pyridine rings being 3.367 (2)Å [Cg7iv···Cg7 (N2/C8—C12)] [symmetry codes: -x, 1 - y, -z]. The Cg1 (Cu1/O1—N1—C1—C6)···Cu1 interaction is 3.905Å [symmetry codes: -x, 2 - y, -z].