organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-Hy­dr­oxy­phen­­oxy)propanoic acid

aDepartment of Biological and Chemical Engineering, Chien-shiung Institute of Technology, Taicang 215411, Suzhou, People's Republic of China
*Correspondence e-mail: Larry_18@163.com

(Received 29 October 2010; accepted 26 November 2010; online 30 November 2010)

In the title compound, C9H10O4, the carboxyl group is oriented at a dihedral angle of 84.6 (3)° with respect to the benzene ring. In the crystal, mol­ecules are linked via O—H⋯O hydrogen bonds.

Related literature

For the synthesis and applications of the title compound, see: Qin et al. (2004[Qin, Y.-H., Mo, W.-M., Sun, N. & Wang, W. (2004). Chin. J. Pestic. 43, 555-556.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10O4

  • Mr = 182.17

  • Monoclinic, P 21

  • a = 6.205 (1) Å

  • b = 11.853 (2) Å

  • c = 6.716 (1) Å

  • β = 114.78 (3)°

  • V = 448.47 (15) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 298 K

  • 0.40 × 0.30 × 0.20 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • 924 measured reflections

  • 924 independent reflections

  • 829 reflections with I > 2σ(I)

  • Rint = 0.018

  • 3 standard reflections every 200 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.137

  • S = 1.02

  • 924 reflections

  • 121 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯O3i 0.85 1.94 2.733 (6) 154
O4—H4B⋯O1ii 0.85 (4) 1.84 (4) 2.679 (6) 166 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+1]; (ii) [-x+2, y+{\script{1\over 2}}, -z+1].

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound, (I), is an important intermediate of the highly active herbicide R-clodinafop-propargyl (Qin et al., 2004). We herein report its crystal structure.

The unit of the title compound, (I), (Fig. 1), contains one molecule and the bond lengths and angles (Table 1) are generally within normal ranges.

As can be seen from the packing diagram (Fig. 2), the intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into three dimensional network, in which they may be effective in the stabilization of the crystal structure. Dipol-dipol and van der Waals interactions are also effective in the molecular packing.

Related literature top

For the synthesis and applications of the title compound, see: Qin et al. (2004).

Experimental top

The title compound was prepared by the literature method (Qin et al., 2004). The crystals were obtained by dissolving the title compound (0.3 g) in ethanol (50 ml) and evaporating the solvent slowly at room temperature for 15 d.

Refinement top

The carboxyl H atom was located in a difference Fourier map and positional parameters were refined, Uiso(H) = 1.5Ueq(O). Other H atoms were positioned geometrically with C—H = 0.93-0.98 Å and O—H = 0.85 Å, and refined in ride mode with Uiso(H) = 1.5Ueq(C,O) for methyl H and hydroxyl H atoms and 1.2Ueq(C) for the other H atoms.

Structure description top

The title compound, (I), is an important intermediate of the highly active herbicide R-clodinafop-propargyl (Qin et al., 2004). We herein report its crystal structure.

The unit of the title compound, (I), (Fig. 1), contains one molecule and the bond lengths and angles (Table 1) are generally within normal ranges.

As can be seen from the packing diagram (Fig. 2), the intermolecular C—H···O hydrogen bonds (Table 2) link the molecules into three dimensional network, in which they may be effective in the stabilization of the crystal structure. Dipol-dipol and van der Waals interactions are also effective in the molecular packing.

For the synthesis and applications of the title compound, see: Qin et al. (2004).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
2-(4-hydroxyphenoxy)propanoic acid top
Crystal data top
C9H10O4F(000) = 192
Mr = 182.17Dx = 1.349 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 6.205 (1) Åθ = 10–13°
b = 11.853 (2) ŵ = 0.11 mm1
c = 6.716 (1) ÅT = 298 K
β = 114.78 (3)°Block, colorless
V = 448.47 (15) Å30.40 × 0.30 × 0.20 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
Radiation source: fine-focus sealed tubeθmax = 25.9°, θmin = 3.3°
Graphite monochromatorh = 76
ω/2θ scansk = 014
924 measured reflectionsl = 08
924 independent reflections3 standard reflections every 200 reflections
829 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.05P)2 + 0.6P]
where P = (Fo2 + 2Fc2)/3
924 reflections(Δ/σ)max < 0.001
121 parametersΔρmax = 0.24 e Å3
3 restraintsΔρmin = 0.28 e Å3
Crystal data top
C9H10O4V = 448.47 (15) Å3
Mr = 182.17Z = 2
Monoclinic, P21Mo Kα radiation
a = 6.205 (1) ŵ = 0.11 mm1
b = 11.853 (2) ÅT = 298 K
c = 6.716 (1) Å0.40 × 0.30 × 0.20 mm
β = 114.78 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.018
924 measured reflections3 standard reflections every 200 reflections
924 independent reflections intensity decay: none
829 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0403 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.24 e Å3
924 reflectionsΔρmin = 0.28 e Å3
121 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4177 (6)0.4704 (4)0.2174 (6)0.0527 (10)
H1B0.29180.43360.19400.079*
O20.8378 (5)0.7346 (3)0.9648 (5)0.0431 (9)
O31.0305 (6)0.9182 (3)0.8307 (6)0.0506 (10)
O41.3803 (5)0.8319 (3)0.9703 (6)0.0487 (9)
C10.7253 (9)0.5920 (5)0.4402 (8)0.0473 (13)
H1A0.78720.58760.33600.057*
C20.5225 (8)0.5344 (4)0.4072 (8)0.0381 (11)
C30.4318 (8)0.5400 (4)0.5642 (9)0.0401 (11)
H3A0.29590.49970.54490.048*
C40.5441 (8)0.6055 (4)0.7487 (8)0.0373 (10)
H4A0.48320.60920.85370.045*
C50.7453 (8)0.6655 (5)0.7789 (7)0.0375 (10)
C60.8398 (9)0.6568 (5)0.6261 (8)0.0505 (14)
H6A0.97970.69430.64830.061*
C71.0878 (7)0.7533 (4)1.0603 (7)0.0380 (11)
H7A1.17010.68241.06260.046*
C81.1531 (10)0.7924 (6)1.2920 (8)0.0538 (14)
H8A1.10810.73591.36980.081*
H8B1.07150.86161.28960.081*
H8C1.32140.80471.36430.081*
C91.1595 (7)0.8419 (4)0.9378 (7)0.0362 (10)
H4B1.448 (5)0.883 (3)0.928 (8)0.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0343 (17)0.065 (3)0.059 (2)0.0158 (18)0.0201 (16)0.030 (2)
O20.0322 (16)0.055 (2)0.0446 (18)0.0092 (16)0.0189 (14)0.0137 (17)
O30.0359 (17)0.050 (2)0.061 (2)0.0072 (17)0.0158 (16)0.0174 (19)
O40.0335 (17)0.048 (2)0.070 (2)0.0068 (17)0.0267 (16)0.0125 (19)
C10.052 (3)0.055 (3)0.048 (3)0.015 (3)0.034 (2)0.008 (3)
C20.030 (2)0.036 (2)0.046 (3)0.001 (2)0.015 (2)0.011 (2)
C30.029 (2)0.035 (2)0.056 (3)0.002 (2)0.018 (2)0.000 (2)
C40.035 (2)0.041 (3)0.040 (2)0.001 (2)0.0199 (19)0.001 (2)
C50.033 (2)0.046 (3)0.035 (2)0.002 (2)0.0162 (18)0.011 (2)
C60.047 (3)0.064 (4)0.051 (3)0.025 (3)0.031 (2)0.011 (3)
C70.031 (2)0.043 (3)0.037 (2)0.006 (2)0.0114 (18)0.001 (2)
C80.055 (3)0.066 (3)0.039 (3)0.014 (3)0.019 (2)0.000 (3)
C90.028 (2)0.043 (3)0.035 (2)0.003 (2)0.0115 (17)0.001 (2)
Geometric parameters (Å, º) top
O1—C21.389 (6)C3—H3A0.9300
O1—H1B0.8500C4—C51.376 (7)
O2—C51.399 (5)C4—H4A0.9300
O2—C71.426 (5)C5—C61.382 (6)
O3—C91.221 (6)C6—H6A0.9300
O4—C91.300 (5)C7—C81.508 (7)
O4—H4B0.85 (4)C7—C91.511 (6)
C1—C21.366 (6)C7—H7A0.9800
C1—C61.382 (7)C8—H8A0.9600
C1—H1A0.9300C8—H8B0.9600
C2—C31.389 (6)C8—H8C0.9600
C3—C41.378 (7)
C2—O1—H1B119.4C1—C6—C5119.7 (4)
C5—O2—C7117.0 (4)C1—C6—H6A120.2
C9—O4—H4B121 (3)C5—C6—H6A120.2
C2—C1—C6120.9 (4)O2—C7—C8106.5 (4)
C2—C1—H1A119.5O2—C7—C9112.1 (4)
C6—C1—H1A119.5C8—C7—C9109.6 (4)
C1—C2—O1117.8 (4)O2—C7—H7A109.6
C1—C2—C3119.5 (4)C8—C7—H7A109.6
O1—C2—C3122.7 (4)C9—C7—H7A109.6
C4—C3—C2119.8 (4)C7—C8—H8A109.5
C4—C3—H3A120.1C7—C8—H8B109.5
C2—C3—H3A120.1H8A—C8—H8B109.5
C5—C4—C3120.6 (4)C7—C8—H8C109.5
C5—C4—H4A119.7H8A—C8—H8C109.5
C3—C4—H4A119.7H8B—C8—H8C109.5
C4—C5—C6119.5 (4)O3—C9—O4123.4 (4)
C4—C5—O2116.2 (4)O3—C9—C7124.4 (4)
C6—C5—O2124.3 (4)O4—C9—C7112.0 (4)
C6—C1—C2—O1179.6 (5)C2—C1—C6—C51.4 (9)
C6—C1—C2—C30.8 (8)C4—C5—C6—C12.9 (9)
C1—C2—C3—C41.5 (7)O2—C5—C6—C1175.5 (5)
O1—C2—C3—C4179.8 (5)C5—O2—C7—C8160.4 (5)
C2—C3—C4—C50.0 (7)C5—O2—C7—C979.9 (6)
C3—C4—C5—C62.2 (8)O2—C7—C9—O326.7 (7)
C3—C4—C5—O2176.3 (4)C8—C7—C9—O391.3 (6)
C7—O2—C5—C4150.4 (4)O2—C7—C9—O4157.2 (4)
C7—O2—C5—C631.1 (7)C8—C7—C9—O484.8 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3i0.851.942.733 (6)154
O4—H4B···O1ii0.85 (4)1.84 (4)2.679 (6)166 (4)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC9H10O4
Mr182.17
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)6.205 (1), 11.853 (2), 6.716 (1)
β (°) 114.78 (3)
V3)448.47 (15)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.40 × 0.30 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
924, 924, 829
Rint0.018
(sin θ/λ)max1)0.615
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.137, 1.02
No. of reflections924
No. of parameters121
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···O3i0.851.942.733 (6)154
O4—H4B···O1ii0.85 (4)1.84 (4)2.679 (6)166 (4)
Symmetry codes: (i) x+1, y1/2, z+1; (ii) x+2, y+1/2, z+1.
 

Acknowledgements

The authors thank Dr S. Liu of the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationQin, Y.-H., Mo, W.-M., Sun, N. & Wang, W. (2004). Chin. J. Pestic. 43, 555–556.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds