metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Aqua­(2,2′-bi­pyridine-κ2N,N′)bis­­(4-iodo­benzoato-κO)copper(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 27 October 2010; accepted 3 November 2010; online 10 November 2010)

The CuII atom in the title compound, [Cu(C7H4IO2)2(C10H8N2)(H2O)], is N,N′-chelated by a 2,2′-bipyridine ligand and is coordinated by two monodentate carboxyl­ate ions and a water mol­ecule in a distorted square-pyramidal geometry. The apical site is occupied by one of the carboxyl­ate O atoms. The water mol­ecule forms intra­molecular hydrogen bonds to the uncoordinated carboxyl O atoms. The crystal studied was a nonmerohedral twin with minor components in 0.381 (3) and 0.108 (2) proportions.

Related literature

For related copper carboxyl­ate–2,2′-bipyridine adducts, see: He et al. (2007[He, X.-M., Li, C.-H., Yang, Y.-Q. & Li, W. (2007). Chin. J. Struct. Chem. 26, 206-210.]); Li et al. (2006[Li, W., Li, C.-H., Yang, Y.-Q., Kuang, D.-Z. & Xu, W.-J. (2006). Chin. J. Struct. Chem. 25, 616-620.]); Liu et al. (2006[Liu, F.-Q., Wang, Q.-X., Jiao, K., Jian, F.-F., Liu, G.-Y. & Li, R.-X. (2006). Inorg. Chim. Acta, 359, 1524-1530.]); Yang et al. (1994[Yang, R.-N., Wang, D.-M., Jin, D.-M., Wang, H.-Q. & Yang, Y. (1994). Chin. J. Struct. Chem. 13, 45-47.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C7H4IO2)2(C10H8N2)(H2O)]

  • Mr = 731.74

  • Monoclinic, P 21 /c

  • a = 13.0571 (2) Å

  • b = 16.0724 (2) Å

  • c = 11.9605 (2) Å

  • β = 103.298 (1)°

  • V = 2442.72 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.46 mm−1

  • T = 100 K

  • 0.30 × 0.30 × 0.30 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (TWINABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.355, Tmax = 0.745

  • 33957 measured reflections

  • 5698 independent reflections

  • 4505 reflections with I > 2σ(I)

  • Rint = 0.092

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.175

  • S = 1.08

  • 5698 reflections

  • 310 parameters

  • H-atom parameters constrained

  • Δρmax = 1.71 e Å−3

  • Δρmin = −1.69 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—N1 1.982 (7)
Cu1—N2 2.009 (6)
Cu1—O1 1.977 (5)
Cu1—O3 2.216 (6)
Cu1—O1W 1.959 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1w—H11⋯O2 0.84 1.79 2.560 (9) 152
O1w—H12⋯O4 0.84 1.79 2.575 (8) 154

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Copper(II) benzoate and its analogs form adducts with 2,2'-bipyridine. The copper benzoate homolog furnishes a water-coordinated adduct (Yang et al., 1994), as does copper p-toluate (Li et al., 2006; Liu et al., 2006) and copper o-toluate (He et al., 2007). The copper atom in Cu(H2O)(C10H8N2)(C7H4IO2)2 (Scheme I) is chelated by the N-heterocycle and is coordinated by two monodentate carboxylate ions and a water molecule in a square-pyramidal geometry (Fig. 1). The apical site is occupied by the O atom of the carboxylate unit. The crystal studied is a non-merohedral twin with minor components in a 0.381 (3) and 0.108 (2) proportion.

Related literature top

For related copper carboxylate–2,2'-bipyridine adducts, see: He et al. (2007); Li et al. (2006); Liu et al. (2006); Yang et al. (1994).

Experimental top

Copper acetate monohydrate (2.00 g, 10 mmol) and 4-iodobenzoic acid (4.96 g, 20 mmol) were heated in aqueous ethanol (1:1, 60 ml) for 1 h. The solvent was removed to give blue copper bis(4-iodobenzoate), which was isolated in 50% yield. The powder and 2,2'-bipyridine (0.77 g, 5 mmol) were dissolved in tetrahydrofuran. Crystals were isolated after several days.

Refinement top

H atoms were placed in calculated positions (C–H 0.95, O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C,O).

The final difference Fourier map had a peak and a hole in the vicinity of I2.

The crystal studied is a non-merohedral twin with minor components in a 38.1 (3) and 10.8 (2)% proportion. The twinned nature of the crystal structure adversely affected the quality of the diffraction measured, and this is reflected in the somewhat larger numbers in the weighting scheme.

Structure description top

Copper(II) benzoate and its analogs form adducts with 2,2'-bipyridine. The copper benzoate homolog furnishes a water-coordinated adduct (Yang et al., 1994), as does copper p-toluate (Li et al., 2006; Liu et al., 2006) and copper o-toluate (He et al., 2007). The copper atom in Cu(H2O)(C10H8N2)(C7H4IO2)2 (Scheme I) is chelated by the N-heterocycle and is coordinated by two monodentate carboxylate ions and a water molecule in a square-pyramidal geometry (Fig. 1). The apical site is occupied by the O atom of the carboxylate unit. The crystal studied is a non-merohedral twin with minor components in a 0.381 (3) and 0.108 (2) proportion.

For related copper carboxylate–2,2'-bipyridine adducts, see: He et al. (2007); Li et al. (2006); Liu et al. (2006); Yang et al. (1994).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of Cu(H2O)(C10H8N2)(C7H4IO2)2 at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
Aqua(2,2'-bipyridine-κ2N,N')bis(4-iodobenzoato- κO)copper(II) top
Crystal data top
[Cu(C7H4IO2)2(C10H8N2)(H2O)]F(000) = 1404
Mr = 731.74Dx = 1.990 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1215 reflections
a = 13.0571 (2) Åθ = 2.5–24.2°
b = 16.0724 (2) ŵ = 3.46 mm1
c = 11.9605 (2) ÅT = 100 K
β = 103.298 (1)°Cube, blue
V = 2442.72 (6) Å30.30 × 0.30 × 0.30 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
5698 independent reflections
Radiation source: fine-focus sealed tube4505 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.092
ω scansθmax = 25.1°, θmin = 2.0°
Absorption correction: multi-scan
(TWINABS; Bruker, 2009)
h = 1515
Tmin = 0.423, Tmax = 0.423k = 019
33957 measured reflectionsl = 014
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.175H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.087P)2 + 12.0788P]
where P = (Fo2 + 2Fc2)/3
5698 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 1.71 e Å3
0 restraintsΔρmin = 1.69 e Å3
Crystal data top
[Cu(C7H4IO2)2(C10H8N2)(H2O)]V = 2442.72 (6) Å3
Mr = 731.74Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.0571 (2) ŵ = 3.46 mm1
b = 16.0724 (2) ÅT = 100 K
c = 11.9605 (2) Å0.30 × 0.30 × 0.30 mm
β = 103.298 (1)°
Data collection top
Bruker SMART APEX
diffractometer
5698 independent reflections
Absorption correction: multi-scan
(TWINABS; Bruker, 2009)
4505 reflections with I > 2σ(I)
Tmin = 0.423, Tmax = 0.423Rint = 0.092
33957 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.175H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.087P)2 + 12.0788P]
where P = (Fo2 + 2Fc2)/3
5698 reflectionsΔρmax = 1.71 e Å3
310 parametersΔρmin = 1.69 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.52100 (5)0.77933 (4)0.96178 (5)0.0307 (2)
I20.54254 (5)1.06313 (4)0.81444 (6)0.0370 (2)
Cu10.88404 (8)0.70624 (6)0.44393 (8)0.0165 (3)
O10.7975 (5)0.7791 (3)0.5186 (5)0.0189 (13)
O20.7765 (5)0.8878 (4)0.3970 (6)0.0319 (16)
O31.0368 (4)0.7208 (3)0.5695 (5)0.0182 (12)
O41.0982 (5)0.8248 (4)0.4776 (5)0.0220 (13)
O1W0.9172 (5)0.7943 (3)0.3446 (5)0.0203 (13)
H110.87730.83520.34550.030*
H120.98010.80920.36870.030*
N10.8380 (5)0.6058 (4)0.5151 (6)0.0162 (15)
N20.9245 (5)0.6191 (4)0.3416 (5)0.0144 (14)
C10.7637 (7)0.8513 (5)0.4846 (8)0.0215 (19)
C20.7064 (7)0.8978 (5)0.5618 (7)0.0209 (18)
C30.6627 (7)0.9757 (5)0.5274 (8)0.024 (2)
H30.66560.99670.45400.029*
C40.6158 (7)1.0224 (6)0.5975 (8)0.028 (2)
H40.58841.07590.57370.034*
C50.6090 (7)0.9913 (5)0.7019 (8)0.0236 (19)
C60.6510 (7)0.9127 (5)0.7390 (8)0.026 (2)
H60.64700.89190.81220.031*
C70.6977 (7)0.8665 (5)0.6682 (7)0.0219 (19)
H70.72450.81280.69160.026*
C81.1036 (7)0.7747 (5)0.5605 (7)0.0195 (18)
C91.2009 (7)0.7822 (5)0.6583 (7)0.0171 (17)
C101.2850 (7)0.8289 (5)0.6483 (7)0.0217 (19)
H101.28080.86120.58090.026*
C111.3773 (7)0.8306 (5)0.7346 (7)0.0222 (19)
H11A1.43650.86230.72630.027*
C121.3794 (7)0.7842 (5)0.8332 (7)0.0216 (19)
C131.2941 (7)0.7393 (5)0.8471 (8)0.0235 (19)
H131.29690.70960.91640.028*
C141.2052 (7)0.7373 (5)0.7612 (7)0.0204 (18)
H141.14600.70590.77030.024*
C150.7940 (7)0.6048 (5)0.6056 (7)0.0218 (19)
H150.78040.65660.63780.026*
C160.7670 (8)0.5324 (5)0.6550 (8)0.025 (2)
H160.73640.53390.71980.030*
C170.7866 (7)0.4578 (6)0.6057 (8)0.026 (2)
H170.76870.40680.63650.031*
C180.8320 (7)0.4570 (5)0.5122 (8)0.0230 (19)
H180.84560.40590.47820.028*
C190.8573 (6)0.5329 (5)0.4690 (7)0.0152 (17)
C200.9038 (6)0.5399 (5)0.3673 (7)0.0166 (17)
C210.9213 (7)0.4734 (5)0.3003 (8)0.026 (2)
H210.90650.41810.32000.031*
C220.9603 (8)0.4886 (6)0.2050 (7)0.026 (2)
H220.97340.44390.15820.031*
C230.9802 (7)0.5701 (5)0.1779 (8)0.024 (2)
H231.00540.58210.11120.029*
C240.9627 (6)0.6336 (5)0.2493 (7)0.0195 (18)
H240.97840.68920.23200.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0258 (3)0.0370 (4)0.0256 (4)0.0053 (3)0.0018 (2)0.0007 (2)
I20.0303 (4)0.0424 (4)0.0393 (4)0.0066 (3)0.0099 (3)0.0150 (3)
Cu10.0216 (6)0.0126 (5)0.0153 (5)0.0010 (4)0.0045 (4)0.0007 (4)
O10.026 (3)0.016 (3)0.015 (3)0.000 (2)0.007 (3)0.004 (2)
O20.039 (4)0.029 (4)0.032 (4)0.010 (3)0.017 (3)0.017 (3)
O30.017 (3)0.020 (3)0.015 (3)0.002 (2)0.000 (2)0.000 (2)
O40.025 (3)0.021 (3)0.019 (3)0.007 (3)0.003 (3)0.008 (2)
O1W0.025 (3)0.017 (3)0.018 (3)0.000 (2)0.002 (3)0.001 (2)
N10.020 (4)0.010 (3)0.017 (4)0.003 (3)0.000 (3)0.001 (3)
N20.016 (3)0.017 (4)0.008 (3)0.003 (3)0.000 (3)0.001 (3)
C10.016 (4)0.020 (5)0.028 (5)0.004 (3)0.005 (4)0.007 (4)
C20.017 (4)0.020 (4)0.025 (5)0.001 (3)0.002 (4)0.000 (3)
C30.025 (5)0.023 (5)0.026 (5)0.000 (4)0.008 (4)0.004 (3)
C40.022 (5)0.026 (5)0.036 (6)0.001 (4)0.006 (4)0.003 (4)
C50.015 (4)0.026 (5)0.027 (5)0.003 (4)0.001 (4)0.011 (4)
C60.021 (5)0.022 (5)0.036 (6)0.001 (4)0.009 (4)0.001 (4)
C70.017 (4)0.017 (4)0.027 (5)0.001 (3)0.007 (4)0.002 (3)
C80.023 (5)0.015 (4)0.022 (5)0.003 (4)0.008 (4)0.004 (3)
C90.020 (4)0.019 (4)0.014 (4)0.004 (3)0.005 (3)0.002 (3)
C100.030 (5)0.024 (5)0.013 (4)0.002 (4)0.009 (4)0.000 (3)
C110.019 (4)0.032 (5)0.017 (4)0.005 (4)0.007 (4)0.006 (3)
C120.029 (5)0.022 (4)0.015 (4)0.009 (4)0.007 (4)0.008 (3)
C130.026 (5)0.019 (4)0.025 (5)0.005 (4)0.004 (4)0.001 (3)
C140.025 (5)0.012 (4)0.024 (5)0.004 (3)0.006 (4)0.002 (3)
C150.024 (5)0.017 (4)0.024 (5)0.000 (4)0.004 (4)0.001 (3)
C160.034 (5)0.023 (5)0.019 (5)0.004 (4)0.008 (4)0.002 (3)
C170.028 (5)0.027 (5)0.023 (5)0.006 (4)0.008 (4)0.006 (4)
C180.019 (5)0.013 (4)0.037 (5)0.003 (3)0.006 (4)0.003 (4)
C190.010 (4)0.019 (4)0.015 (4)0.004 (3)0.002 (3)0.004 (3)
C200.016 (4)0.014 (4)0.019 (5)0.001 (3)0.000 (3)0.000 (3)
C210.031 (5)0.017 (5)0.029 (5)0.005 (4)0.006 (4)0.002 (3)
C220.035 (5)0.023 (5)0.020 (5)0.002 (4)0.007 (4)0.006 (4)
C230.023 (5)0.028 (5)0.020 (5)0.002 (4)0.002 (4)0.004 (4)
C240.019 (4)0.025 (5)0.017 (5)0.002 (4)0.009 (4)0.001 (3)
Geometric parameters (Å, º) top
I1—C122.117 (9)C8—C91.521 (12)
I2—C52.106 (8)C9—C101.358 (12)
Cu1—N11.982 (7)C9—C141.416 (11)
Cu1—N22.009 (6)C10—C111.395 (12)
Cu1—O11.977 (5)C10—H100.9500
Cu1—O32.216 (6)C11—C121.390 (12)
Cu1—O1W1.959 (5)C11—H11A0.9500
O1—C11.275 (10)C12—C131.369 (13)
O2—C11.246 (10)C13—C141.363 (12)
O3—C81.251 (10)C13—H130.9500
O4—C81.268 (10)C14—H140.9500
O1W—H110.8400C15—C161.387 (12)
O1W—H120.8400C15—H150.9500
N1—C151.338 (11)C16—C171.386 (12)
N1—C191.344 (10)C16—H160.9500
N2—C241.332 (10)C17—C181.380 (12)
N2—C201.351 (10)C17—H170.9500
C1—C21.513 (12)C18—C191.394 (11)
C2—C71.396 (12)C18—H180.9500
C2—C31.397 (12)C19—C201.484 (12)
C3—C41.369 (12)C20—C211.386 (12)
C3—H30.9500C21—C221.373 (12)
C4—C51.367 (13)C21—H210.9500
C4—H40.9500C22—C231.389 (13)
C5—C61.409 (12)C22—H220.9500
C6—C71.370 (12)C23—C241.383 (12)
C6—H60.9500C23—H230.9500
C7—H70.9500C24—H240.9500
O1W—Cu1—O194.3 (2)C14—C9—C8119.1 (7)
O1W—Cu1—N1168.6 (3)C9—C10—C11121.6 (8)
O1—Cu1—N191.6 (3)C9—C10—H10119.2
O1W—Cu1—N290.5 (3)C11—C10—H10119.2
O1—Cu1—N2161.0 (3)C12—C11—C10117.5 (8)
N1—Cu1—N280.9 (3)C12—C11—H11A121.3
O1W—Cu1—O392.6 (2)C10—C11—H11A121.3
O1—Cu1—O398.7 (2)C13—C12—C11121.9 (8)
N1—Cu1—O396.3 (2)C13—C12—I1119.4 (6)
N2—Cu1—O399.5 (2)C11—C12—I1118.6 (7)
C1—O1—Cu1126.0 (5)C14—C13—C12119.8 (8)
C8—O3—Cu1123.5 (5)C14—C13—H13120.1
Cu1—O1W—H11109.5C12—C13—H13120.1
Cu1—O1W—H12109.5C13—C14—C9120.0 (8)
H11—O1W—H12109.5C13—C14—H14120.0
C15—N1—C19118.6 (7)C9—C14—H14120.0
C15—N1—Cu1125.9 (5)N1—C15—C16123.6 (8)
C19—N1—Cu1115.5 (5)N1—C15—H15118.2
C24—N2—C20119.1 (7)C16—C15—H15118.2
C24—N2—Cu1125.7 (6)C17—C16—C15117.1 (8)
C20—N2—Cu1115.1 (5)C17—C16—H16121.5
O2—C1—O1126.4 (8)C15—C16—H16121.5
O2—C1—C2117.5 (7)C18—C17—C16120.6 (8)
O1—C1—C2116.1 (7)C18—C17—H17119.7
C7—C2—C3118.5 (8)C16—C17—H17119.7
C7—C2—C1122.2 (8)C17—C18—C19118.3 (8)
C3—C2—C1119.3 (7)C17—C18—H18120.9
C4—C3—C2121.4 (8)C19—C18—H18120.9
C4—C3—H3119.3N1—C19—C18121.9 (7)
C2—C3—H3119.3N1—C19—C20114.9 (7)
C5—C4—C3119.4 (9)C18—C19—C20123.2 (7)
C5—C4—H4120.3N2—C20—C21121.8 (7)
C3—C4—H4120.3N2—C20—C19113.5 (7)
C4—C5—C6120.9 (8)C21—C20—C19124.6 (7)
C4—C5—I2120.5 (7)C22—C21—C20119.0 (8)
C6—C5—I2118.6 (6)C22—C21—H21120.5
C7—C6—C5119.2 (8)C20—C21—H21120.5
C7—C6—H6120.4C21—C22—C23119.1 (8)
C5—C6—H6120.4C21—C22—H22120.4
C6—C7—C2120.6 (8)C23—C22—H22120.4
C6—C7—H7119.7C24—C23—C22119.1 (8)
C2—C7—H7119.7C24—C23—H23120.5
O3—C8—O4126.4 (8)C22—C23—H23120.5
O3—C8—C9117.7 (7)N2—C24—C23121.9 (8)
O4—C8—C9115.9 (7)N2—C24—H24119.0
C10—C9—C14119.1 (8)C23—C24—H24119.0
C10—C9—C8121.7 (7)
O1W—Cu1—O1—C113.0 (7)Cu1—O3—C8—C9174.9 (5)
N1—Cu1—O1—C1157.2 (7)O3—C8—C9—C10169.1 (8)
N2—Cu1—O1—C191.2 (10)O4—C8—C9—C1011.3 (11)
O3—Cu1—O1—C1106.2 (7)O3—C8—C9—C149.0 (11)
O1W—Cu1—O3—C82.8 (6)O4—C8—C9—C14170.5 (7)
O1—Cu1—O3—C891.9 (6)C14—C9—C10—C113.1 (12)
N1—Cu1—O3—C8175.6 (6)C8—C9—C10—C11175.0 (7)
N2—Cu1—O3—C893.8 (6)C9—C10—C11—C121.6 (12)
O1W—Cu1—N1—C15138.5 (12)C10—C11—C12—C131.0 (12)
O1—Cu1—N1—C1517.7 (7)C10—C11—C12—I1176.3 (6)
N2—Cu1—N1—C15179.8 (7)C11—C12—C13—C142.0 (12)
O3—Cu1—N1—C1581.2 (7)I1—C12—C13—C14175.3 (6)
O1W—Cu1—N1—C1944.0 (17)C12—C13—C14—C90.5 (12)
O1—Cu1—N1—C19164.8 (6)C10—C9—C14—C132.1 (12)
N2—Cu1—N1—C192.3 (6)C8—C9—C14—C13176.1 (7)
O3—Cu1—N1—C1996.3 (6)C19—N1—C15—C160.1 (13)
O1W—Cu1—N2—C242.9 (7)Cu1—N1—C15—C16177.3 (7)
O1—Cu1—N2—C24107.7 (9)N1—C15—C16—C170.6 (14)
N1—Cu1—N2—C24175.3 (7)C15—C16—C17—C180.6 (14)
O3—Cu1—N2—C2489.8 (7)C16—C17—C18—C190.0 (14)
O1W—Cu1—N2—C20172.7 (6)C15—N1—C19—C180.5 (12)
O1—Cu1—N2—C2068.0 (10)Cu1—N1—C19—C18178.2 (6)
N1—Cu1—N2—C200.3 (6)C15—N1—C19—C20178.5 (7)
O3—Cu1—N2—C2094.6 (6)Cu1—N1—C19—C203.8 (9)
Cu1—O1—C1—O22.1 (13)C17—C18—C19—N10.6 (13)
Cu1—O1—C1—C2175.2 (5)C17—C18—C19—C20178.4 (8)
O2—C1—C2—C7172.9 (8)C24—N2—C20—C210.1 (12)
O1—C1—C2—C74.7 (12)Cu1—N2—C20—C21176.0 (7)
O2—C1—C2—C35.4 (13)C24—N2—C20—C19177.5 (7)
O1—C1—C2—C3177.0 (8)Cu1—N2—C20—C191.5 (9)
C7—C2—C3—C42.5 (13)N1—C19—C20—N23.5 (11)
C1—C2—C3—C4175.9 (9)C18—C19—C20—N2178.6 (8)
C2—C3—C4—C51.8 (14)N1—C19—C20—C21174.0 (8)
C3—C4—C5—C61.1 (14)C18—C19—C20—C214.0 (14)
C3—C4—C5—I2177.7 (7)N2—C20—C21—C220.3 (14)
C4—C5—C6—C71.1 (13)C19—C20—C21—C22176.9 (8)
I2—C5—C6—C7177.8 (7)C20—C21—C22—C230.6 (14)
C5—C6—C7—C21.7 (13)C21—C22—C23—C241.6 (14)
C3—C2—C7—C62.4 (13)C20—N2—C24—C231.1 (13)
C1—C2—C7—C6175.9 (8)Cu1—N2—C24—C23174.4 (6)
Cu1—O3—C8—O44.6 (12)C22—C23—C24—N21.9 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O20.841.792.560 (9)152
O1w—H12···O40.841.792.575 (8)154

Experimental details

Crystal data
Chemical formula[Cu(C7H4IO2)2(C10H8N2)(H2O)]
Mr731.74
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)13.0571 (2), 16.0724 (2), 11.9605 (2)
β (°) 103.298 (1)
V3)2442.72 (6)
Z4
Radiation typeMo Kα
µ (mm1)3.46
Crystal size (mm)0.30 × 0.30 × 0.30
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(TWINABS; Bruker, 2009)
Tmin, Tmax0.423, 0.423
No. of measured, independent and
observed [I > 2σ(I)] reflections
33957, 5698, 4505
Rint0.092
(sin θ/λ)max1)0.598
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.175, 1.08
No. of reflections5698
No. of parameters310
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.087P)2 + 12.0788P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.71, 1.69

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cu1—N11.982 (7)Cu1—O32.216 (6)
Cu1—N22.009 (6)Cu1—O1W1.959 (5)
Cu1—O11.977 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H11···O20.841.792.560 (9)151.9
O1w—H12···O40.841.792.575 (8)153.9
 

Acknowledgements

We thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2009). APEX2, SAINT and TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHe, X.-M., Li, C.-H., Yang, Y.-Q. & Li, W. (2007). Chin. J. Struct. Chem. 26, 206–210.  CAS Google Scholar
First citationLi, W., Li, C.-H., Yang, Y.-Q., Kuang, D.-Z. & Xu, W.-J. (2006). Chin. J. Struct. Chem. 25, 616–620.  CAS Google Scholar
First citationLiu, F.-Q., Wang, Q.-X., Jiao, K., Jian, F.-F., Liu, G.-Y. & Li, R.-X. (2006). Inorg. Chim. Acta, 359, 1524–1530.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, R.-N., Wang, D.-M., Jin, D.-M., Wang, H.-Q. & Yang, Y. (1994). Chin. J. Struct. Chem. 13, 45–47.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds