organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­ethyl 4-acetyl-5-(2-nitro­phen­yl)pyrrolidine-2,2-di­carboxyl­ate

aCollege of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, People's Republic of China
*Correspondence e-mail: helongcwnu@yahoo.com.cn

(Received 30 October 2010; accepted 7 November 2010; online 17 November 2010)

The title compound, C18H22N2O7, was synthesized by the 1,3-dipolar cyclo­addition reaction of but-3-en-2-one, diethyl 2-amino­malonate and 2-nitro­benzaldehyde. In the mol­ecule, the pyrrolidine ring possesses an envelope conformation. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds are present in the crystal structure.

Related literature

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005[Coldham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765-2810.]); Grigg (1995[Grigg, R. (1995). Tetrahedron Asymmetry, 6, 2475-2486.]); Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & I vachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377-1383.]); Nair & Suja (2007[Nair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247-12275.]); Pandey et al. (2006[Pandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484-4517.]); Sardina & Rapoport (1996[Sardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825-1872.]); Witherup et al. (1995[Witherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682-6685.]). For a related structure, see: He (2009[He, L. (2009). Acta Cryst. E65, o2388.]).

[Scheme 1]

Experimental

Crystal data
  • C18H22N2O7

  • Mr = 378.38

  • Monoclinic, P 21

  • a = 10.687 (5) Å

  • b = 7.760 (5) Å

  • c = 12.030 (5) Å

  • β = 97.455 (5)°

  • V = 989.2 (9) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.83 mm−1

  • T = 291 K

  • 0.38 × 0.36 × 0.30 mm

Data collection
  • Oxford Diffraction Gemini S Ultra diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.743, Tmax = 0.789

  • 19238 measured reflections

  • 2105 independent reflections

  • 1915 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.166

  • S = 1.04

  • 2105 reflections

  • 249 parameters

  • 42 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H10⋯O2i 0.92 (5) 2.51 (6) 3.244 (9) 138 (5)
C18—H18A⋯O4ii 0.96 2.53 3.460 (15) 162 (6)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+2].

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Substituted pyrrolidine compound is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products (Coldham et al., 2005; Grigg, 1995; Kravchenko et al., 2005; Nair et al., 2007; Pandey et al., 2006; Sardina et al., 1996; Witherup et al. 1995). Its crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

Related literature top

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Grigg (1995); Kravchenko et al. (2005); Nair & Suja (2007); Pandey et al. (2006); Sardina & Rapoport (1996); Witherup et al. (1995). For a related structure, see: He (2009).

Experimental top

2-Nitrobenzaldehyde (0.018 g, 0.12 mmol) and diethyl 2-aminomalonate (0.017 g, 0.1 mmol) were added to a solution of methyl but-3-en-2-one (0.014 g, 0.2 mmol) in dichloromethane (2 ml). To the stirred mixture, phosphenous acid (5 mg, 0.01 mmol) was added. After the mixture had been stirred at 293 K for 48 h, the reaction was quenched with a saturated solution of sodium bicarbonate (5 ml). The mixture was extracted with ethyl acetate, evaporated and separated by flash chromatograghy. A colourless powder was obtained. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution.

Refinement top

H atom on N atom was located in a difference Fourier map and refined isotropically. The carbon-bound hydrogen atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and refined using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for the others.

Structure description top

Substituted pyrrolidine compound is an important class of heterocyclic compounds with wide spread applications to the synthesis of biologically active compounds and natural products (Coldham et al., 2005; Grigg, 1995; Kravchenko et al., 2005; Nair et al., 2007; Pandey et al., 2006; Sardina et al., 1996; Witherup et al. 1995). Its crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. Bond lengths and angles in (I) are normal. The pyrrolidine ring possesses an envelope conformation. The crystal packing is stabilized by N—H···0 and C—H···0 hydrogen bonding (Table 1).

For the biological activity of pyrrolidine derivatives, see: Coldham & Hufton (2005); Grigg (1995); Kravchenko et al. (2005); Nair & Suja (2007); Pandey et al. (2006); Sardina & Rapoport (1996); Witherup et al. (1995). For a related structure, see: He (2009).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with 30% probability displacement ellipsoids (arbitrary spheres for H atoms).
Diethyl 4-acetyl-5-(2-nitrophenyl)pyrrolidine-2,2-dicarboxylate top
Crystal data top
C18H22N2O7F(000) = 400
Mr = 378.38Dx = 1.270 Mg m3
Monoclinic, P21Cu Kα radiation, λ = 1.54184 Å
Hall symbol: P 2ybCell parameters from 11509 reflections
a = 10.687 (5) Åθ = 4.2–72.3°
b = 7.760 (5) ŵ = 0.83 mm1
c = 12.030 (5) ÅT = 291 K
β = 97.455 (5)°Block, colorless
V = 989.2 (9) Å30.38 × 0.36 × 0.30 mm
Z = 2
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2105 independent reflections
Radiation source: Enhance Ultra (Cu) X-ray Source1915 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.023
ω scansθmax = 72.6°, θmin = 4.2°
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
h = 1313
Tmin = 0.743, Tmax = 0.789k = 89
19238 measured reflectionsl = 1414
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.081H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.166 w = 1/[σ2(Fo2) + (0.025P)2 + 1.3702P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
2105 reflectionsΔρmax = 0.33 e Å3
249 parametersΔρmin = 0.42 e Å3
42 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.017 (3)
Crystal data top
C18H22N2O7V = 989.2 (9) Å3
Mr = 378.38Z = 2
Monoclinic, P21Cu Kα radiation
a = 10.687 (5) ŵ = 0.83 mm1
b = 7.760 (5) ÅT = 291 K
c = 12.030 (5) Å0.38 × 0.36 × 0.30 mm
β = 97.455 (5)°
Data collection top
Oxford Diffraction Gemini S Ultra
diffractometer
2105 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1915 reflections with I > 2σ(I)
Tmin = 0.743, Tmax = 0.789Rint = 0.023
19238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08142 restraints
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.33 e Å3
2105 reflectionsΔρmin = 0.42 e Å3
249 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.0038 (5)0.2421 (8)0.5230 (4)0.0881 (16)
N20.2698 (5)0.3189 (8)0.6658 (4)0.0681 (15)
O50.1828 (5)0.4223 (10)0.8609 (6)0.117 (2)
C30.2453 (6)0.4941 (9)0.4653 (6)0.0641 (16)
H30.19410.51840.52020.077*
O10.4209 (6)0.0223 (8)0.4138 (5)0.0957 (18)
C20.3126 (5)0.3415 (9)0.4718 (5)0.0566 (14)
O60.4399 (5)0.1838 (10)0.8411 (4)0.108 (2)
O40.0249 (5)0.2457 (11)0.8118 (5)0.112 (2)
O20.5571 (5)0.1618 (10)0.3371 (5)0.120 (2)
C80.1956 (6)0.0846 (9)0.5533 (5)0.0631 (16)
H80.22470.01920.51800.076*
N10.4602 (6)0.1556 (10)0.3797 (5)0.0784 (17)
C70.3030 (5)0.2205 (9)0.5697 (4)0.0589 (15)
H70.38410.16240.59050.071*
C10.3875 (5)0.3157 (10)0.3870 (5)0.0605 (15)
C160.1311 (7)0.2862 (12)0.8096 (6)0.079 (2)
C40.2514 (6)0.6116 (10)0.3802 (6)0.0776 (19)
H40.20280.71130.37710.093*
C120.0663 (7)0.1228 (11)0.3583 (5)0.085 (2)
H12A0.00970.17600.32280.128*
H12B0.06200.00070.34550.128*
H12C0.13750.16940.32740.128*
C110.0803 (6)0.1578 (9)0.4820 (5)0.0649 (16)
O70.2881 (6)0.0324 (11)0.9076 (6)0.130 (2)
C100.2269 (6)0.1943 (11)0.7453 (5)0.0721 (19)
C60.3975 (6)0.4353 (11)0.3036 (6)0.0732 (19)
H60.45110.41490.25000.088*
C130.3357 (7)0.1387 (14)0.8371 (6)0.092 (2)
C90.1723 (8)0.0442 (10)0.6740 (5)0.080 (2)
H9A0.08260.03300.67820.096*
H9B0.21370.06250.69950.096*
C50.3294 (7)0.5809 (11)0.3001 (6)0.084 (2)
H50.33500.66110.24350.101*
C170.1066 (10)0.5318 (17)0.9259 (8)0.128 (3)
H17A0.01740.52310.89850.154*
H17B0.13250.65150.92460.154*
C140.3850 (10)0.0385 (18)1.0007 (8)0.137 (3)
H14A0.38740.16340.99940.165*
H14B0.46870.00640.99540.165*
C150.3341 (11)0.0277 (19)1.1036 (8)0.153 (3)
H15A0.38560.01411.16940.229*
H15B0.24900.01211.10360.229*
H15C0.33520.15141.10340.229*
C180.1366 (11)0.455 (2)1.0415 (9)0.158 (3)
H18A0.08960.51411.09250.237*
H18B0.22530.46641.06630.237*
H18C0.11410.33501.03910.237*
H100.342 (4)0.377 (8)0.693 (5)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.066 (2)0.101 (4)0.099 (4)0.003 (3)0.016 (3)0.005 (3)
N20.073 (3)0.076 (4)0.056 (3)0.017 (3)0.011 (2)0.010 (3)
O50.081 (3)0.119 (5)0.154 (4)0.015 (4)0.020 (3)0.040 (5)
C30.059 (3)0.062 (4)0.073 (4)0.001 (3)0.015 (3)0.002 (3)
O10.105 (4)0.091 (4)0.092 (4)0.024 (4)0.015 (3)0.000 (4)
C20.048 (3)0.065 (4)0.057 (3)0.007 (3)0.004 (2)0.003 (3)
O60.075 (3)0.172 (7)0.075 (3)0.018 (4)0.004 (2)0.009 (4)
O40.080 (3)0.162 (7)0.097 (4)0.018 (4)0.025 (3)0.000 (4)
O20.090 (3)0.153 (6)0.126 (4)0.051 (4)0.051 (3)0.031 (5)
C80.072 (4)0.058 (4)0.059 (3)0.007 (3)0.003 (3)0.000 (3)
N10.076 (4)0.093 (5)0.067 (3)0.020 (4)0.011 (3)0.001 (4)
C70.058 (3)0.066 (4)0.051 (3)0.007 (3)0.003 (2)0.000 (3)
C10.053 (3)0.070 (4)0.058 (3)0.005 (3)0.007 (2)0.000 (3)
C160.068 (4)0.106 (7)0.067 (4)0.001 (5)0.018 (3)0.010 (4)
C40.076 (4)0.066 (5)0.091 (5)0.002 (4)0.014 (4)0.005 (4)
C120.090 (5)0.086 (6)0.073 (4)0.010 (5)0.018 (3)0.001 (4)
C110.062 (3)0.062 (4)0.070 (4)0.014 (3)0.006 (3)0.002 (3)
O70.124 (3)0.135 (4)0.131 (3)0.003 (3)0.011 (2)0.020 (3)
C100.071 (4)0.092 (5)0.053 (3)0.014 (4)0.005 (3)0.002 (4)
C60.072 (4)0.084 (5)0.065 (4)0.002 (4)0.019 (3)0.001 (4)
C130.070 (4)0.127 (7)0.078 (4)0.001 (4)0.010 (3)0.023 (3)
C90.104 (5)0.076 (5)0.060 (4)0.021 (4)0.008 (4)0.006 (4)
C50.090 (5)0.077 (5)0.086 (5)0.005 (5)0.018 (4)0.015 (5)
C170.126 (4)0.131 (4)0.132 (3)0.013 (3)0.031 (3)0.018 (3)
C140.139 (4)0.140 (4)0.130 (3)0.006 (3)0.007 (2)0.017 (3)
C150.165 (4)0.155 (5)0.134 (3)0.009 (3)0.004 (3)0.002 (3)
C180.168 (5)0.165 (5)0.142 (3)0.009 (3)0.026 (3)0.001 (3)
Geometric parameters (Å, º) top
O3—C111.202 (8)C12—C111.501 (9)
N2—C71.467 (8)C12—H12A0.9600
N2—C101.474 (9)C12—H12B0.9600
N2—H100.92 (5)C12—H12C0.9600
O5—C161.308 (10)O7—C131.330 (11)
O5—C171.470 (11)O7—C141.525 (11)
C3—C41.378 (9)C10—C91.518 (10)
C3—C21.383 (9)C10—C131.557 (10)
C3—H30.9300C6—C51.342 (11)
O1—N11.208 (9)C6—H60.9300
C2—C11.390 (8)C9—H9A0.9700
C2—C71.521 (8)C9—H9B0.9700
O6—C131.162 (9)C5—H50.9300
O4—C161.181 (8)C17—C181.509 (9)
O2—N11.214 (7)C17—H17A0.9700
C8—C111.517 (8)C17—H17B0.9700
C8—C91.537 (8)C14—C151.506 (9)
C8—C71.552 (8)C14—H14A0.9700
C8—H80.9800C14—H14B0.9700
N1—C11.474 (9)C15—H15A0.9600
C7—H70.9800C15—H15B0.9600
C1—C61.382 (9)C15—H15C0.9600
C16—C101.536 (10)C18—H18A0.9600
C4—C51.375 (9)C18—H18B0.9600
C4—H40.9300C18—H18C0.9600
C7—N2—C10107.3 (6)N2—C10—C16107.8 (6)
C7—N2—H10105 (4)C9—C10—C16114.1 (6)
C10—N2—H10114 (4)N2—C10—C13112.0 (6)
C16—O5—C17119.2 (7)C9—C10—C13112.7 (7)
C4—C3—C2122.3 (6)C16—C10—C13104.9 (5)
C4—C3—H3118.9C5—C6—C1119.7 (6)
C2—C3—H3118.9C5—C6—H6120.1
C3—C2—C1115.3 (6)C1—C6—H6120.1
C3—C2—C7119.1 (5)O6—C13—O7127.1 (9)
C1—C2—C7125.6 (6)O6—C13—C10124.7 (9)
C11—C8—C9113.0 (5)O7—C13—C10108.2 (7)
C11—C8—C7110.5 (5)C10—C9—C8106.3 (6)
C9—C8—C7103.1 (5)C10—C9—H9A110.5
C11—C8—H8110.0C8—C9—H9A110.5
C9—C8—H8110.0C10—C9—H9B110.5
C7—C8—H8110.0C8—C9—H9B110.5
O1—N1—O2122.1 (8)H9A—C9—H9B108.7
O1—N1—C1119.4 (6)C6—C5—C4120.0 (7)
O2—N1—C1118.5 (8)C6—C5—H5120.0
N2—C7—C2109.7 (6)C4—C5—H5120.0
N2—C7—C8101.8 (5)O5—C17—C18101.2 (9)
C2—C7—C8116.4 (4)O5—C17—H17A111.5
N2—C7—H7109.6C18—C17—H17A111.5
C2—C7—H7109.6O5—C17—H17B111.5
C8—C7—H7109.6C18—C17—H17B111.5
C6—C1—C2122.8 (7)H17A—C17—H17B109.3
C6—C1—N1115.6 (6)C15—C14—O7101.4 (8)
C2—C1—N1121.6 (6)C15—C14—H14A111.5
O4—C16—O5123.5 (8)O7—C14—H14A111.5
O4—C16—C10126.3 (8)C15—C14—H14B111.5
O5—C16—C10110.1 (6)O7—C14—H14B111.5
C5—C4—C3119.8 (7)H14A—C14—H14B109.3
C5—C4—H4120.1C14—C15—H15A109.5
C3—C4—H4120.1C14—C15—H15B109.5
C11—C12—H12A109.5H15A—C15—H15B109.5
C11—C12—H12B109.5C14—C15—H15C109.5
H12A—C12—H12B109.5H15A—C15—H15C109.5
C11—C12—H12C109.5H15B—C15—H15C109.5
H12A—C12—H12C109.5C17—C18—H18A109.5
H12B—C12—H12C109.5C17—C18—H18B109.5
O3—C11—C12121.3 (7)H18A—C18—H18B109.5
O3—C11—C8121.1 (6)C17—C18—H18C109.5
C12—C11—C8117.6 (6)H18A—C18—H18C109.5
C13—O7—C14114.4 (7)H18B—C18—H18C109.5
N2—C10—C9105.4 (5)
C4—C3—C2—C10.5 (9)C7—N2—C10—C16150.7 (5)
C4—C3—C2—C7178.7 (6)C7—N2—C10—C1394.5 (7)
C10—N2—C7—C2164.3 (5)O4—C16—C10—N2120.5 (8)
C10—N2—C7—C840.5 (6)O5—C16—C10—N257.8 (8)
C3—C2—C7—N225.6 (7)O4—C16—C10—C93.7 (11)
C1—C2—C7—N2152.3 (6)O5—C16—C10—C9174.5 (7)
C3—C2—C7—C889.2 (7)O4—C16—C10—C13120.0 (9)
C1—C2—C7—C892.9 (7)O5—C16—C10—C1361.8 (9)
C11—C8—C7—N284.9 (6)C2—C1—C6—C52.4 (10)
C9—C8—C7—N236.2 (6)N1—C1—C6—C5176.5 (7)
C11—C8—C7—C234.3 (8)C14—O7—C13—O61.7 (14)
C9—C8—C7—C2155.3 (6)C14—O7—C13—C10178.0 (8)
C3—C2—C1—C61.7 (9)N2—C10—C13—O62.8 (12)
C7—C2—C1—C6176.3 (6)C9—C10—C13—O6115.9 (10)
C3—C2—C1—N1177.2 (6)C16—C10—C13—O6119.5 (10)
C7—C2—C1—N14.8 (9)N2—C10—C13—O7177.5 (7)
O1—N1—C1—C6148.9 (7)C9—C10—C13—O763.8 (8)
O2—N1—C1—C629.6 (9)C16—C10—C13—O760.8 (9)
O1—N1—C1—C230.0 (10)N2—C10—C9—C84.1 (8)
O2—N1—C1—C2151.4 (6)C16—C10—C9—C8122.2 (6)
C17—O5—C16—O40.4 (13)C13—C10—C9—C8118.4 (6)
C17—O5—C16—C10178.7 (7)C11—C8—C9—C1099.6 (7)
C2—C3—C4—C52.0 (11)C7—C8—C9—C1019.7 (7)
C9—C8—C11—O330.1 (9)C1—C6—C5—C40.8 (11)
C7—C8—C11—O384.8 (8)C3—C4—C5—C61.3 (11)
C9—C8—C11—C12150.7 (6)C16—O5—C17—C1893.1 (11)
C7—C8—C11—C1294.4 (7)C13—O7—C14—C15119.5 (10)
C7—N2—C10—C928.4 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···O2i0.92 (5)2.51 (6)3.244 (9)138 (5)
C18—H18A···O4ii0.962.533.460 (15)162 (6)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z+2.

Experimental details

Crystal data
Chemical formulaC18H22N2O7
Mr378.38
Crystal system, space groupMonoclinic, P21
Temperature (K)291
a, b, c (Å)10.687 (5), 7.760 (5), 12.030 (5)
β (°) 97.455 (5)
V3)989.2 (9)
Z2
Radiation typeCu Kα
µ (mm1)0.83
Crystal size (mm)0.38 × 0.36 × 0.30
Data collection
DiffractometerOxford Diffraction Gemini S Ultra
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.743, 0.789
No. of measured, independent and
observed [I > 2σ(I)] reflections
19238, 2105, 1915
Rint0.023
(sin θ/λ)max1)0.619
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.081, 0.166, 1.04
No. of reflections2105
No. of parameters249
No. of restraints42
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.42

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H10···O2i0.92 (5)2.51 (6)3.244 (9)138 (5)
C18—H18A···O4ii0.962.533.460 (15)162 (6)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y+1/2, z+2.
 

Acknowledgements

The diffraction measurements were made at the Centre for Testing and Analysis, Chengdu Branch, Chinese Academy of Sciences. I acknowledge financial support from China West Normal University.

References

First citationColdham, I. & Hufton, R. (2005). Chem. Rev. 105, 2765–2810.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGrigg, R. (1995). Tetrahedron Asymmetry, 6, 2475–2486.  CrossRef CAS Web of Science Google Scholar
First citationHe, L. (2009). Acta Cryst. E65, o2388.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & I vachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377–1383.  Google Scholar
First citationNair, V. & Suja, T. D. (2007). Tetrahedron, 63, 12247–12275.  Web of Science CrossRef CAS Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationPandey, G., Banerjee, P. & Gadre, S. R. (2006). Chem. Rev. 106, 4484–4517.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSardina, F. J. & Rapoport, H. (1996). Chem. Rev. 96, 1825–1872.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWitherup, K. M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M. & Varga, S. L. (1995). J. Am. Chem. Soc. 117, 6682–6685.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds