metal-organic compounds
(C-meso-N-meso-5,12-Dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene)copper(II) bis[O,O′-bis(4-methylphenyl)dithiophosphate]
aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: zoulike@yahoo.com.cn
In the title compound, [Cu(C24H32N4)](C14H14O2PS2)2, the CuII atom lies on an inversion center and is chelated by the macrocyclic ligand in a distorted CuN4 square-planar geometry. Two O,O′-bis(4-methylphenyl)dithiophosphate anions occupy the axial positions with long Cu⋯S distances of 3.0090 (8) Å. Intermolecular N—H⋯S and C—H⋯S hydrogen bonding is present between the anions and the cation.
Related literature
For bond-length data, see: Allen et al. (1987). For complexes of CuI and CuII with O,O′-dialkyldithiophosphate (DPP) ligands, see: Drew et al. (1987); Liaw et al. (2005). For the ability of CuII to form high nuclearity clusters, see: Liu et al. (1995); Li et al. (2008). For related structures, see: Feng et al. (2009); Xie et al. (2009); He et al. (2010). For the synthesis, see: Curtis (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: RAPID-AUTO (Rigaku, 2004); cell RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810046672/xu5079sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046672/xu5079Isup2.hkl
5,12-Dimethyl-7,14-diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene (diphenyl[14]dien) was synthesized according to the procedure described by Curtis (2001).
A hot solution of CuCl2.H2O (1 mmol, 0.171 g) and diphenyl[14]dien (1 mmol, 0.376 g) in 20 ml ethanol was quickly added to [Et2NH2][S2P(OC6H4Me-4)2] (2 mmol, 0.823 g) dissolved in 20 ml hot ethanol with stirring. The mixture was refluxed for 4 h and refrigerated overnight, the purple product was filtered off, washed successively with water, methanol, ether and then air dried. The crude product was dissolved in hot dimethylformamide and filtered. The filtrate was kept at room temperature and violet block crystals suitable for X-ray diffraction studies were obtained after two months.
H atoms on C were fixed geometrically and treated as riding, with C—H = 1.00 (methine), 0.99 (methylene), 0.98 (methyl) or 0.95 Å (aromatic) and Uiso(H) = 1.2Ueq(C). H atom on N was located in a difference Fourier map and refined isotropically.
The complexes of CuI and CuII with O,O' -dialkyldithiophosphate ligands (DDP), have been explored extensively in the past decades because of their potential use as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides (Drew et al., 1987; Liaw et al., 2005). A remarkable feature of the CuI is its ability to form high nuclearity clusters, in which the DDP ligands possess a variety of bridge bonding characteristics (Liu et al., 1995; Li et al., 2008). However, the reactions between CuII and DDP rarely give stable CuII complexes because the CuII atom is readily reduced by DDP to form CuI clusters. When reacting with DDP, the CuII can be stabilized by the formation of adducts with tetradentate nitrogen-donor ligands, e.g. macrocyclic tetramine. We have recently reported several structures of such kind of adducts (Feng et al., 2009; He et al., 2010). Herein, we report the structure of [Cu(meso-diphenyl[14]dien)] [S2P(OC6H4Me-4)2]2, where meso-diphenyl[14]dien is C-meso-N-meso-5,12-dimethyl-7,14- diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.
The molecular of the title adduct comprises a complex cation [Cu(meso-diphenyl[14]dien)]2+ and two uncoordinated [S2P(OC6H4Me-4)2]- anion. Its structure is remarkably similar to the analogues, [Cu(trans-[14]dien)][S2P(OC6H4Me-4)2]2 (He et al., 2010) and ([Ni(trans-[14]dien)] [S2P(OC6H4Me-4)2]2 (Xie et al., 2009), where trans-[14]dien is meso-5,7,7,12,14,14-hexamethyl-1, 4,8,11-tetraazacyclotetradeca-4,11-diene. The CuII atom, lying on an inversion centre, is coordinated by four N atoms from the macrocyclic tetramine meso-diphenyl[14]dien and adopts a relatively undistorted square-planar geometry (Fig.1). The two [S2P(OC6H4Me-4)2]- anion, occupying the axial positions to form an octahedral
only act as counter-ions to balance the charge and interact with the complex cation through N—H···S hydrogen bonds (Table 1). All the bond lengths and angles in the complex are generally within normal ranges (Allen et al., 1987).For bond-length data, see: Allen et al. (1987). For complexes of CuI and CuII with O,O'-dialkyldithiophosphate (DPP) ligands, see: Drew et al. (1987); Liaw et al. (2005). For the ability of the CuI to form high nuclearity clusters, see: Liu et al. (1995); Li et al. (2008). For related structures, see: Feng et al. (2009); Xie et al. (2009); He et al. (2010). For the synthesis, see: Curtis (2001).
Data collection: RAPID-AUTO (Rigaku, 2004); cell
RAPID-AUTO (Rigaku, 2004); data reduction: RAPID-AUTO (Rigaku, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C24H32N4)](C14H14O2PS2)2 | F(000) = 1110 |
Mr = 1058.76 | Dx = 1.380 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 6736 reflections |
a = 9.9467 (18) Å | θ = 3.0–27.5° |
b = 19.829 (3) Å | µ = 0.70 mm−1 |
c = 13.550 (2) Å | T = 103 K |
β = 107.563 (2)° | Block, violet |
V = 2548.0 (8) Å3 | 0.43 × 0.27 × 0.17 mm |
Z = 2 |
Rigaku SPIDER diffractometer | 5836 independent reflections |
Radiation source: Rotating Anode | 4826 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 27.5°, θmin = 3.1° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −12→12 |
Tmin = 0.750, Tmax = 0.890 | k = −18→25 |
19915 measured reflections | l = −15→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.039 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0451P)2 + 1.360P] where P = (Fo2 + 2Fc2)/3 |
5836 reflections | (Δ/σ)max = 0.001 |
311 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Cu(C24H32N4)](C14H14O2PS2)2 | V = 2548.0 (8) Å3 |
Mr = 1058.76 | Z = 2 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.9467 (18) Å | µ = 0.70 mm−1 |
b = 19.829 (3) Å | T = 103 K |
c = 13.550 (2) Å | 0.43 × 0.27 × 0.17 mm |
β = 107.563 (2)° |
Rigaku SPIDER diffractometer | 5836 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 4826 reflections with I > 2σ(I) |
Tmin = 0.750, Tmax = 0.890 | Rint = 0.037 |
19915 measured reflections |
R[F2 > 2σ(F2)] = 0.039 | 0 restraints |
wR(F2) = 0.093 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.39 e Å−3 |
5836 reflections | Δρmin = −0.29 e Å−3 |
311 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.01698 (10) | |
P1 | 0.73029 (5) | 0.58172 (3) | 0.33214 (4) | 0.01667 (12) | |
S1 | 0.53338 (5) | 0.59003 (3) | 0.33017 (4) | 0.02142 (12) | |
S2 | 0.87798 (5) | 0.61491 (3) | 0.45230 (4) | 0.02187 (12) | |
O1 | 0.73913 (15) | 0.61604 (7) | 0.22511 (11) | 0.0209 (3) | |
O2 | 0.77276 (15) | 0.50382 (7) | 0.31829 (11) | 0.0196 (3) | |
N1 | 0.34219 (17) | 0.44424 (8) | 0.40943 (13) | 0.0142 (3) | |
N2 | 0.35057 (17) | 0.56801 (8) | 0.49380 (13) | 0.0153 (3) | |
C1 | 0.2328 (2) | 0.49252 (10) | 0.35271 (16) | 0.0175 (4) | |
H1A | 0.1433 | 0.4684 | 0.3200 | 0.021* | |
H1B | 0.2628 | 0.5150 | 0.2976 | 0.021* | |
C2 | 0.2112 (2) | 0.54459 (10) | 0.42844 (16) | 0.0181 (4) | |
H2A | 0.1562 | 0.5831 | 0.3903 | 0.022* | |
H2B | 0.1581 | 0.5244 | 0.4723 | 0.022* | |
C3 | 0.3657 (2) | 0.62765 (10) | 0.53057 (16) | 0.0168 (4) | |
C4 | 0.5066 (2) | 0.65355 (10) | 0.59550 (18) | 0.0215 (4) | |
H4A | 0.4890 | 0.6873 | 0.6440 | 0.026* | |
H4B | 0.5497 | 0.6779 | 0.5489 | 0.026* | |
C5 | 0.6161 (2) | 0.60396 (10) | 0.65898 (15) | 0.0166 (4) | |
H5 | 0.5719 | 0.5778 | 0.7042 | 0.020* | |
C6 | 0.2489 (2) | 0.67873 (10) | 0.50813 (17) | 0.0212 (4) | |
H6A | 0.2389 | 0.7000 | 0.4410 | 0.025* | |
H6B | 0.2712 | 0.7133 | 0.5624 | 0.025* | |
H6C | 0.1604 | 0.6563 | 0.5064 | 0.025* | |
C7 | 0.7405 (2) | 0.64289 (10) | 0.72869 (15) | 0.0172 (4) | |
C8 | 0.8229 (2) | 0.68434 (10) | 0.68628 (16) | 0.0196 (4) | |
H8 | 0.8024 | 0.6874 | 0.6133 | 0.024* | |
C9 | 0.9344 (2) | 0.72098 (11) | 0.75002 (17) | 0.0235 (5) | |
H9 | 0.9897 | 0.7489 | 0.7205 | 0.028* | |
C10 | 0.9650 (2) | 0.71691 (11) | 0.85647 (18) | 0.0274 (5) | |
H10 | 1.0407 | 0.7423 | 0.9001 | 0.033* | |
C11 | 0.8852 (2) | 0.67582 (12) | 0.89898 (17) | 0.0276 (5) | |
H11 | 0.9065 | 0.6727 | 0.9720 | 0.033* | |
C12 | 0.7739 (2) | 0.63893 (11) | 0.83531 (16) | 0.0229 (5) | |
H12 | 0.7199 | 0.6106 | 0.8654 | 0.027* | |
C13 | 0.8664 (2) | 0.61490 (11) | 0.20000 (16) | 0.0200 (4) | |
C14 | 0.8967 (2) | 0.56077 (12) | 0.14644 (16) | 0.0244 (5) | |
H14 | 0.8345 | 0.5233 | 0.1297 | 0.029* | |
C15 | 1.0187 (2) | 0.56155 (13) | 0.11728 (17) | 0.0275 (5) | |
H15 | 1.0403 | 0.5238 | 0.0816 | 0.033* | |
C16 | 1.1103 (2) | 0.61635 (12) | 0.13915 (16) | 0.0262 (5) | |
C17 | 1.0790 (2) | 0.66962 (12) | 0.19497 (17) | 0.0255 (5) | |
H17 | 1.1417 | 0.7069 | 0.2127 | 0.031* | |
C18 | 0.9572 (2) | 0.66934 (11) | 0.22540 (17) | 0.0222 (4) | |
H18 | 0.9367 | 0.7062 | 0.2633 | 0.027* | |
C19 | 1.2364 (3) | 0.61845 (15) | 0.0991 (2) | 0.0380 (6) | |
H19A | 1.2087 | 0.6383 | 0.0297 | 0.046* | |
H19B | 1.2714 | 0.5725 | 0.0961 | 0.046* | |
H19C | 1.3109 | 0.6459 | 0.1456 | 0.046* | |
C20 | 0.7003 (2) | 0.45865 (10) | 0.24260 (16) | 0.0190 (4) | |
C21 | 0.5841 (2) | 0.47540 (11) | 0.15902 (16) | 0.0211 (4) | |
H21 | 0.5468 | 0.5199 | 0.1518 | 0.025* | |
C22 | 0.5235 (2) | 0.42619 (11) | 0.08651 (17) | 0.0228 (5) | |
H22 | 0.4445 | 0.4377 | 0.0293 | 0.027* | |
C23 | 0.5747 (2) | 0.36063 (11) | 0.09503 (18) | 0.0251 (5) | |
C24 | 0.6912 (2) | 0.34575 (11) | 0.17858 (19) | 0.0277 (5) | |
H24 | 0.7287 | 0.3013 | 0.1858 | 0.033* | |
C25 | 0.7547 (2) | 0.39399 (11) | 0.25185 (18) | 0.0233 (5) | |
H25 | 0.8350 | 0.3827 | 0.3081 | 0.028* | |
C26 | 0.5040 (3) | 0.30853 (13) | 0.0151 (2) | 0.0374 (6) | |
H26A | 0.5641 | 0.2684 | 0.0240 | 0.045* | |
H26B | 0.4892 | 0.3272 | −0.0543 | 0.045* | |
H26C | 0.4129 | 0.2961 | 0.0238 | 0.045* | |
H1N | 0.313 (2) | 0.4242 (11) | 0.4505 (17) | 0.010 (5)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.00918 (16) | 0.01796 (18) | 0.02017 (18) | 0.00287 (13) | −0.00105 (13) | −0.00585 (14) |
P1 | 0.0135 (2) | 0.0205 (3) | 0.0162 (2) | −0.00016 (19) | 0.0050 (2) | 0.0009 (2) |
S1 | 0.0133 (2) | 0.0297 (3) | 0.0214 (3) | 0.0016 (2) | 0.0055 (2) | 0.0021 (2) |
S2 | 0.0159 (2) | 0.0296 (3) | 0.0201 (3) | −0.0048 (2) | 0.0055 (2) | −0.0039 (2) |
O1 | 0.0156 (7) | 0.0284 (8) | 0.0194 (7) | 0.0006 (6) | 0.0062 (6) | 0.0053 (6) |
O2 | 0.0194 (7) | 0.0201 (7) | 0.0179 (7) | 0.0027 (6) | 0.0034 (6) | −0.0002 (6) |
N1 | 0.0111 (8) | 0.0157 (9) | 0.0154 (8) | 0.0015 (6) | 0.0033 (7) | 0.0002 (7) |
N2 | 0.0107 (8) | 0.0172 (8) | 0.0166 (8) | 0.0004 (6) | 0.0023 (6) | −0.0003 (7) |
C1 | 0.0119 (9) | 0.0186 (10) | 0.0186 (10) | 0.0001 (7) | −0.0003 (8) | −0.0010 (8) |
C2 | 0.0095 (9) | 0.0168 (10) | 0.0256 (11) | 0.0004 (7) | 0.0018 (8) | −0.0012 (8) |
C3 | 0.0131 (9) | 0.0191 (10) | 0.0188 (10) | 0.0015 (7) | 0.0058 (8) | 0.0009 (8) |
C4 | 0.0140 (9) | 0.0177 (10) | 0.0305 (12) | 0.0017 (8) | 0.0031 (9) | −0.0067 (9) |
C5 | 0.0127 (9) | 0.0196 (10) | 0.0178 (10) | −0.0006 (7) | 0.0050 (8) | −0.0028 (8) |
C6 | 0.0147 (10) | 0.0168 (10) | 0.0297 (11) | 0.0043 (8) | 0.0032 (9) | −0.0003 (8) |
C7 | 0.0136 (9) | 0.0188 (10) | 0.0169 (10) | 0.0016 (7) | 0.0012 (8) | −0.0044 (8) |
C8 | 0.0181 (10) | 0.0223 (11) | 0.0176 (10) | 0.0001 (8) | 0.0039 (8) | −0.0036 (8) |
C9 | 0.0175 (10) | 0.0226 (11) | 0.0289 (12) | −0.0023 (8) | 0.0050 (9) | −0.0048 (9) |
C10 | 0.0191 (11) | 0.0296 (12) | 0.0270 (12) | −0.0016 (9) | −0.0030 (9) | −0.0123 (10) |
C11 | 0.0260 (12) | 0.0355 (13) | 0.0166 (10) | 0.0042 (10) | −0.0004 (9) | −0.0054 (9) |
C12 | 0.0219 (11) | 0.0277 (12) | 0.0183 (10) | 0.0014 (9) | 0.0051 (9) | 0.0000 (9) |
C13 | 0.0154 (10) | 0.0290 (12) | 0.0162 (10) | 0.0004 (8) | 0.0059 (8) | 0.0057 (8) |
C14 | 0.0240 (11) | 0.0312 (12) | 0.0194 (11) | −0.0051 (9) | 0.0085 (9) | −0.0012 (9) |
C15 | 0.0248 (11) | 0.0410 (14) | 0.0185 (11) | 0.0018 (10) | 0.0094 (9) | −0.0002 (10) |
C16 | 0.0170 (10) | 0.0449 (14) | 0.0154 (10) | 0.0006 (9) | 0.0030 (8) | 0.0102 (10) |
C17 | 0.0203 (11) | 0.0318 (12) | 0.0221 (11) | −0.0050 (9) | 0.0031 (9) | 0.0102 (9) |
C18 | 0.0223 (11) | 0.0228 (11) | 0.0210 (11) | 0.0010 (8) | 0.0058 (9) | 0.0053 (8) |
C19 | 0.0198 (11) | 0.0663 (19) | 0.0288 (13) | −0.0008 (12) | 0.0086 (10) | 0.0091 (12) |
C20 | 0.0202 (10) | 0.0223 (11) | 0.0172 (10) | −0.0033 (8) | 0.0094 (8) | −0.0001 (8) |
C21 | 0.0237 (11) | 0.0220 (11) | 0.0184 (10) | −0.0011 (8) | 0.0077 (9) | 0.0030 (8) |
C22 | 0.0236 (11) | 0.0260 (12) | 0.0204 (10) | −0.0077 (9) | 0.0093 (9) | 0.0008 (9) |
C23 | 0.0280 (12) | 0.0274 (12) | 0.0268 (12) | −0.0104 (9) | 0.0184 (10) | −0.0044 (9) |
C24 | 0.0295 (12) | 0.0208 (11) | 0.0379 (13) | −0.0010 (9) | 0.0178 (11) | 0.0008 (10) |
C25 | 0.0217 (10) | 0.0225 (11) | 0.0277 (11) | 0.0013 (8) | 0.0104 (9) | 0.0039 (9) |
C26 | 0.0385 (14) | 0.0340 (14) | 0.0445 (16) | −0.0150 (11) | 0.0198 (13) | −0.0120 (12) |
Cu1—N2 | 1.9899 (16) | C9—C10 | 1.384 (3) |
Cu1—N2i | 1.9900 (16) | C9—H9 | 0.9500 |
Cu1—N1i | 2.0074 (16) | C10—C11 | 1.379 (3) |
Cu1—N1 | 2.0074 (16) | C10—H10 | 0.9500 |
Cu1—S1 | 3.0090 (7) | C11—C12 | 1.389 (3) |
P1—O2 | 1.6272 (15) | C11—H11 | 0.9500 |
P1—O1 | 1.6283 (15) | C12—H12 | 0.9500 |
P1—S2 | 1.9489 (8) | C13—C14 | 1.379 (3) |
P1—S1 | 1.9577 (8) | C13—C18 | 1.383 (3) |
O1—C13 | 1.407 (2) | C14—C15 | 1.385 (3) |
O2—C20 | 1.388 (2) | C14—H14 | 0.9500 |
N1—C5i | 1.475 (2) | C15—C16 | 1.391 (3) |
N1—C1 | 1.479 (2) | C15—H15 | 0.9500 |
N1—H1N | 0.81 (2) | C16—C17 | 1.388 (3) |
N2—C3 | 1.274 (3) | C16—C19 | 1.510 (3) |
N2—C2 | 1.477 (2) | C17—C18 | 1.392 (3) |
C1—C2 | 1.516 (3) | C17—H17 | 0.9500 |
C1—H1A | 0.9900 | C18—H18 | 0.9500 |
C1—H1B | 0.9900 | C19—H19A | 0.9800 |
C2—H2A | 0.9900 | C19—H19B | 0.9800 |
C2—H2B | 0.9900 | C19—H19C | 0.9800 |
C3—C6 | 1.502 (3) | C20—C25 | 1.383 (3) |
C3—C4 | 1.503 (3) | C20—C21 | 1.393 (3) |
C4—C5 | 1.526 (3) | C21—C22 | 1.387 (3) |
C4—H4A | 0.9900 | C21—H21 | 0.9500 |
C4—H4B | 0.9900 | C22—C23 | 1.388 (3) |
C5—N1i | 1.475 (2) | C22—H22 | 0.9500 |
C5—C7 | 1.521 (3) | C23—C24 | 1.386 (3) |
C5—H5 | 1.0000 | C23—C26 | 1.508 (3) |
C6—H6A | 0.9800 | C24—C25 | 1.386 (3) |
C6—H6B | 0.9800 | C24—H24 | 0.9500 |
C6—H6C | 0.9800 | C25—H25 | 0.9500 |
C7—C12 | 1.383 (3) | C26—H26A | 0.9800 |
C7—C8 | 1.401 (3) | C26—H26B | 0.9800 |
C8—C9 | 1.387 (3) | C26—H26C | 0.9800 |
C8—H8 | 0.9500 | ||
N2—Cu1—N2i | 179.999 (1) | C9—C8—C7 | 120.6 (2) |
N2—Cu1—N1i | 95.10 (7) | C9—C8—H8 | 119.7 |
N2i—Cu1—N1i | 84.90 (7) | C7—C8—H8 | 119.7 |
N2—Cu1—N1 | 84.91 (7) | C10—C9—C8 | 120.1 (2) |
N2i—Cu1—N1 | 95.10 (7) | C10—C9—H9 | 120.0 |
N1i—Cu1—N1 | 180.00 (9) | C8—C9—H9 | 120.0 |
N2—Cu1—S1 | 79.57 (5) | C11—C10—C9 | 119.8 (2) |
N2i—Cu1—S1 | 100.43 (5) | C11—C10—H10 | 120.1 |
N1i—Cu1—S1 | 83.94 (5) | C9—C10—H10 | 120.1 |
N1—Cu1—S1 | 96.06 (5) | C10—C11—C12 | 120.2 (2) |
O2—P1—O1 | 102.03 (8) | C10—C11—H11 | 119.9 |
O2—P1—S2 | 105.09 (6) | C12—C11—H11 | 119.9 |
O1—P1—S2 | 111.92 (6) | C7—C12—C11 | 120.9 (2) |
O2—P1—S1 | 111.82 (6) | C7—C12—H12 | 119.5 |
O1—P1—S1 | 105.98 (6) | C11—C12—H12 | 119.5 |
S2—P1—S1 | 118.81 (4) | C14—C13—C18 | 120.6 (2) |
P1—S1—Cu1 | 106.29 (3) | C14—C13—O1 | 119.69 (19) |
C13—O1—P1 | 120.20 (12) | C18—C13—O1 | 119.67 (19) |
C20—O2—P1 | 127.06 (13) | C13—C14—C15 | 119.4 (2) |
C5i—N1—C1 | 113.27 (16) | C13—C14—H14 | 120.3 |
C5i—N1—Cu1 | 115.14 (12) | C15—C14—H14 | 120.3 |
C1—N1—Cu1 | 106.15 (12) | C14—C15—C16 | 121.5 (2) |
C5i—N1—H1N | 110.0 (15) | C14—C15—H15 | 119.3 |
C1—N1—H1N | 108.3 (15) | C16—C15—H15 | 119.3 |
Cu1—N1—H1N | 103.3 (15) | C17—C16—C15 | 118.1 (2) |
C3—N2—C2 | 120.32 (16) | C17—C16—C19 | 121.5 (2) |
C3—N2—Cu1 | 127.88 (14) | C15—C16—C19 | 120.4 (2) |
C2—N2—Cu1 | 111.48 (12) | C16—C17—C18 | 121.1 (2) |
N1—C1—C2 | 108.76 (16) | C16—C17—H17 | 119.5 |
N1—C1—H1A | 109.9 | C18—C17—H17 | 119.5 |
C2—C1—H1A | 109.9 | C13—C18—C17 | 119.4 (2) |
N1—C1—H1B | 109.9 | C13—C18—H18 | 120.3 |
C2—C1—H1B | 109.9 | C17—C18—H18 | 120.3 |
H1A—C1—H1B | 108.3 | C16—C19—H19A | 109.5 |
N2—C2—C1 | 108.72 (15) | C16—C19—H19B | 109.5 |
N2—C2—H2A | 109.9 | H19A—C19—H19B | 109.5 |
C1—C2—H2A | 109.9 | C16—C19—H19C | 109.5 |
N2—C2—H2B | 109.9 | H19A—C19—H19C | 109.5 |
C1—C2—H2B | 109.9 | H19B—C19—H19C | 109.5 |
H2A—C2—H2B | 108.3 | C25—C20—O2 | 115.45 (19) |
N2—C3—C6 | 123.65 (18) | C25—C20—C21 | 120.1 (2) |
N2—C3—C4 | 121.68 (18) | O2—C20—C21 | 124.44 (19) |
C6—C3—C4 | 114.57 (17) | C22—C21—C20 | 119.0 (2) |
C3—C4—C5 | 119.40 (17) | C22—C21—H21 | 120.5 |
C3—C4—H4A | 107.5 | C20—C21—H21 | 120.5 |
C5—C4—H4A | 107.5 | C21—C22—C23 | 122.0 (2) |
C3—C4—H4B | 107.5 | C21—C22—H22 | 119.0 |
C5—C4—H4B | 107.5 | C23—C22—H22 | 119.0 |
H4A—C4—H4B | 107.0 | C24—C23—C22 | 117.6 (2) |
N1i—C5—C7 | 112.89 (16) | C24—C23—C26 | 122.3 (2) |
N1i—C5—C4 | 110.59 (16) | C22—C23—C26 | 120.1 (2) |
C7—C5—C4 | 109.37 (16) | C25—C24—C23 | 121.7 (2) |
N1i—C5—H5 | 107.9 | C25—C24—H24 | 119.1 |
C7—C5—H5 | 107.9 | C23—C24—H24 | 119.1 |
C4—C5—H5 | 107.9 | C20—C25—C24 | 119.6 (2) |
C3—C6—H6A | 109.5 | C20—C25—H25 | 120.2 |
C3—C6—H6B | 109.5 | C24—C25—H25 | 120.2 |
H6A—C6—H6B | 109.5 | C23—C26—H26A | 109.5 |
C3—C6—H6C | 109.5 | C23—C26—H26B | 109.5 |
H6A—C6—H6C | 109.5 | H26A—C26—H26B | 109.5 |
H6B—C6—H6C | 109.5 | C23—C26—H26C | 109.5 |
C12—C7—C8 | 118.42 (19) | H26A—C26—H26C | 109.5 |
C12—C7—C5 | 120.90 (19) | H26B—C26—H26C | 109.5 |
C8—C7—C5 | 120.67 (18) | ||
O2—P1—S1—Cu1 | 56.88 (6) | C3—C4—C5—C7 | −172.28 (18) |
O1—P1—S1—Cu1 | 167.26 (6) | N1i—C5—C7—C12 | −120.0 (2) |
S2—P1—S1—Cu1 | −65.82 (4) | C4—C5—C7—C12 | 116.4 (2) |
N2—Cu1—S1—P1 | 152.82 (5) | N1i—C5—C7—C8 | 60.8 (2) |
N2i—Cu1—S1—P1 | −27.17 (5) | C4—C5—C7—C8 | −62.8 (2) |
N1i—Cu1—S1—P1 | 56.49 (5) | C12—C7—C8—C9 | −0.7 (3) |
N1—Cu1—S1—P1 | −123.51 (5) | C5—C7—C8—C9 | 178.54 (18) |
O2—P1—O1—C13 | −59.27 (16) | C7—C8—C9—C10 | −0.1 (3) |
S2—P1—O1—C13 | 52.61 (16) | C8—C9—C10—C11 | 0.6 (3) |
S1—P1—O1—C13 | −176.42 (13) | C9—C10—C11—C12 | −0.4 (3) |
O1—P1—O2—C20 | −62.66 (17) | C8—C7—C12—C11 | 0.8 (3) |
S2—P1—O2—C20 | −179.58 (14) | C5—C7—C12—C11 | −178.35 (19) |
S1—P1—O2—C20 | 50.21 (17) | C10—C11—C12—C7 | −0.3 (3) |
N2—Cu1—N1—C5i | 152.28 (14) | P1—O1—C13—C14 | 88.0 (2) |
N2i—Cu1—N1—C5i | −27.72 (14) | P1—O1—C13—C18 | −94.8 (2) |
S1—Cu1—N1—C5i | 73.36 (13) | C18—C13—C14—C15 | −0.6 (3) |
N2—Cu1—N1—C1 | 26.10 (13) | O1—C13—C14—C15 | 176.68 (19) |
N2i—Cu1—N1—C1 | −153.90 (13) | C13—C14—C15—C16 | −1.2 (3) |
S1—Cu1—N1—C1 | −52.82 (12) | C14—C15—C16—C17 | 2.5 (3) |
N1i—Cu1—N2—C3 | 5.34 (18) | C14—C15—C16—C19 | −175.1 (2) |
N1—Cu1—N2—C3 | −174.66 (18) | C15—C16—C17—C18 | −2.0 (3) |
S1—Cu1—N2—C3 | −77.53 (17) | C19—C16—C17—C18 | 175.5 (2) |
N1i—Cu1—N2—C2 | 178.79 (13) | C14—C13—C18—C17 | 1.0 (3) |
N1—Cu1—N2—C2 | −1.21 (13) | O1—C13—C18—C17 | −176.24 (18) |
S1—Cu1—N2—C2 | 95.92 (13) | C16—C17—C18—C13 | 0.3 (3) |
C5i—N1—C1—C2 | −173.11 (16) | P1—O2—C20—C25 | −176.35 (14) |
Cu1—N1—C1—C2 | −45.81 (17) | P1—O2—C20—C21 | 6.4 (3) |
C3—N2—C2—C1 | 150.36 (18) | C25—C20—C21—C22 | 0.7 (3) |
Cu1—N2—C2—C1 | −23.66 (19) | O2—C20—C21—C22 | 177.87 (18) |
N1—C1—C2—N2 | 46.1 (2) | C20—C21—C22—C23 | 0.4 (3) |
C2—N2—C3—C6 | −2.5 (3) | C21—C22—C23—C24 | −1.0 (3) |
Cu1—N2—C3—C6 | 170.41 (15) | C21—C22—C23—C26 | 179.1 (2) |
C2—N2—C3—C4 | −178.72 (18) | C22—C23—C24—C25 | 0.5 (3) |
Cu1—N2—C3—C4 | −5.8 (3) | C26—C23—C24—C25 | −179.6 (2) |
N2—C3—C4—C5 | −27.8 (3) | O2—C20—C25—C24 | −178.60 (19) |
C6—C3—C4—C5 | 155.67 (19) | C21—C20—C25—C24 | −1.2 (3) |
C3—C4—C5—N1i | 62.8 (2) | C23—C24—C25—C20 | 0.6 (3) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S2i | 0.81 (2) | 2.73 (2) | 3.4868 (19) | 157 |
C6—H6C···S2ii | 0.98 | 2.80 | 3.755 (2) | 164 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C24H32N4)](C14H14O2PS2)2 |
Mr | 1058.76 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 103 |
a, b, c (Å) | 9.9467 (18), 19.829 (3), 13.550 (2) |
β (°) | 107.563 (2) |
V (Å3) | 2548.0 (8) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.43 × 0.27 × 0.17 |
Data collection | |
Diffractometer | Rigaku SPIDER |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.750, 0.890 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 19915, 5836, 4826 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.039, 0.093, 1.00 |
No. of reflections | 5836 |
No. of parameters | 311 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.39, −0.29 |
Computer programs: RAPID-AUTO (Rigaku, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···S2i | 0.81 (2) | 2.73 (2) | 3.4868 (19) | 157 |
C6—H6C···S2ii | 0.98 | 2.80 | 3.755 (2) | 164 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z. |
Acknowledgements
This work was supported by the Education Committee of Sichuan Province (No. 09ZA057), the Science and Technology Office of Zigong City (No. 08X01) and the Science and Technology Committee of Sichuan Province, China (No. 2010GZ0130).
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Curtis, N. F. (2001). Inorg. Chim. Acta, 317, 27–32. Web of Science CrossRef CAS Google Scholar
Drew, M. G. B., Forsyth, G. A., Hasan, M., Hobson, R. J. & Rice, D. A. (1987). J. Chem. Soc. Dalton Trans. pp. 1027–1033. CSD CrossRef Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Feng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022. Web of Science CSD CrossRef IUCr Journals Google Scholar
He, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428. Web of Science CrossRef IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Li, T., He, H.-B., Huang, M.-J., Cai, B.-Q., Jiang, M.-S. & Huang, B. (2008). J. Clust. Sci. 19, 651–658. Web of Science CSD CrossRef CAS Google Scholar
Liaw, B. J., Lobana, T. S., Lin, Y.-W., Wang, J.-C. & Liu, C.-W. (2005). Inorg. Chem. 44, 9921–9929. Web of Science CSD CrossRef PubMed CAS Google Scholar
Liu, C.-W., Stubbs, T., Staples, R. J. & Fackler, J. P. J. (1995). J. Am. Chem. Soc. 117, 9778–9779. CSD CrossRef CAS Web of Science Google Scholar
Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan . Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The complexes of CuI and CuII with O,O' -dialkyldithiophosphate ligands (DDP), have been explored extensively in the past decades because of their potential use as anti-oxidants, additives to lubricating oils, flotation reagents, insecticides (Drew et al., 1987; Liaw et al., 2005). A remarkable feature of the CuI is its ability to form high nuclearity clusters, in which the DDP ligands possess a variety of bridge bonding characteristics (Liu et al., 1995; Li et al., 2008). However, the reactions between CuII and DDP rarely give stable CuII complexes because the CuII atom is readily reduced by DDP to form CuI clusters. When reacting with DDP, the CuII can be stabilized by the formation of adducts with tetradentate nitrogen-donor ligands, e.g. macrocyclic tetramine. We have recently reported several structures of such kind of adducts (Feng et al., 2009; He et al., 2010). Herein, we report the structure of [Cu(meso-diphenyl[14]dien)] [S2P(OC6H4Me-4)2]2, where meso-diphenyl[14]dien is C-meso-N-meso-5,12-dimethyl-7,14- diphenyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene.
The molecular of the title adduct comprises a complex cation [Cu(meso-diphenyl[14]dien)]2+ and two uncoordinated [S2P(OC6H4Me-4)2]- anion. Its structure is remarkably similar to the analogues, [Cu(trans-[14]dien)][S2P(OC6H4Me-4)2]2 (He et al., 2010) and ([Ni(trans-[14]dien)] [S2P(OC6H4Me-4)2]2 (Xie et al., 2009), where trans-[14]dien is meso-5,7,7,12,14,14-hexamethyl-1, 4,8,11-tetraazacyclotetradeca-4,11-diene. The CuII atom, lying on an inversion centre, is coordinated by four N atoms from the macrocyclic tetramine meso-diphenyl[14]dien and adopts a relatively undistorted square-planar geometry (Fig.1). The two [S2P(OC6H4Me-4)2]- anion, occupying the axial positions to form an octahedral asymmetric unit, only act as counter-ions to balance the charge and interact with the complex cation through N—H···S hydrogen bonds (Table 1). All the bond lengths and angles in the complex are generally within normal ranges (Allen et al., 1987).