metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-(3-Meth­­oxy-2-oxido­benzyl­­idene-κO2)leucinato-κ2N,O](1,10-phenanthroline-κ2N,N′)copper(II) monohydrate

aSchool of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China
*Correspondence e-mail: lilianzhi1963@yahoo.com.cn

(Received 30 October 2010; accepted 6 November 2010; online 13 November 2010)

The asymmetric unit of the title complex, [Cu(C14H17NO4)(C12H8N2)]·H2O, contains two independent CuII complex mol­ecules and two uncoordinated water mol­ecules. In each complex mol­ecule, the Cu atom is O,N,O′-chelated by the tridentate Schiff base ligand and N,N′-chelated by the 1,10-phenanthroline ligand in a distorted square-pyramidal geometry. The Cu—N bond distances in the apical directions are 2.298 (4) and 2.268 (4) Å. In the crystal, inter­molecular O—H⋯O and C—H⋯O hydrogen bonds together with C—H⋯π inter­actions result in a three-dimensional supra­molecular structure.

Related literature

For related structures, see: Elena et al. (1995[Elena, L., Jose, A. G. V., Jaime, R., Sofia, P. & Antonio, S. (1995). Polyhedron, 14, 663-670.]); Qiu et al. (2008[Qiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745-m746.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C14H17NO4)(C12H8N2)]·H2O

  • Mr = 525.05

  • Monoclinic, P 21

  • a = 11.1981 (12) Å

  • b = 10.4190 (11) Å

  • c = 21.298 (2) Å

  • β = 98.5520 (10)°

  • V = 2457.3 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.45 × 0.43 × 0.41 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.680, Tmax = 0.702

  • 12981 measured reflections

  • 7382 independent reflections

  • 5544 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.101

  • S = 1.01

  • 7382 reflections

  • 637 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.30 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 2779 Friedel pairs

  • Flack parameter: −0.010 (12)

Table 1
Selected bond lengths (Å)

Cu1—N1 1.919 (4)
Cu1—N2 2.010 (4)
Cu1—N3 2.298 (4)
Cu1—O1 1.960 (3)
Cu1—O3 1.929 (3)
Cu2—N4 1.934 (4)
Cu2—N5 2.268 (4)
Cu2—N6 2.039 (4)
Cu2—O5 1.953 (4)
Cu2—O7 1.945 (3)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O9—H9A⋯O2 0.85 2.22 2.715 (7) 117
O9—H9B⋯O2 0.85 2.20 2.715 (7) 119
O10—H10A⋯O6 0.85 2.27 2.805 (8) 121
O10—H10B⋯O6 0.85 2.27 2.805 (8) 121
C24—H24⋯O10i 0.93 2.58 3.476 (8) 162
C40—H40A⋯O2ii 0.96 2.53 3.486 (7) 176
C43—H43⋯O8iii 0.93 2.48 3.172 (6) 131
C50—H50⋯O9iv 0.93 2.35 3.268 (7) 168
C25—H25⋯Cg1v 0.93 2.51 3.426 (6) 168
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) x+1, y, z+1; (iii) [-x+1, y+{\script{1\over 2}}, -z+2]; (iv) [-x+1, y-{\script{1\over 2}}, -z+1]; (v) [-x, y-{\script{1\over 2}}, -z+1].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Schiff bases still play an important role as ligands in metal coordination chemistry even after almost a century since their discovery. Considerable efforts have been devotedd to copper(II) complexes of tridentate Schiff base ligands of N-alkylidene or N-arylidene alkanato type, due to their structural richness, electrochemical properties as well as a potential model for a number of important biological systems. Herein, we report the synthesis and crystal structure of a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of o-vanillin and L-leucine, and with 1,10-phenanthroline.

There are two independent structurses in the crystallographic asymmetric unit except the solvent water moleculars (Fig.1). In either of the two main molecular structures, the central CuII atom is five-coordinated by one N atom and two O atoms from the tridentate Schiff base ligand and two N atoms from 1,10-phenanthroline ligand, forming a seriously distorted square-pyramidal geomety. The O1, O3, N1, and N2 atoms (or O5, O7, N4, and N6) locate in equatorial plane, and N3 (or N5) in the apital position. The Cu1II atom and Cu2II atom lie 0.1552 (21)Å and 0.0859 (22)Å above theirs equatorial plane, respectively. Similar to that repoted previously (Elena et al., 1995; Qiu et al., 2008), the apital atoms (N3, N5) are much longer from their copper atoms, with the bond distances of Cu1—N3 = 2.298 (4)Å and Cu2—N5 = 2.268 (4)Å (Table 1). The tridentate Schiff base ligands coordinated to copper atoms form two penta-chelated rings(Cu1/O1/C1—C2/N1 and Cu2/O5/C27—C28/N4) and two hexa-chelated rings (Cu1/N1/C7—C9/O3 and Cu2/N4/C33—C35/O7). In each molecular, the penta-chelated ring and hexa-chelated ring have formed their individual dihedral angle 12.64 (22)° and 17.39 (21)°, respectively. The phenanthroline ligands are almost perpendicular to their individual equatorial plane (dihedral angle 89.03 (13)° and 86.24 (14)°).

In the crystal structure, there exist C—H···O and O—H···O hydrogen bonds (Table 2) which link the molecules into a three-dimensional network structure (Fig. 2). Additionally, the intermolecular C—H···π interaction [H25···Cgi= 2.513 Å, C25···Cgi= 3.426 Å, and C25—H25···Cgi= 167.55°; symmetry code: (i) -x, y - 1/2, 1 - z; Cg is the centroid of the C8—C13 ring] also stablizes the crystal packing, along with the van der Waals forces.

Related literature top

For related structures, see: Elena et al. (1995); Qiu et al. (2008).

Experimental top

L-Leucine (1 mmol, 113.2 mg) and potassium hydroxide (1 mmol, 56.1 mg) were dissolved in hot methanol (10 ml) and added successively to a methanol solution of o-vanilline (1 mmol, 152.2 mg). The mixture was then stirred at 323 K for 2 h. Subsequently, an aqueous solution (2 ml) of cupric acetate monohydrate (1 mmol, 199.7 mg) was added dropwise and stirred for 2 h. An methanol solution (5 ml) of 1,10-phenanthroline monohydrate (1 mmol, 198.2 mg) was added dropwise and stirred for 4 h. The resultant solution was held at room temperature for 10 d, single crystals suitable for X-ray diffraction were obtained.

Refinement top

All the H atoms were placed in geometrically calculated positions with C—H = 0.93–0.98Å and O—H = 0.85 Å and allowed to ride on their parent atoms, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.

Structure description top

Schiff bases still play an important role as ligands in metal coordination chemistry even after almost a century since their discovery. Considerable efforts have been devotedd to copper(II) complexes of tridentate Schiff base ligands of N-alkylidene or N-arylidene alkanato type, due to their structural richness, electrochemical properties as well as a potential model for a number of important biological systems. Herein, we report the synthesis and crystal structure of a new copper(II) complex with a tridentate Schiff base ligand derived from the condensation of o-vanillin and L-leucine, and with 1,10-phenanthroline.

There are two independent structurses in the crystallographic asymmetric unit except the solvent water moleculars (Fig.1). In either of the two main molecular structures, the central CuII atom is five-coordinated by one N atom and two O atoms from the tridentate Schiff base ligand and two N atoms from 1,10-phenanthroline ligand, forming a seriously distorted square-pyramidal geomety. The O1, O3, N1, and N2 atoms (or O5, O7, N4, and N6) locate in equatorial plane, and N3 (or N5) in the apital position. The Cu1II atom and Cu2II atom lie 0.1552 (21)Å and 0.0859 (22)Å above theirs equatorial plane, respectively. Similar to that repoted previously (Elena et al., 1995; Qiu et al., 2008), the apital atoms (N3, N5) are much longer from their copper atoms, with the bond distances of Cu1—N3 = 2.298 (4)Å and Cu2—N5 = 2.268 (4)Å (Table 1). The tridentate Schiff base ligands coordinated to copper atoms form two penta-chelated rings(Cu1/O1/C1—C2/N1 and Cu2/O5/C27—C28/N4) and two hexa-chelated rings (Cu1/N1/C7—C9/O3 and Cu2/N4/C33—C35/O7). In each molecular, the penta-chelated ring and hexa-chelated ring have formed their individual dihedral angle 12.64 (22)° and 17.39 (21)°, respectively. The phenanthroline ligands are almost perpendicular to their individual equatorial plane (dihedral angle 89.03 (13)° and 86.24 (14)°).

In the crystal structure, there exist C—H···O and O—H···O hydrogen bonds (Table 2) which link the molecules into a three-dimensional network structure (Fig. 2). Additionally, the intermolecular C—H···π interaction [H25···Cgi= 2.513 Å, C25···Cgi= 3.426 Å, and C25—H25···Cgi= 167.55°; symmetry code: (i) -x, y - 1/2, 1 - z; Cg is the centroid of the C8—C13 ring] also stablizes the crystal packing, along with the van der Waals forces.

For related structures, see: Elena et al. (1995); Qiu et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram of the title compound.
[N-(3-Methoxy-2-oxidobenzylidene-κO2)leucinato- κ2N,O](1,10-phenanthroline- κ2N,N')copper(II) monohydrate top
Crystal data top
[Cu(C14H17NO4)(C12H8N2)]·H2OF(000) = 1092
Mr = 525.05Dx = 1.419 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 4089 reflections
a = 11.1981 (12) Åθ = 2.2–26.8°
b = 10.4190 (11) ŵ = 0.93 mm1
c = 21.298 (2) ÅT = 293 K
β = 98.552 (1)°Block, blue
V = 2457.3 (5) Å30.45 × 0.43 × 0.41 mm
Z = 4
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7382 independent reflections
Radiation source: fine-focus sealed tube5544 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1311
Tmin = 0.680, Tmax = 0.702k = 1112
12981 measured reflectionsl = 2525
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0508P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
7382 reflectionsΔρmax = 0.42 e Å3
637 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983), 2779 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.010 (12)
Crystal data top
[Cu(C14H17NO4)(C12H8N2)]·H2OV = 2457.3 (5) Å3
Mr = 525.05Z = 4
Monoclinic, P21Mo Kα radiation
a = 11.1981 (12) ŵ = 0.93 mm1
b = 10.4190 (11) ÅT = 293 K
c = 21.298 (2) Å0.45 × 0.43 × 0.41 mm
β = 98.552 (1)°
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
7382 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5544 reflections with I > 2σ(I)
Tmin = 0.680, Tmax = 0.702Rint = 0.027
12981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.101Δρmax = 0.42 e Å3
S = 1.01Δρmin = 0.30 e Å3
7382 reflectionsAbsolute structure: Flack (1983), 2779 Friedel pairs
637 parametersAbsolute structure parameter: 0.010 (12)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.19614 (5)0.73977 (4)0.38068 (3)0.03585 (18)
Cu20.69306 (5)0.85315 (5)0.88162 (3)0.0400 (2)
N10.3237 (3)0.8364 (4)0.35210 (16)0.0402 (9)
N20.0776 (3)0.6083 (4)0.40247 (18)0.0336 (10)
N30.0348 (3)0.8640 (4)0.3981 (2)0.0388 (10)
N40.8351 (3)0.9294 (4)0.85529 (17)0.0426 (10)
N50.5893 (3)1.0317 (4)0.90173 (19)0.0359 (10)
N60.5344 (4)0.7771 (4)0.9006 (2)0.0427 (12)
O10.1368 (3)0.7246 (4)0.28967 (15)0.0522 (10)
O20.1742 (4)0.7864 (4)0.19411 (19)0.0757 (15)
O30.2733 (3)0.7420 (4)0.46790 (14)0.0348 (7)
O40.3396 (3)0.7325 (4)0.59119 (15)0.0429 (8)
O50.6398 (3)0.8405 (5)0.79026 (17)0.0636 (12)
O60.6919 (4)0.8878 (5)0.69680 (19)0.0940 (19)
O70.7729 (3)0.8381 (3)0.96887 (15)0.0365 (8)
O80.8331 (3)0.8287 (3)1.09201 (15)0.0452 (9)
O90.2665 (4)0.9682 (6)0.1236 (2)0.1102 (18)
H9A0.26370.96060.16310.132*
H9B0.22350.90140.11510.132*
O100.7423 (5)0.6893 (6)0.6157 (3)0.138 (2)
H10A0.77190.76250.62660.165*
H10B0.69130.70160.64100.165*
C10.2027 (5)0.7795 (6)0.2530 (3)0.0567 (16)
C20.3243 (4)0.8296 (6)0.2836 (2)0.0488 (13)
H20.33890.91480.26690.059*
C30.4194 (5)0.7354 (7)0.2679 (2)0.0638 (17)
H3A0.40720.72260.22230.077*
H3B0.40540.65360.28720.077*
C40.5513 (5)0.7724 (7)0.2886 (3)0.074 (2)
H40.56340.78970.33440.089*
C50.6332 (6)0.6615 (9)0.2758 (3)0.113 (3)
H5A0.62840.64920.23080.170*
H5B0.60780.58460.29480.170*
H5C0.71500.68090.29370.170*
C60.5864 (6)0.8914 (8)0.2545 (4)0.104 (3)
H6A0.66910.91280.26970.156*
H6B0.53530.96160.26260.156*
H6C0.57710.87500.20970.156*
C70.3970 (4)0.9105 (4)0.3880 (2)0.0404 (11)
H70.44200.96840.36780.048*
C80.4153 (4)0.9117 (4)0.4557 (2)0.0348 (10)
C90.3581 (4)0.8213 (4)0.4918 (2)0.0320 (10)
C100.3961 (4)0.8229 (4)0.5585 (2)0.0370 (11)
C110.4807 (4)0.9088 (5)0.5865 (2)0.0449 (12)
H110.50350.90780.63030.054*
C120.5327 (4)0.9974 (5)0.5497 (2)0.0473 (13)
H120.58871.05650.56890.057*
C130.5018 (4)0.9973 (5)0.4866 (3)0.0430 (14)
H130.53861.05560.46250.052*
C140.3722 (5)0.7327 (7)0.6588 (2)0.0672 (17)
H14A0.45850.72850.66940.101*
H14B0.33670.65970.67640.101*
H14C0.34320.81000.67590.101*
C150.0984 (4)0.4836 (5)0.4038 (2)0.0433 (13)
H150.17020.45360.39210.052*
C160.0177 (5)0.3962 (5)0.4217 (3)0.0496 (14)
H160.03610.30910.42200.060*
C170.0884 (5)0.4358 (5)0.4388 (3)0.0486 (14)
H170.14250.37670.45130.058*
C180.1149 (4)0.5669 (4)0.4373 (2)0.0348 (11)
C190.0288 (4)0.6520 (4)0.4180 (2)0.0301 (11)
C200.0515 (4)0.7856 (5)0.4158 (2)0.0358 (12)
C210.1618 (4)0.8341 (5)0.4321 (2)0.0410 (12)
C220.1788 (5)0.9677 (5)0.4294 (3)0.0559 (16)
H220.24891.00370.44030.067*
C230.0921 (5)1.0440 (5)0.4107 (3)0.0606 (17)
H230.10331.13240.40830.073*
C240.0125 (5)0.9904 (5)0.3953 (3)0.0566 (16)
H240.07021.04460.38230.068*
C250.2228 (4)0.6194 (6)0.4546 (2)0.0492 (14)
H250.27930.56440.46790.059*
C260.2453 (4)0.7458 (6)0.4521 (2)0.0486 (13)
H260.31690.77630.46370.058*
C270.7124 (5)0.8792 (7)0.7547 (3)0.0681 (19)
C280.8379 (4)0.9240 (6)0.7871 (2)0.0506 (13)
H280.85771.00830.77110.061*
C290.9290 (5)0.8203 (6)0.7707 (3)0.0612 (18)
H29A0.90890.73950.78930.073*
H29B0.91690.80900.72500.073*
C301.0599 (5)0.8464 (7)0.7920 (3)0.0636 (17)
H301.07320.85440.83840.076*
C311.1342 (6)0.7372 (9)0.7741 (3)0.094 (2)
H31A1.12730.73230.72870.141*
H31B1.10590.65860.79020.141*
H31C1.21720.75050.79190.141*
C321.1026 (6)0.9700 (8)0.7637 (4)0.100 (3)
H32A1.10550.95770.71930.150*
H32B1.18170.99180.78500.150*
H32C1.04741.03830.76910.150*
C330.9021 (4)1.0065 (5)0.8911 (2)0.0412 (11)
H330.94941.06300.87170.049*
C340.9109 (4)1.0140 (4)0.9588 (2)0.0368 (11)
C350.8521 (3)0.9214 (4)0.9934 (2)0.0326 (10)
C360.8865 (3)0.9238 (4)1.0618 (2)0.0332 (10)
C370.9640 (4)1.0140 (5)1.0907 (2)0.0430 (12)
H370.98461.01281.13460.052*
C381.0132 (4)1.1088 (5)1.0552 (3)0.0480 (13)
H381.06221.17301.07560.058*
C390.9887 (4)1.1058 (5)0.9915 (3)0.0434 (13)
H391.02451.16650.96820.052*
C400.8619 (5)0.8225 (6)1.1594 (2)0.0650 (18)
H40A0.94750.81231.17110.097*
H40B0.82110.75071.17490.097*
H40C0.83650.90031.17770.097*
C410.6150 (5)1.1534 (5)0.9030 (2)0.0462 (14)
H410.68851.17820.89140.055*
C420.5391 (4)1.2499 (5)0.9208 (2)0.0451 (13)
H420.56131.33590.92060.054*
C430.4313 (4)1.2134 (5)0.9384 (2)0.0476 (14)
H430.37951.27490.95090.057*
C440.3996 (4)1.0850 (5)0.9375 (2)0.0378 (12)
C450.4820 (4)0.9955 (5)0.9187 (2)0.0317 (11)
C460.4529 (4)0.8625 (5)0.9170 (2)0.0357 (12)
C470.3416 (4)0.8224 (5)0.9327 (2)0.0417 (13)
C480.3171 (5)0.6905 (6)0.9303 (3)0.0559 (16)
H480.24450.66000.94070.067*
C490.3979 (5)0.6082 (5)0.9129 (3)0.0568 (15)
H490.38080.52080.91050.068*
C500.5081 (5)0.6536 (5)0.8984 (3)0.0539 (16)
H500.56410.59550.88700.065*
C510.2882 (4)1.0414 (5)0.9544 (2)0.0494 (14)
H510.23471.10030.96760.059*
C520.2598 (4)0.9170 (6)0.9517 (3)0.0487 (15)
H520.18590.89070.96220.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0293 (4)0.0392 (4)0.0409 (4)0.0066 (3)0.0113 (3)0.0029 (3)
Cu20.0304 (4)0.0484 (4)0.0421 (4)0.0046 (3)0.0083 (3)0.0029 (3)
N10.034 (2)0.052 (3)0.038 (2)0.0060 (19)0.0152 (17)0.000 (2)
N20.032 (2)0.033 (2)0.038 (2)0.0035 (18)0.0112 (17)0.0033 (19)
N30.031 (2)0.033 (2)0.053 (3)0.009 (2)0.0092 (19)0.000 (2)
N40.032 (2)0.062 (3)0.035 (2)0.009 (2)0.0097 (17)0.008 (2)
N50.031 (2)0.034 (3)0.044 (3)0.0055 (18)0.0093 (18)0.002 (2)
N60.037 (3)0.043 (3)0.048 (3)0.0005 (19)0.008 (2)0.0031 (19)
O10.044 (2)0.071 (3)0.042 (2)0.021 (2)0.0089 (16)0.004 (2)
O20.063 (3)0.124 (4)0.038 (2)0.022 (2)0.0001 (19)0.011 (2)
O30.0316 (17)0.0334 (17)0.0404 (19)0.0082 (16)0.0088 (14)0.0032 (18)
O40.0490 (19)0.0399 (19)0.040 (2)0.0017 (17)0.0069 (15)0.0037 (18)
O50.038 (2)0.107 (4)0.046 (2)0.001 (2)0.0070 (18)0.005 (2)
O60.064 (3)0.177 (6)0.039 (2)0.017 (3)0.004 (2)0.007 (3)
O70.0317 (18)0.036 (2)0.042 (2)0.0040 (16)0.0067 (15)0.0003 (17)
O80.0455 (19)0.050 (2)0.041 (2)0.0049 (17)0.0096 (16)0.0081 (17)
O90.067 (3)0.128 (5)0.139 (4)0.008 (3)0.027 (3)0.050 (4)
O100.139 (5)0.098 (4)0.176 (6)0.000 (4)0.024 (4)0.028 (4)
C10.043 (3)0.076 (5)0.052 (4)0.007 (3)0.008 (3)0.002 (3)
C20.044 (3)0.065 (4)0.041 (3)0.012 (3)0.018 (2)0.000 (3)
C30.055 (3)0.095 (5)0.045 (3)0.010 (4)0.020 (3)0.019 (4)
C40.053 (4)0.121 (7)0.053 (4)0.001 (4)0.021 (3)0.015 (4)
C50.084 (5)0.166 (10)0.098 (6)0.035 (6)0.039 (4)0.003 (6)
C60.066 (5)0.138 (8)0.116 (6)0.029 (5)0.040 (4)0.023 (5)
C70.037 (3)0.036 (3)0.053 (3)0.008 (2)0.022 (2)0.002 (2)
C80.030 (2)0.030 (2)0.046 (3)0.0021 (19)0.013 (2)0.005 (2)
C90.027 (2)0.027 (3)0.045 (3)0.0041 (18)0.0135 (19)0.004 (2)
C100.033 (2)0.033 (3)0.045 (3)0.004 (2)0.007 (2)0.000 (2)
C110.036 (3)0.046 (3)0.051 (3)0.000 (2)0.002 (2)0.007 (2)
C120.033 (3)0.041 (3)0.065 (4)0.007 (2)0.001 (2)0.011 (3)
C130.027 (2)0.038 (3)0.066 (4)0.009 (2)0.012 (3)0.008 (3)
C140.083 (4)0.073 (4)0.047 (4)0.007 (4)0.015 (3)0.007 (3)
C150.039 (3)0.039 (3)0.053 (3)0.003 (2)0.010 (2)0.005 (3)
C160.054 (3)0.026 (3)0.070 (4)0.009 (2)0.012 (3)0.004 (2)
C170.042 (3)0.044 (4)0.060 (4)0.013 (3)0.012 (3)0.001 (3)
C180.029 (2)0.034 (3)0.041 (3)0.006 (2)0.003 (2)0.001 (2)
C190.026 (2)0.028 (3)0.036 (3)0.004 (2)0.006 (2)0.003 (2)
C200.034 (3)0.036 (3)0.038 (3)0.002 (2)0.007 (2)0.000 (2)
C210.033 (3)0.037 (3)0.055 (3)0.006 (2)0.012 (2)0.006 (3)
C220.042 (3)0.047 (4)0.078 (4)0.012 (3)0.006 (3)0.005 (3)
C230.049 (3)0.029 (3)0.104 (5)0.005 (3)0.011 (3)0.007 (3)
C240.053 (4)0.035 (3)0.083 (4)0.006 (3)0.014 (3)0.008 (3)
C250.034 (3)0.051 (4)0.067 (4)0.010 (3)0.022 (2)0.002 (3)
C260.033 (3)0.054 (4)0.063 (3)0.005 (3)0.018 (2)0.002 (3)
C270.048 (3)0.108 (6)0.046 (4)0.028 (3)0.002 (3)0.008 (3)
C280.044 (3)0.070 (4)0.039 (3)0.006 (3)0.012 (2)0.009 (3)
C290.045 (3)0.094 (5)0.049 (3)0.017 (3)0.021 (3)0.006 (3)
C300.045 (3)0.102 (5)0.045 (4)0.018 (4)0.014 (3)0.012 (4)
C310.064 (4)0.133 (6)0.091 (5)0.034 (5)0.031 (4)0.016 (5)
C320.061 (4)0.108 (6)0.139 (7)0.007 (4)0.039 (4)0.004 (6)
C330.029 (2)0.048 (3)0.050 (3)0.006 (2)0.017 (2)0.010 (2)
C340.029 (2)0.036 (3)0.046 (3)0.003 (2)0.0073 (19)0.004 (2)
C350.027 (2)0.027 (2)0.046 (3)0.0077 (19)0.0124 (19)0.004 (2)
C360.026 (2)0.030 (3)0.044 (3)0.0000 (19)0.0057 (19)0.004 (2)
C370.034 (2)0.050 (3)0.045 (3)0.000 (2)0.007 (2)0.009 (2)
C380.036 (3)0.040 (3)0.068 (4)0.008 (2)0.005 (2)0.011 (3)
C390.034 (3)0.038 (3)0.061 (4)0.007 (2)0.015 (3)0.004 (3)
C400.065 (4)0.090 (5)0.041 (3)0.016 (3)0.013 (3)0.006 (3)
C410.040 (3)0.046 (4)0.054 (3)0.004 (2)0.009 (2)0.014 (3)
C420.047 (3)0.034 (3)0.052 (3)0.007 (2)0.000 (2)0.001 (3)
C430.039 (3)0.047 (4)0.058 (3)0.015 (2)0.011 (2)0.004 (3)
C440.032 (3)0.040 (3)0.042 (3)0.003 (2)0.007 (2)0.000 (3)
C450.026 (2)0.038 (3)0.031 (3)0.003 (2)0.0031 (19)0.002 (2)
C460.022 (2)0.049 (3)0.035 (3)0.000 (2)0.0030 (19)0.001 (3)
C470.036 (3)0.040 (3)0.048 (3)0.002 (2)0.002 (2)0.002 (3)
C480.035 (3)0.064 (4)0.067 (4)0.005 (3)0.003 (3)0.012 (3)
C490.057 (4)0.029 (3)0.080 (4)0.009 (3)0.002 (3)0.001 (3)
C500.048 (3)0.044 (4)0.069 (4)0.002 (3)0.006 (3)0.011 (3)
C510.037 (3)0.052 (4)0.061 (4)0.010 (3)0.015 (2)0.001 (3)
C520.023 (3)0.068 (4)0.056 (4)0.000 (3)0.011 (2)0.008 (3)
Geometric parameters (Å, º) top
Cu1—N11.919 (4)C16—C171.358 (7)
Cu1—N22.010 (4)C16—H160.9300
Cu1—N32.298 (4)C17—C181.398 (7)
Cu1—O11.960 (3)C17—H170.9300
Cu1—O31.929 (3)C18—C191.414 (6)
Cu2—N41.934 (4)C18—C251.424 (7)
Cu2—N52.268 (4)C19—C201.415 (6)
Cu2—N62.039 (4)C20—C211.425 (6)
Cu2—O51.953 (4)C21—C221.405 (7)
Cu2—O71.945 (3)C21—C261.421 (7)
N1—C71.291 (5)C22—C231.360 (7)
N1—C21.461 (5)C22—H220.9300
N2—C151.319 (6)C23—C241.380 (7)
N2—C191.361 (6)C23—H230.9300
N3—C241.341 (7)C24—H240.9300
N3—C201.360 (6)C25—C261.340 (7)
N4—C331.273 (6)C25—H250.9300
N4—C281.458 (6)C26—H260.9300
N5—C411.300 (6)C27—C281.543 (7)
N5—C451.359 (5)C28—C291.560 (7)
N6—C501.319 (7)C28—H280.9800
N6—C461.357 (6)C29—C301.494 (7)
O1—C11.286 (6)C29—H29A0.9700
O2—C11.249 (6)C29—H29B0.9700
O3—C91.303 (5)C30—C311.492 (9)
O4—C101.379 (5)C30—C321.529 (10)
O4—C141.431 (5)C30—H300.9800
O5—C271.258 (7)C31—H31A0.9600
O6—C271.223 (6)C31—H31B0.9600
O7—C351.293 (5)C31—H31C0.9600
O8—C361.366 (5)C32—H32A0.9600
O8—C401.426 (6)C32—H32B0.9600
O9—H9A0.8501C32—H32C0.9600
O9—H9B0.8500C33—C341.432 (6)
O10—H10A0.8500C33—H330.9300
O10—H10B0.8500C34—C391.406 (6)
C1—C21.512 (7)C34—C351.433 (6)
C2—C31.521 (8)C35—C361.449 (6)
C2—H20.9800C36—C371.363 (6)
C3—C41.527 (7)C37—C381.405 (7)
C3—H3A0.9700C37—H370.9300
C3—H3B0.9700C38—C391.346 (7)
C4—C61.518 (10)C38—H380.9300
C4—C51.525 (9)C39—H390.9300
C4—H40.9800C40—H40A0.9600
C5—H5A0.9600C40—H40B0.9600
C5—H5B0.9600C40—H40C0.9600
C5—H5C0.9600C41—C421.405 (7)
C6—H6A0.9600C41—H410.9300
C6—H6B0.9600C42—C431.370 (7)
C6—H6C0.9600C42—H420.9300
C7—C81.426 (6)C43—C441.384 (7)
C7—H70.9300C43—H430.9300
C8—C131.406 (6)C44—C451.411 (6)
C8—C91.427 (6)C44—C511.423 (7)
C9—C101.422 (6)C45—C461.423 (7)
C10—C111.373 (6)C46—C471.400 (6)
C11—C121.394 (7)C47—C481.401 (8)
C11—H110.9300C47—C521.444 (7)
C12—C131.336 (7)C48—C491.338 (7)
C12—H120.9300C48—H480.9300
C13—H130.9300C49—C501.398 (8)
C14—H14A0.9600C49—H490.9300
C14—H14B0.9600C50—H500.9300
C14—H14C0.9600C51—C521.334 (7)
C15—C161.376 (7)C51—H510.9300
C15—H150.9300C52—H520.9300
N1—Cu1—O392.92 (14)N2—C19—C20118.7 (4)
N1—Cu1—O183.54 (15)C18—C19—C20120.0 (4)
O3—Cu1—O1172.26 (15)N3—C20—C19118.0 (4)
N1—Cu1—N2168.34 (16)N3—C20—C21122.1 (5)
O3—Cu1—N290.15 (15)C19—C20—C21119.9 (4)
O1—Cu1—N292.01 (16)C22—C21—C26124.2 (5)
N1—Cu1—N3113.34 (16)C22—C21—C20117.3 (5)
O3—Cu1—N395.04 (14)C26—C21—C20118.5 (5)
O1—Cu1—N392.68 (15)C23—C22—C21119.5 (5)
N2—Cu1—N377.54 (14)C23—C22—H22120.2
N4—Cu2—O791.66 (14)C21—C22—H22120.2
N4—Cu2—O583.18 (16)C22—C23—C24120.1 (5)
O7—Cu2—O5167.25 (17)C22—C23—H23119.9
N4—Cu2—N6174.25 (17)C24—C23—H23119.9
O7—Cu2—N694.02 (16)N3—C24—C23123.0 (5)
O5—Cu2—N691.43 (18)N3—C24—H24118.5
N4—Cu2—N5100.62 (15)C23—C24—H24118.5
O7—Cu2—N593.51 (15)C26—C25—C18121.9 (5)
O5—Cu2—N598.88 (17)C26—C25—H25119.0
N6—Cu2—N578.18 (15)C18—C25—H25119.0
C7—N1—C2121.6 (4)C25—C26—C21121.3 (5)
C7—N1—Cu1124.3 (3)C25—C26—H26119.4
C2—N1—Cu1113.9 (3)C21—C26—H26119.4
C15—N2—C19118.8 (4)O6—C27—O5126.1 (6)
C15—N2—Cu1123.8 (3)O6—C27—C28116.9 (6)
C19—N2—Cu1117.4 (3)O5—C27—C28117.0 (5)
C24—N3—C20117.9 (4)N4—C28—C27107.7 (4)
C24—N3—Cu1133.8 (4)N4—C28—C29111.2 (4)
C20—N3—Cu1108.3 (3)C27—C28—C29105.8 (5)
C33—N4—C28121.6 (4)N4—C28—H28110.6
C33—N4—Cu2121.5 (3)C27—C28—H28110.6
C28—N4—Cu2114.4 (3)C29—C28—H28110.6
C41—N5—C45117.9 (4)C30—C29—C28116.8 (5)
C41—N5—Cu2133.3 (4)C30—C29—H29A108.1
C45—N5—Cu2108.7 (3)C28—C29—H29A108.1
C50—N6—C46119.5 (5)C30—C29—H29B108.1
C50—N6—Cu2124.7 (4)C28—C29—H29B108.1
C46—N6—Cu2115.8 (3)H29A—C29—H29B107.3
C1—O1—Cu1115.1 (3)C31—C30—C29110.1 (6)
C9—O3—Cu1125.4 (3)C31—C30—C32108.9 (5)
C10—O4—C14116.0 (4)C29—C30—C32112.6 (5)
C27—O5—Cu2116.7 (4)C31—C30—H30108.4
C35—O7—Cu2121.5 (3)C29—C30—H30108.4
C36—O8—C40117.3 (4)C32—C30—H30108.4
H9A—O9—H9B91.9C30—C31—H31A109.5
H10A—O10—H10B88.0C30—C31—H31B109.5
O2—C1—O1123.4 (5)H31A—C31—H31B109.5
O2—C1—C2119.5 (5)C30—C31—H31C109.5
O1—C1—C2116.9 (5)H31A—C31—H31C109.5
N1—C2—C1108.1 (4)H31B—C31—H31C109.5
N1—C2—C3111.0 (4)C30—C32—H32A109.5
C1—C2—C3107.3 (4)C30—C32—H32B109.5
N1—C2—H2110.1H32A—C32—H32B109.5
C1—C2—H2110.1C30—C32—H32C109.5
C3—C2—H2110.1H32A—C32—H32C109.5
C2—C3—C4116.9 (5)H32B—C32—H32C109.5
C2—C3—H3A108.1N4—C33—C34125.7 (4)
C4—C3—H3A108.1N4—C33—H33117.1
C2—C3—H3B108.1C34—C33—H33117.1
C4—C3—H3B108.1C39—C34—C33118.7 (4)
H3A—C3—H3B107.3C39—C34—C35120.1 (4)
C6—C4—C5109.1 (6)C33—C34—C35120.9 (4)
C6—C4—C3112.1 (6)O7—C35—C34125.7 (4)
C5—C4—C3109.8 (6)O7—C35—C36118.8 (4)
C6—C4—H4108.6C34—C35—C36115.5 (4)
C5—C4—H4108.6C37—C36—O8125.5 (4)
C3—C4—H4108.6C37—C36—C35121.5 (4)
C4—C5—H5A109.5O8—C36—C35113.0 (4)
C4—C5—H5B109.5C36—C37—C38121.1 (4)
H5A—C5—H5B109.5C36—C37—H37119.4
C4—C5—H5C109.5C38—C37—H37119.4
H5A—C5—H5C109.5C39—C38—C37119.2 (5)
H5B—C5—H5C109.5C39—C38—H38120.4
C4—C6—H6A109.5C37—C38—H38120.4
C4—C6—H6B109.5C38—C39—C34122.2 (5)
H6A—C6—H6B109.5C38—C39—H39118.9
C4—C6—H6C109.5C34—C39—H39118.9
H6A—C6—H6C109.5O8—C40—H40A109.5
H6B—C6—H6C109.5O8—C40—H40B109.5
N1—C7—C8125.9 (4)H40A—C40—H40B109.5
N1—C7—H7117.0O8—C40—H40C109.5
C8—C7—H7117.0H40A—C40—H40C109.5
C13—C8—C7117.7 (4)H40B—C40—H40C109.5
C13—C8—C9120.0 (4)N5—C41—C42124.3 (5)
C7—C8—C9122.0 (4)N5—C41—H41117.9
O3—C9—C10119.4 (4)C42—C41—H41117.9
O3—C9—C8124.6 (4)C43—C42—C41117.9 (5)
C10—C9—C8116.0 (4)C43—C42—H42121.0
C11—C10—O4124.4 (4)C41—C42—H42121.0
C11—C10—C9121.7 (4)C42—C43—C44119.9 (5)
O4—C10—C9113.8 (4)C42—C43—H43120.0
C10—C11—C12120.5 (4)C44—C43—H43120.0
C10—C11—H11119.8C43—C44—C45117.8 (4)
C12—C11—H11119.8C43—C44—C51122.5 (5)
C13—C12—C11119.8 (5)C45—C44—C51119.7 (5)
C13—C12—H12120.1N5—C45—C44122.2 (4)
C11—C12—H12120.1N5—C45—C46118.2 (4)
C12—C13—C8121.9 (5)C44—C45—C46119.6 (4)
C12—C13—H13119.0N6—C46—C47121.5 (5)
C8—C13—H13119.0N6—C46—C45119.0 (4)
O4—C14—H14A109.5C47—C46—C45119.5 (4)
O4—C14—H14B109.5C46—C47—C48117.4 (5)
H14A—C14—H14B109.5C46—C47—C52119.1 (5)
O4—C14—H14C109.5C48—C47—C52123.4 (5)
H14A—C14—H14C109.5C49—C48—C47120.1 (5)
H14B—C14—H14C109.5C49—C48—H48120.0
N2—C15—C16122.4 (5)C47—C48—H48120.0
N2—C15—H15118.8C48—C49—C50120.0 (5)
C16—C15—H15118.8C48—C49—H49120.0
C17—C16—C15120.7 (5)C50—C49—H49120.0
C17—C16—H16119.7N6—C50—C49121.5 (5)
C15—C16—H16119.7N6—C50—H50119.2
C16—C17—C18118.8 (5)C49—C50—H50119.2
C16—C17—H17120.6C52—C51—C44120.7 (5)
C18—C17—H17120.6C52—C51—H51119.6
C17—C18—C19117.9 (4)C44—C51—H51119.6
C17—C18—C25123.7 (5)C51—C52—C47121.3 (5)
C19—C18—C25118.4 (4)C51—C52—H52119.4
N2—C19—C18121.3 (4)C47—C52—H52119.4
C1—C2—C3—C4174.4 (5)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O9—H9A···O20.852.222.715 (7)117
O9—H9B···O20.852.202.715 (7)119
O10—H10A···O60.852.272.805 (8)121
O10—H10B···O60.852.272.805 (8)121
C24—H24···O10i0.932.583.476 (8)162
C40—H40A···O2ii0.962.533.486 (7)176
C43—H43···O8iii0.932.483.172 (6)131
C50—H50···O9iv0.932.353.268 (7)168
C25—H25···Cg1v0.932.513.426 (6)168
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+2; (iv) x+1, y1/2, z+1; (v) x, y1/2, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C14H17NO4)(C12H8N2)]·H2O
Mr525.05
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.1981 (12), 10.4190 (11), 21.298 (2)
β (°) 98.552 (1)
V3)2457.3 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.93
Crystal size (mm)0.45 × 0.43 × 0.41
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.680, 0.702
No. of measured, independent and
observed [I > 2σ(I)] reflections
12981, 7382, 5544
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.101, 1.01
No. of reflections7382
No. of parameters637
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.30
Absolute structureFlack (1983), 2779 Friedel pairs
Absolute structure parameter0.010 (12)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—N11.919 (4)Cu2—N41.934 (4)
Cu1—N22.010 (4)Cu2—N52.268 (4)
Cu1—N32.298 (4)Cu2—N62.039 (4)
Cu1—O11.960 (3)Cu2—O51.953 (4)
Cu1—O31.929 (3)Cu2—O71.945 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
O9—H9A···O20.852.222.715 (7)117
O9—H9B···O20.852.202.715 (7)119
O10—H10A···O60.852.272.805 (8)121
O10—H10B···O60.852.272.805 (8)121
C24—H24···O10i0.932.583.476 (8)161.6
C40—H40A···O2ii0.962.533.486 (7)176.2
C43—H43···O8iii0.932.483.172 (6)130.9
C50—H50···O9iv0.932.353.268 (7)167.7
C25—H25···Cg1v0.932.513.426 (6)168
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+2; (iv) x+1, y1/2, z+1; (v) x, y1/2, z+1.
 

Acknowledgements

The authors thank the Natural Science Foundation of Shandong Province, China for the research grant (No. Y2004B02).

References

First citationElena, L., Jose, A. G. V., Jaime, R., Sofia, P. & Antonio, S. (1995). Polyhedron, 14, 663–670.  CSD CrossRef Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationQiu, Z., Li, L., Liu, Y., Xu, T. & Wang, D. (2008). Acta Cryst. E64, m745–m746.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds