metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(C-meso-N-meso-5,12-Di­methyl-7,14-di­phenyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene)copper(II) bis­­[O,O′-bis­­(4-methyl­phen­yl)di­thio­phosphate]

aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn

(Received 31 October 2010; accepted 11 November 2010; online 17 November 2010)

In the title compound, [Cu(C24H32N4)](C14H14O2PS2)2, the CuII atom lies on an inversion center and is chelated by the macrocyclic ligand in a distorted CuN4 square-planar geometry. Two O,O′-bis­(4-methyl­phen­yl)dithio­phosphate anions occupy the axial positions with long Cu⋯S distances of 3.0090 (8) Å. Inter­molecular N—H⋯S and C—H⋯S hydrogen bonding is present between the anions and the cation.

Related literature

For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For complexes of CuI and CuII with O,O′-dialkyl­dithio­phosphate (DPP) ligands, see: Drew et al. (1987[Drew, M. G. B., Forsyth, G. A., Hasan, M., Hobson, R. J. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1027-1033.]); Liaw et al. (2005[Liaw, B. J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C.-W. (2005). Inorg. Chem. 44, 9921-9929.]). For the ability of CuII to form high nuclearity clusters, see: Liu et al. (1995[Liu, C.-W., Stubbs, T., Staples, R. J. & Fackler, J. P. J. (1995). J. Am. Chem. Soc. 117, 9778-9779.]); Li et al. (2008[Li, T., He, H.-B., Huang, M.-J., Cai, B.-Q., Jiang, M.-S. & Huang, B. (2008). J. Clust. Sci. 19, 651-658.]). For related structures, see: Feng et al. (2009[Feng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022.]); Xie et al. (2009[Xie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053.]); He et al. (2010[He, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.]). For the synthesis, see: Curtis (2001[Curtis, N. F. (2001). Inorg. Chim. Acta, 317, 27-32.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C24H32N4)](C14H14O2PS2)2

  • Mr = 1058.76

  • Monoclinic, P 21 /n

  • a = 9.9467 (18) Å

  • b = 19.829 (3) Å

  • c = 13.550 (2) Å

  • β = 107.563 (2)°

  • V = 2548.0 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.70 mm−1

  • T = 103 K

  • 0.43 × 0.27 × 0.17 mm

Data collection
  • Rigaku SPIDER diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.750, Tmax = 0.890

  • 19915 measured reflections

  • 5836 independent reflections

  • 4826 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.093

  • S = 1.00

  • 5836 reflections

  • 311 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯S2i 0.81 (2) 2.73 (2) 3.4868 (19) 157
C6—H6C⋯S2ii 0.98 2.80 3.755 (2) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

Data collection: RAPID-AUTO (Rigaku, 2004[Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan .]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The complexes of CuI and CuII with O,O' -dialkyldithiophosphate ligands (DDP), have been explored extensively in the past decades because of their potential use as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides (Drew et al., 1987; Liaw et al., 2005). A remarkable feature of the CuI is its ability to form high nuclearity clusters, in which the DDP ligands possess a variety of bridge bonding characteristics (Liu et al., 1995; Li et al., 2008). However, the reactions between CuII and DDP rarely give stable CuII complexes because the CuII atom is readily reduced by DDP to form CuI clusters. When reacting with DDP, the CuII can be stabilized by the formation of adducts with tetradentate nitrogen-donor ligands, e.g. macrocyclic tetramine. We have recently reported several structures of such kind of adducts (Feng et al., 2009; He et al., 2010). Herein, we report the structure of [Cu(meso-diphenyl[14]dien)] [S2P(OC6H4Me-4)2]2, where meso-diphenyl[14]dien is C-meso-N-meso-5,12-dimethyl-7,14- diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

The molecular of the title adduct comprises a complex cation [Cu(meso-diphenyl[14]dien)]2+ and two uncoordinated [S2P(OC6H4Me-4)2]- anion. Its structure is remarkably similar to the analogues, [Cu(trans-[14]dien)][S2P(OC6H4Me-4)2]2 (He et al., 2010) and ([Ni(trans-[14]dien)] [S2P(OC6H4Me-4)2]2 (Xie et al., 2009), where trans-[14]dien is meso-5,7,7,12,14,14-hexamethyl-1, 4,8,11-tetraazacyclotetradeca-4,11-diene. The CuII atom, lying on an inversion centre, is coordinated by four N atoms from the macrocyclic tetramine meso-diphenyl[14]dien and adopts a relatively undistorted square-planar geometry (Fig.1). The two [S2P(OC6H4Me-4)2]- anion, occupying the axial positions to form an octahedral asymmetric unit, only act as counter-ions to balance the charge and interact with the complex cation through N—H···S hydrogen bonds (Table 1). All the bond lengths and angles in the complex are generally within normal ranges (Allen et al., 1987).

Related literature top

For bond-length data, see: Allen et al. (1987). For complexes of CuI and CuII with O,O'-dialkyldithiophosphate (DPP) ligands, see: Drew et al. (1987); Liaw et al. (2005). For the ability of the CuI to form high nuclearity clusters, see: Liu et al. (1995); Li et al. (2008). For related structures, see: Feng et al. (2009); Xie et al. (2009); He et al. (2010). For the synthesis, see: Curtis (2001).

Experimental top

5,12-Dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (diphenyl[14]dien) was synthesized according to the procedure described by Curtis (2001).

A hot solution of CuCl2.H2O (1 mmol, 0.171 g) and diphenyl[14]dien (1 mmol, 0.376 g) in 20 ml ethanol was quickly added to [Et2NH2][S2P(OC6H4Me-4)2] (2 mmol, 0.823 g) dissolved in 20 ml hot ethanol with stirring. The mixture was refluxed for 4 h and refrigerated overnight, the purple product was filtered off, washed successively with water, methanol, ether and then air dried. The crude product was dissolved in hot dimethylformamide and filtered. The filtrate was kept at room temperature and violet block crystals suitable for X-ray diffraction studies were obtained after two months.

Refinement top

H atoms on C were fixed geometrically and treated as riding, with C—H = 1.00 (methine), 0.99 (methylene), 0.98 (methyl) or 0.95 Å (aromatic) and Uiso(H) = 1.2Ueq(C). H atom on N was located in a difference Fourier map and refined isotropically.

Structure description top

The complexes of CuI and CuII with O,O' -dialkyldithiophosphate ligands (DDP), have been explored extensively in the past decades because of their potential use as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides (Drew et al., 1987; Liaw et al., 2005). A remarkable feature of the CuI is its ability to form high nuclearity clusters, in which the DDP ligands possess a variety of bridge bonding characteristics (Liu et al., 1995; Li et al., 2008). However, the reactions between CuII and DDP rarely give stable CuII complexes because the CuII atom is readily reduced by DDP to form CuI clusters. When reacting with DDP, the CuII can be stabilized by the formation of adducts with tetradentate nitrogen-donor ligands, e.g. macrocyclic tetramine. We have recently reported several structures of such kind of adducts (Feng et al., 2009; He et al., 2010). Herein, we report the structure of [Cu(meso-diphenyl[14]dien)] [S2P(OC6H4Me-4)2]2, where meso-diphenyl[14]dien is C-meso-N-meso-5,12-dimethyl-7,14- diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.

The molecular of the title adduct comprises a complex cation [Cu(meso-diphenyl[14]dien)]2+ and two uncoordinated [S2P(OC6H4Me-4)2]- anion. Its structure is remarkably similar to the analogues, [Cu(trans-[14]dien)][S2P(OC6H4Me-4)2]2 (He et al., 2010) and ([Ni(trans-[14]dien)] [S2P(OC6H4Me-4)2]2 (Xie et al., 2009), where trans-[14]dien is meso-5,7,7,12,14,14-hexamethyl-1, 4,8,11-tetraazacyclotetradeca-4,11-diene. The CuII atom, lying on an inversion centre, is coordinated by four N atoms from the macrocyclic tetramine meso-diphenyl[14]dien and adopts a relatively undistorted square-planar geometry (Fig.1). The two [S2P(OC6H4Me-4)2]- anion, occupying the axial positions to form an octahedral asymmetric unit, only act as counter-ions to balance the charge and interact with the complex cation through N—H···S hydrogen bonds (Table 1). All the bond lengths and angles in the complex are generally within normal ranges (Allen et al., 1987).

For bond-length data, see: Allen et al. (1987). For complexes of CuI and CuII with O,O'-dialkyldithiophosphate (DPP) ligands, see: Drew et al. (1987); Liaw et al. (2005). For the ability of the CuI to form high nuclearity clusters, see: Liu et al. (1995); Li et al. (2008). For related structures, see: Feng et al. (2009); Xie et al. (2009); He et al. (2010). For the synthesis, see: Curtis (2001).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen-bonds are shown as dashed lines [symmetry code: (i) -x + 1, -y + 1, -z + 1].
(C-meso-N-meso-5,12-Dimethyl-7,14-diphenyl-1,4,8,11- tetraazacyclotetradeca-4,11-diene)copper(II) bis[O,O'-bis(4-methylphenyl)dithiophosphate] top
Crystal data top
[Cu(C24H32N4)](C14H14O2PS2)2F(000) = 1110
Mr = 1058.76Dx = 1.380 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 6736 reflections
a = 9.9467 (18) Åθ = 3.0–27.5°
b = 19.829 (3) ŵ = 0.70 mm1
c = 13.550 (2) ÅT = 103 K
β = 107.563 (2)°Block, violet
V = 2548.0 (8) Å30.43 × 0.27 × 0.17 mm
Z = 2
Data collection top
Rigaku SPIDER
diffractometer
5836 independent reflections
Radiation source: Rotating Anode4826 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.750, Tmax = 0.890k = 1825
19915 measured reflectionsl = 1517
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0451P)2 + 1.360P]
where P = (Fo2 + 2Fc2)/3
5836 reflections(Δ/σ)max = 0.001
311 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C24H32N4)](C14H14O2PS2)2V = 2548.0 (8) Å3
Mr = 1058.76Z = 2
Monoclinic, P21/nMo Kα radiation
a = 9.9467 (18) ŵ = 0.70 mm1
b = 19.829 (3) ÅT = 103 K
c = 13.550 (2) Å0.43 × 0.27 × 0.17 mm
β = 107.563 (2)°
Data collection top
Rigaku SPIDER
diffractometer
5836 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4826 reflections with I > 2σ(I)
Tmin = 0.750, Tmax = 0.890Rint = 0.037
19915 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.093H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.39 e Å3
5836 reflectionsΔρmin = 0.29 e Å3
311 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01698 (10)
P10.73029 (5)0.58172 (3)0.33214 (4)0.01667 (12)
S10.53338 (5)0.59003 (3)0.33017 (4)0.02142 (12)
S20.87798 (5)0.61491 (3)0.45230 (4)0.02187 (12)
O10.73913 (15)0.61604 (7)0.22511 (11)0.0209 (3)
O20.77276 (15)0.50382 (7)0.31829 (11)0.0196 (3)
N10.34219 (17)0.44424 (8)0.40943 (13)0.0142 (3)
N20.35057 (17)0.56801 (8)0.49380 (13)0.0153 (3)
C10.2328 (2)0.49252 (10)0.35271 (16)0.0175 (4)
H1A0.14330.46840.32000.021*
H1B0.26280.51500.29760.021*
C20.2112 (2)0.54459 (10)0.42844 (16)0.0181 (4)
H2A0.15620.58310.39030.022*
H2B0.15810.52440.47230.022*
C30.3657 (2)0.62765 (10)0.53057 (16)0.0168 (4)
C40.5066 (2)0.65355 (10)0.59550 (18)0.0215 (4)
H4A0.48900.68730.64400.026*
H4B0.54970.67790.54890.026*
C50.6161 (2)0.60396 (10)0.65898 (15)0.0166 (4)
H50.57190.57780.70420.020*
C60.2489 (2)0.67873 (10)0.50813 (17)0.0212 (4)
H6A0.23890.70000.44100.025*
H6B0.27120.71330.56240.025*
H6C0.16040.65630.50640.025*
C70.7405 (2)0.64289 (10)0.72869 (15)0.0172 (4)
C80.8229 (2)0.68434 (10)0.68628 (16)0.0196 (4)
H80.80240.68740.61330.024*
C90.9344 (2)0.72098 (11)0.75002 (17)0.0235 (5)
H90.98970.74890.72050.028*
C100.9650 (2)0.71691 (11)0.85647 (18)0.0274 (5)
H101.04070.74230.90010.033*
C110.8852 (2)0.67582 (12)0.89898 (17)0.0276 (5)
H110.90650.67270.97200.033*
C120.7739 (2)0.63893 (11)0.83531 (16)0.0229 (5)
H120.71990.61060.86540.027*
C130.8664 (2)0.61490 (11)0.20000 (16)0.0200 (4)
C140.8967 (2)0.56077 (12)0.14644 (16)0.0244 (5)
H140.83450.52330.12970.029*
C151.0187 (2)0.56155 (13)0.11728 (17)0.0275 (5)
H151.04030.52380.08160.033*
C161.1103 (2)0.61635 (12)0.13915 (16)0.0262 (5)
C171.0790 (2)0.66962 (12)0.19497 (17)0.0255 (5)
H171.14170.70690.21270.031*
C180.9572 (2)0.66934 (11)0.22540 (17)0.0222 (4)
H180.93670.70620.26330.027*
C191.2364 (3)0.61845 (15)0.0991 (2)0.0380 (6)
H19A1.20870.63830.02970.046*
H19B1.27140.57250.09610.046*
H19C1.31090.64590.14560.046*
C200.7003 (2)0.45865 (10)0.24260 (16)0.0190 (4)
C210.5841 (2)0.47540 (11)0.15902 (16)0.0211 (4)
H210.54680.51990.15180.025*
C220.5235 (2)0.42619 (11)0.08651 (17)0.0228 (5)
H220.44450.43770.02930.027*
C230.5747 (2)0.36063 (11)0.09503 (18)0.0251 (5)
C240.6912 (2)0.34575 (11)0.17858 (19)0.0277 (5)
H240.72870.30130.18580.033*
C250.7547 (2)0.39399 (11)0.25185 (18)0.0233 (5)
H250.83500.38270.30810.028*
C260.5040 (3)0.30853 (13)0.0151 (2)0.0374 (6)
H26A0.56410.26840.02400.045*
H26B0.48920.32720.05430.045*
H26C0.41290.29610.02380.045*
H1N0.313 (2)0.4242 (11)0.4505 (17)0.010 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.00918 (16)0.01796 (18)0.02017 (18)0.00287 (13)0.00105 (13)0.00585 (14)
P10.0135 (2)0.0205 (3)0.0162 (2)0.00016 (19)0.0050 (2)0.0009 (2)
S10.0133 (2)0.0297 (3)0.0214 (3)0.0016 (2)0.0055 (2)0.0021 (2)
S20.0159 (2)0.0296 (3)0.0201 (3)0.0048 (2)0.0055 (2)0.0039 (2)
O10.0156 (7)0.0284 (8)0.0194 (7)0.0006 (6)0.0062 (6)0.0053 (6)
O20.0194 (7)0.0201 (7)0.0179 (7)0.0027 (6)0.0034 (6)0.0002 (6)
N10.0111 (8)0.0157 (9)0.0154 (8)0.0015 (6)0.0033 (7)0.0002 (7)
N20.0107 (8)0.0172 (8)0.0166 (8)0.0004 (6)0.0023 (6)0.0003 (7)
C10.0119 (9)0.0186 (10)0.0186 (10)0.0001 (7)0.0003 (8)0.0010 (8)
C20.0095 (9)0.0168 (10)0.0256 (11)0.0004 (7)0.0018 (8)0.0012 (8)
C30.0131 (9)0.0191 (10)0.0188 (10)0.0015 (7)0.0058 (8)0.0009 (8)
C40.0140 (9)0.0177 (10)0.0305 (12)0.0017 (8)0.0031 (9)0.0067 (9)
C50.0127 (9)0.0196 (10)0.0178 (10)0.0006 (7)0.0050 (8)0.0028 (8)
C60.0147 (10)0.0168 (10)0.0297 (11)0.0043 (8)0.0032 (9)0.0003 (8)
C70.0136 (9)0.0188 (10)0.0169 (10)0.0016 (7)0.0012 (8)0.0044 (8)
C80.0181 (10)0.0223 (11)0.0176 (10)0.0001 (8)0.0039 (8)0.0036 (8)
C90.0175 (10)0.0226 (11)0.0289 (12)0.0023 (8)0.0050 (9)0.0048 (9)
C100.0191 (11)0.0296 (12)0.0270 (12)0.0016 (9)0.0030 (9)0.0123 (10)
C110.0260 (12)0.0355 (13)0.0166 (10)0.0042 (10)0.0004 (9)0.0054 (9)
C120.0219 (11)0.0277 (12)0.0183 (10)0.0014 (9)0.0051 (9)0.0000 (9)
C130.0154 (10)0.0290 (12)0.0162 (10)0.0004 (8)0.0059 (8)0.0057 (8)
C140.0240 (11)0.0312 (12)0.0194 (11)0.0051 (9)0.0085 (9)0.0012 (9)
C150.0248 (11)0.0410 (14)0.0185 (11)0.0018 (10)0.0094 (9)0.0002 (10)
C160.0170 (10)0.0449 (14)0.0154 (10)0.0006 (9)0.0030 (8)0.0102 (10)
C170.0203 (11)0.0318 (12)0.0221 (11)0.0050 (9)0.0031 (9)0.0102 (9)
C180.0223 (11)0.0228 (11)0.0210 (11)0.0010 (8)0.0058 (9)0.0053 (8)
C190.0198 (11)0.0663 (19)0.0288 (13)0.0008 (12)0.0086 (10)0.0091 (12)
C200.0202 (10)0.0223 (11)0.0172 (10)0.0033 (8)0.0094 (8)0.0001 (8)
C210.0237 (11)0.0220 (11)0.0184 (10)0.0011 (8)0.0077 (9)0.0030 (8)
C220.0236 (11)0.0260 (12)0.0204 (10)0.0077 (9)0.0093 (9)0.0008 (9)
C230.0280 (12)0.0274 (12)0.0268 (12)0.0104 (9)0.0184 (10)0.0044 (9)
C240.0295 (12)0.0208 (11)0.0379 (13)0.0010 (9)0.0178 (11)0.0008 (10)
C250.0217 (10)0.0225 (11)0.0277 (11)0.0013 (8)0.0104 (9)0.0039 (9)
C260.0385 (14)0.0340 (14)0.0445 (16)0.0150 (11)0.0198 (13)0.0120 (12)
Geometric parameters (Å, º) top
Cu1—N21.9899 (16)C9—C101.384 (3)
Cu1—N2i1.9900 (16)C9—H90.9500
Cu1—N1i2.0074 (16)C10—C111.379 (3)
Cu1—N12.0074 (16)C10—H100.9500
Cu1—S13.0090 (7)C11—C121.389 (3)
P1—O21.6272 (15)C11—H110.9500
P1—O11.6283 (15)C12—H120.9500
P1—S21.9489 (8)C13—C141.379 (3)
P1—S11.9577 (8)C13—C181.383 (3)
O1—C131.407 (2)C14—C151.385 (3)
O2—C201.388 (2)C14—H140.9500
N1—C5i1.475 (2)C15—C161.391 (3)
N1—C11.479 (2)C15—H150.9500
N1—H1N0.81 (2)C16—C171.388 (3)
N2—C31.274 (3)C16—C191.510 (3)
N2—C21.477 (2)C17—C181.392 (3)
C1—C21.516 (3)C17—H170.9500
C1—H1A0.9900C18—H180.9500
C1—H1B0.9900C19—H19A0.9800
C2—H2A0.9900C19—H19B0.9800
C2—H2B0.9900C19—H19C0.9800
C3—C61.502 (3)C20—C251.383 (3)
C3—C41.503 (3)C20—C211.393 (3)
C4—C51.526 (3)C21—C221.387 (3)
C4—H4A0.9900C21—H210.9500
C4—H4B0.9900C22—C231.388 (3)
C5—N1i1.475 (2)C22—H220.9500
C5—C71.521 (3)C23—C241.386 (3)
C5—H51.0000C23—C261.508 (3)
C6—H6A0.9800C24—C251.386 (3)
C6—H6B0.9800C24—H240.9500
C6—H6C0.9800C25—H250.9500
C7—C121.383 (3)C26—H26A0.9800
C7—C81.401 (3)C26—H26B0.9800
C8—C91.387 (3)C26—H26C0.9800
C8—H80.9500
N2—Cu1—N2i179.999 (1)C9—C8—C7120.6 (2)
N2—Cu1—N1i95.10 (7)C9—C8—H8119.7
N2i—Cu1—N1i84.90 (7)C7—C8—H8119.7
N2—Cu1—N184.91 (7)C10—C9—C8120.1 (2)
N2i—Cu1—N195.10 (7)C10—C9—H9120.0
N1i—Cu1—N1180.00 (9)C8—C9—H9120.0
N2—Cu1—S179.57 (5)C11—C10—C9119.8 (2)
N2i—Cu1—S1100.43 (5)C11—C10—H10120.1
N1i—Cu1—S183.94 (5)C9—C10—H10120.1
N1—Cu1—S196.06 (5)C10—C11—C12120.2 (2)
O2—P1—O1102.03 (8)C10—C11—H11119.9
O2—P1—S2105.09 (6)C12—C11—H11119.9
O1—P1—S2111.92 (6)C7—C12—C11120.9 (2)
O2—P1—S1111.82 (6)C7—C12—H12119.5
O1—P1—S1105.98 (6)C11—C12—H12119.5
S2—P1—S1118.81 (4)C14—C13—C18120.6 (2)
P1—S1—Cu1106.29 (3)C14—C13—O1119.69 (19)
C13—O1—P1120.20 (12)C18—C13—O1119.67 (19)
C20—O2—P1127.06 (13)C13—C14—C15119.4 (2)
C5i—N1—C1113.27 (16)C13—C14—H14120.3
C5i—N1—Cu1115.14 (12)C15—C14—H14120.3
C1—N1—Cu1106.15 (12)C14—C15—C16121.5 (2)
C5i—N1—H1N110.0 (15)C14—C15—H15119.3
C1—N1—H1N108.3 (15)C16—C15—H15119.3
Cu1—N1—H1N103.3 (15)C17—C16—C15118.1 (2)
C3—N2—C2120.32 (16)C17—C16—C19121.5 (2)
C3—N2—Cu1127.88 (14)C15—C16—C19120.4 (2)
C2—N2—Cu1111.48 (12)C16—C17—C18121.1 (2)
N1—C1—C2108.76 (16)C16—C17—H17119.5
N1—C1—H1A109.9C18—C17—H17119.5
C2—C1—H1A109.9C13—C18—C17119.4 (2)
N1—C1—H1B109.9C13—C18—H18120.3
C2—C1—H1B109.9C17—C18—H18120.3
H1A—C1—H1B108.3C16—C19—H19A109.5
N2—C2—C1108.72 (15)C16—C19—H19B109.5
N2—C2—H2A109.9H19A—C19—H19B109.5
C1—C2—H2A109.9C16—C19—H19C109.5
N2—C2—H2B109.9H19A—C19—H19C109.5
C1—C2—H2B109.9H19B—C19—H19C109.5
H2A—C2—H2B108.3C25—C20—O2115.45 (19)
N2—C3—C6123.65 (18)C25—C20—C21120.1 (2)
N2—C3—C4121.68 (18)O2—C20—C21124.44 (19)
C6—C3—C4114.57 (17)C22—C21—C20119.0 (2)
C3—C4—C5119.40 (17)C22—C21—H21120.5
C3—C4—H4A107.5C20—C21—H21120.5
C5—C4—H4A107.5C21—C22—C23122.0 (2)
C3—C4—H4B107.5C21—C22—H22119.0
C5—C4—H4B107.5C23—C22—H22119.0
H4A—C4—H4B107.0C24—C23—C22117.6 (2)
N1i—C5—C7112.89 (16)C24—C23—C26122.3 (2)
N1i—C5—C4110.59 (16)C22—C23—C26120.1 (2)
C7—C5—C4109.37 (16)C25—C24—C23121.7 (2)
N1i—C5—H5107.9C25—C24—H24119.1
C7—C5—H5107.9C23—C24—H24119.1
C4—C5—H5107.9C20—C25—C24119.6 (2)
C3—C6—H6A109.5C20—C25—H25120.2
C3—C6—H6B109.5C24—C25—H25120.2
H6A—C6—H6B109.5C23—C26—H26A109.5
C3—C6—H6C109.5C23—C26—H26B109.5
H6A—C6—H6C109.5H26A—C26—H26B109.5
H6B—C6—H6C109.5C23—C26—H26C109.5
C12—C7—C8118.42 (19)H26A—C26—H26C109.5
C12—C7—C5120.90 (19)H26B—C26—H26C109.5
C8—C7—C5120.67 (18)
O2—P1—S1—Cu156.88 (6)C3—C4—C5—C7172.28 (18)
O1—P1—S1—Cu1167.26 (6)N1i—C5—C7—C12120.0 (2)
S2—P1—S1—Cu165.82 (4)C4—C5—C7—C12116.4 (2)
N2—Cu1—S1—P1152.82 (5)N1i—C5—C7—C860.8 (2)
N2i—Cu1—S1—P127.17 (5)C4—C5—C7—C862.8 (2)
N1i—Cu1—S1—P156.49 (5)C12—C7—C8—C90.7 (3)
N1—Cu1—S1—P1123.51 (5)C5—C7—C8—C9178.54 (18)
O2—P1—O1—C1359.27 (16)C7—C8—C9—C100.1 (3)
S2—P1—O1—C1352.61 (16)C8—C9—C10—C110.6 (3)
S1—P1—O1—C13176.42 (13)C9—C10—C11—C120.4 (3)
O1—P1—O2—C2062.66 (17)C8—C7—C12—C110.8 (3)
S2—P1—O2—C20179.58 (14)C5—C7—C12—C11178.35 (19)
S1—P1—O2—C2050.21 (17)C10—C11—C12—C70.3 (3)
N2—Cu1—N1—C5i152.28 (14)P1—O1—C13—C1488.0 (2)
N2i—Cu1—N1—C5i27.72 (14)P1—O1—C13—C1894.8 (2)
S1—Cu1—N1—C5i73.36 (13)C18—C13—C14—C150.6 (3)
N2—Cu1—N1—C126.10 (13)O1—C13—C14—C15176.68 (19)
N2i—Cu1—N1—C1153.90 (13)C13—C14—C15—C161.2 (3)
S1—Cu1—N1—C152.82 (12)C14—C15—C16—C172.5 (3)
N1i—Cu1—N2—C35.34 (18)C14—C15—C16—C19175.1 (2)
N1—Cu1—N2—C3174.66 (18)C15—C16—C17—C182.0 (3)
S1—Cu1—N2—C377.53 (17)C19—C16—C17—C18175.5 (2)
N1i—Cu1—N2—C2178.79 (13)C14—C13—C18—C171.0 (3)
N1—Cu1—N2—C21.21 (13)O1—C13—C18—C17176.24 (18)
S1—Cu1—N2—C295.92 (13)C16—C17—C18—C130.3 (3)
C5i—N1—C1—C2173.11 (16)P1—O2—C20—C25176.35 (14)
Cu1—N1—C1—C245.81 (17)P1—O2—C20—C216.4 (3)
C3—N2—C2—C1150.36 (18)C25—C20—C21—C220.7 (3)
Cu1—N2—C2—C123.66 (19)O2—C20—C21—C22177.87 (18)
N1—C1—C2—N246.1 (2)C20—C21—C22—C230.4 (3)
C2—N2—C3—C62.5 (3)C21—C22—C23—C241.0 (3)
Cu1—N2—C3—C6170.41 (15)C21—C22—C23—C26179.1 (2)
C2—N2—C3—C4178.72 (18)C22—C23—C24—C250.5 (3)
Cu1—N2—C3—C45.8 (3)C26—C23—C24—C25179.6 (2)
N2—C3—C4—C527.8 (3)O2—C20—C25—C24178.60 (19)
C6—C3—C4—C5155.67 (19)C21—C20—C25—C241.2 (3)
C3—C4—C5—N1i62.8 (2)C23—C24—C25—C200.6 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S2i0.81 (2)2.73 (2)3.4868 (19)157
C6—H6C···S2ii0.982.803.755 (2)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C24H32N4)](C14H14O2PS2)2
Mr1058.76
Crystal system, space groupMonoclinic, P21/n
Temperature (K)103
a, b, c (Å)9.9467 (18), 19.829 (3), 13.550 (2)
β (°) 107.563 (2)
V3)2548.0 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.70
Crystal size (mm)0.43 × 0.27 × 0.17
Data collection
DiffractometerRigaku SPIDER
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.750, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
19915, 5836, 4826
Rint0.037
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.093, 1.00
No. of reflections5836
No. of parameters311
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.29

Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···S2i0.81 (2)2.73 (2)3.4868 (19)157
C6—H6C···S2ii0.982.803.755 (2)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1, y, z.
 

Acknowledgements

This work was supported by the Education Committee of Sichuan Province (No. 09ZA057), the Science and Technology Office of Zigong City (No. 08X01) and the Science and Technology Committee of Sichuan Province, China (No. 2010GZ0130).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationCurtis, N. F. (2001). Inorg. Chim. Acta, 317, 27–32.  Web of Science CrossRef CAS Google Scholar
First citationDrew, M. G. B., Forsyth, G. A., Hasan, M., Hobson, R. J. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1027–1033.  CSD CrossRef Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFeng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHe, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, T., He, H.-B., Huang, M.-J., Cai, B.-Q., Jiang, M.-S. & Huang, B. (2008). J. Clust. Sci. 19, 651–658.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiaw, B. J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C.-W. (2005). Inorg. Chem. 44, 9921–9929.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationLiu, C.-W., Stubbs, T., Staples, R. J. & Fackler, J. P. J. (1995). J. Am. Chem. Soc. 117, 9778–9779.  CSD CrossRef CAS Web of Science Google Scholar
First citationRigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan .  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds