organic compounds
N-(3-Octyl-4-oxo-1,3-thiazolidin-2-ylidene)benzamide
aDepartment of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China
*Correspondence e-mail: zhr0103@zju.edu.cn
In the title compound, C18H24N2O2S, the thiazolidinone ring is almost coplanar [maximum atomic deviation = 0.017 (3) Å], and is coplanar with the phenyl ring [dihedral angle = 0.62 (13)°]. The octyl group displays an extended conformation. In the crystal, weak intermolecular C—H⋯O hydrogen bonds link the molecules into supramolecular chains along [210].
Related literature
For pharmaceutical applications of thiazolidinones, see: Dwivedi et al. (1972); Chandrakant et al. (2004). For the synthesis, see: Peng et al. (2004).
Experimental
Crystal data
|
Data collection
|
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
https://doi.org/10.1107/S1600536810047884/xu5080sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810047884/xu5080Isup2.hkl
The title compound was prepared followed to the procedure reported by Peng et al. (2004). NH4SCN (0.152 g, 2 mmol) and [bmim][PF4] (2 ml) was mixed in a 50 ml flask equipped with a dropping funnel and then was cooled in an ice-water bath. Next benzoyl chloride(0.284 g, 2 mmol) was added drop by drop and stirred for a further 20 min (disappearance of the raw material was monitored by TLC). n-Octylamine (2 mmol) was then added to the same reaction vessel at room temperature and the mixture was stirred for 20 min more. N-benzoyl-N'-octylthiourea was formed. After that, ethyl chloroacetate (2.4 mmol) and anhydrous sodium acetate (0.196 g, 2.4 mmol) was added to the flask, and the mixture was heated at 80°C for 2 h. The salts were firstly leached with water (10 ml×2), and the crude product was collected by filtration. Recrystallization from ethanol gave pure product as a yellow crystalline solid.
H atoms were placed in calculated positions with C—H = 0.93-0.97 Å and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others.
Thiazolidinones have broad applications as anticonvulsant (Dwivedi et al., 1972) and anti-microbial drugs (Chandrakant et al., 2004). We report here the structure of a new thiazolidinone derivative, I, Fig. 2.
The thiazolidinyl ring and phenyl ring are almost co-planar with the dihedral angle of 0.67 (0.18)°. In the
weak intermolecular C—H···O hydrogen bonds, Table 1, link the molecules to form one-dimensional supra-molecular chains, Fig. 1.For pharmaceutical applications of thiazolidinones, see: Dwivedi et al. (1972); Chandrakant et al. (2004). For the synthesis, see: Peng et al. (2004).
Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).Fig. 1. The molecular structure of the title compound with 40% probability displacement ellipsoids. | |
Fig. 2. Crystal packing for I viewed down the a axis. |
C18H24N2O2S | Z = 2 |
Mr = 332.45 | F(000) = 356 |
Triclinic, P1 | Dx = 1.225 Mg m−3 |
Hall symbol: -p 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.3342 (3) Å | Cell parameters from 2856 reflections |
b = 8.6196 (5) Å | θ = 4.5–67.0° |
c = 20.0775 (12) Å | µ = 0.19 mm−1 |
α = 97.008 (5)° | T = 293 K |
β = 92.870 (4)° | Prism, yellow |
γ = 99.477 (4)° | 0.26 × 0.18 × 0.16 mm |
V = 901.41 (9) Å3 |
Oxford Diffraction Nova A diffractometer | 2371 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.039 |
Graphite monochromator | θmax = 25.1°, θmin = 2.1° |
ω scans | h = −6→5 |
8685 measured reflections | k = −9→10 |
3205 independent reflections | l = −23→23 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.051 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.0633P)2 + 0.4272P] where P = (Fo2 + 2Fc2)/3 |
3205 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.18 e Å−3 |
0 restraints | Δρmin = −0.17 e Å−3 |
C18H24N2O2S | γ = 99.477 (4)° |
Mr = 332.45 | V = 901.41 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 5.3342 (3) Å | Mo Kα radiation |
b = 8.6196 (5) Å | µ = 0.19 mm−1 |
c = 20.0775 (12) Å | T = 293 K |
α = 97.008 (5)° | 0.26 × 0.18 × 0.16 mm |
β = 92.870 (4)° |
Oxford Diffraction Nova A diffractometer | 2371 reflections with I > 2σ(I) |
8685 measured reflections | Rint = 0.039 |
3205 independent reflections |
R[F2 > 2σ(F2)] = 0.051 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.18 e Å−3 |
3205 reflections | Δρmin = −0.17 e Å−3 |
208 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N2 | 0.2339 (4) | 0.3596 (2) | 0.30556 (10) | 0.0496 (5) | |
N1 | −0.1304 (4) | 0.2176 (2) | 0.34097 (10) | 0.0492 (5) | |
C9 | 0.4393 (5) | 0.4805 (3) | 0.32305 (14) | 0.0533 (6) | |
C8 | 0.0680 (5) | 0.3283 (3) | 0.35492 (12) | 0.0464 (6) | |
C10 | 0.4427 (5) | 0.5499 (3) | 0.39502 (14) | 0.0585 (7) | |
H10A | 0.4422 | 0.6630 | 0.3982 | 0.070* | |
H10B | 0.5952 | 0.5337 | 0.4197 | 0.070* | |
O1 | −0.2580 (4) | 0.2654 (2) | 0.44909 (9) | 0.0680 (6) | |
O2 | 0.5957 (4) | 0.5200 (2) | 0.28388 (11) | 0.0733 (6) | |
S1 | 0.16338 (13) | 0.45285 (8) | 0.42998 (3) | 0.0534 (2) | |
C7 | −0.2882 (5) | 0.1901 (3) | 0.39283 (13) | 0.0508 (6) | |
C1 | −0.5089 (5) | 0.0581 (3) | 0.37455 (13) | 0.0495 (6) | |
C11 | 0.1963 (5) | 0.2715 (3) | 0.23775 (13) | 0.0569 (7) | |
H11A | 0.1125 | 0.1638 | 0.2402 | 0.068* | |
H11B | 0.3613 | 0.2663 | 0.2202 | 0.068* | |
C2 | −0.5494 (5) | −0.0279 (3) | 0.31152 (14) | 0.0598 (7) | |
H2 | −0.4341 | −0.0064 | 0.2792 | 0.072* | |
C6 | −0.6820 (5) | 0.0229 (3) | 0.42264 (15) | 0.0606 (7) | |
H6 | −0.6555 | 0.0795 | 0.4656 | 0.073* | |
C5 | −0.8909 (6) | −0.0944 (4) | 0.40707 (18) | 0.0712 (8) | |
H5 | −1.0049 | −0.1172 | 0.4395 | 0.085* | |
C4 | −0.9324 (6) | −0.1783 (4) | 0.34373 (19) | 0.0735 (9) | |
H4 | −1.0759 | −0.2565 | 0.3331 | 0.088* | |
C13 | −0.0006 (7) | 0.2535 (5) | 0.12043 (15) | 0.0816 (10) | |
H13A | 0.1634 | 0.2576 | 0.1013 | 0.098* | |
H13B | −0.0658 | 0.1432 | 0.1241 | 0.098* | |
C12 | 0.0397 (6) | 0.3448 (4) | 0.18997 (14) | 0.0730 (9) | |
H12A | 0.1241 | 0.4523 | 0.1872 | 0.088* | |
H12B | −0.1249 | 0.3508 | 0.2077 | 0.088* | |
C3 | −0.7605 (6) | −0.1462 (4) | 0.29574 (17) | 0.0721 (9) | |
H3 | −0.7867 | −0.2041 | 0.2530 | 0.086* | |
C15 | −0.2276 (8) | 0.2222 (6) | 0.00389 (18) | 0.1053 (13) | |
H15A | −0.2838 | 0.1109 | 0.0076 | 0.126* | |
H15B | −0.0679 | 0.2307 | −0.0176 | 0.126* | |
C14 | −0.1781 (8) | 0.3108 (5) | 0.07302 (17) | 0.0976 (12) | |
H14A | −0.3401 | 0.3090 | 0.0930 | 0.117* | |
H14B | −0.1106 | 0.4207 | 0.0691 | 0.117* | |
C17 | −0.4809 (10) | 0.1911 (7) | −0.1089 (2) | 0.1358 (19) | |
H17A | −0.5318 | 0.0792 | −0.1055 | 0.163* | |
H17B | −0.3262 | 0.2022 | −0.1326 | 0.163* | |
C16 | −0.4209 (9) | 0.2749 (6) | −0.04136 (19) | 0.1114 (14) | |
H16A | −0.5784 | 0.2690 | −0.0189 | 0.134* | |
H16B | −0.3621 | 0.3859 | −0.0452 | 0.134* | |
C18 | −0.6818 (9) | 0.2415 (7) | −0.1504 (2) | 0.1289 (18) | |
H18A | −0.7081 | 0.1765 | −0.1933 | 0.193* | |
H18B | −0.6304 | 0.3505 | −0.1567 | 0.193* | |
H18C | −0.8375 | 0.2302 | −0.1280 | 0.193* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N2 | 0.0480 (11) | 0.0528 (12) | 0.0450 (11) | 0.0005 (10) | 0.0052 (9) | 0.0055 (9) |
N1 | 0.0485 (11) | 0.0499 (12) | 0.0463 (12) | 0.0009 (10) | 0.0016 (9) | 0.0058 (9) |
C9 | 0.0484 (14) | 0.0498 (15) | 0.0606 (16) | 0.0042 (12) | 0.0051 (12) | 0.0080 (12) |
C8 | 0.0474 (13) | 0.0485 (14) | 0.0435 (13) | 0.0085 (11) | 0.0025 (10) | 0.0074 (11) |
C10 | 0.0509 (15) | 0.0552 (16) | 0.0643 (17) | −0.0023 (12) | −0.0024 (13) | 0.0066 (13) |
O1 | 0.0687 (12) | 0.0731 (13) | 0.0520 (11) | −0.0099 (10) | 0.0110 (9) | −0.0052 (10) |
O2 | 0.0613 (12) | 0.0734 (14) | 0.0804 (14) | −0.0074 (10) | 0.0208 (11) | 0.0104 (11) |
S1 | 0.0525 (4) | 0.0583 (4) | 0.0445 (4) | 0.0010 (3) | 0.0008 (3) | −0.0002 (3) |
C7 | 0.0477 (14) | 0.0528 (15) | 0.0519 (15) | 0.0065 (12) | 0.0025 (11) | 0.0100 (12) |
C1 | 0.0447 (13) | 0.0500 (14) | 0.0537 (15) | 0.0063 (11) | 0.0025 (11) | 0.0099 (12) |
C11 | 0.0572 (15) | 0.0606 (16) | 0.0497 (15) | 0.0037 (13) | 0.0105 (12) | 0.0012 (13) |
C2 | 0.0558 (16) | 0.0597 (17) | 0.0600 (17) | −0.0015 (13) | 0.0014 (13) | 0.0091 (14) |
C6 | 0.0517 (15) | 0.0645 (18) | 0.0671 (18) | 0.0083 (13) | 0.0082 (13) | 0.0153 (14) |
C5 | 0.0541 (17) | 0.073 (2) | 0.089 (2) | 0.0048 (15) | 0.0147 (16) | 0.0263 (18) |
C4 | 0.0518 (16) | 0.0626 (19) | 0.102 (3) | −0.0080 (14) | −0.0050 (17) | 0.0241 (18) |
C13 | 0.088 (2) | 0.097 (3) | 0.0558 (18) | 0.011 (2) | 0.0007 (16) | 0.0037 (17) |
C12 | 0.077 (2) | 0.086 (2) | 0.0543 (17) | 0.0132 (17) | 0.0032 (15) | 0.0036 (16) |
C3 | 0.0703 (19) | 0.0631 (19) | 0.073 (2) | −0.0051 (15) | −0.0111 (16) | 0.0013 (15) |
C15 | 0.116 (3) | 0.130 (4) | 0.063 (2) | 0.014 (3) | −0.010 (2) | 0.004 (2) |
C14 | 0.105 (3) | 0.122 (3) | 0.063 (2) | 0.018 (2) | −0.0113 (19) | 0.009 (2) |
C17 | 0.153 (4) | 0.185 (5) | 0.068 (3) | 0.049 (4) | −0.022 (3) | −0.004 (3) |
C16 | 0.120 (3) | 0.137 (4) | 0.073 (2) | 0.021 (3) | −0.012 (2) | 0.006 (2) |
C18 | 0.129 (4) | 0.182 (5) | 0.076 (3) | 0.042 (4) | −0.017 (3) | 0.003 (3) |
N2—C9 | 1.380 (3) | C4—C3 | 1.384 (5) |
N2—C8 | 1.383 (3) | C4—H4 | 0.9300 |
N2—C11 | 1.463 (3) | C13—C14 | 1.492 (5) |
N1—C8 | 1.297 (3) | C13—C12 | 1.504 (4) |
N1—C7 | 1.390 (3) | C13—H13A | 0.9700 |
C9—O2 | 1.212 (3) | C13—H13B | 0.9700 |
C9—C10 | 1.493 (4) | C12—H12A | 0.9700 |
C8—S1 | 1.741 (2) | C12—H12B | 0.9700 |
C10—S1 | 1.802 (3) | C3—H3 | 0.9300 |
C10—H10A | 0.9700 | C15—C14 | 1.489 (5) |
C10—H10B | 0.9700 | C15—C16 | 1.502 (5) |
O1—C7 | 1.221 (3) | C15—H15A | 0.9700 |
C7—C1 | 1.493 (4) | C15—H15B | 0.9700 |
C1—C2 | 1.374 (4) | C14—H14A | 0.9700 |
C1—C6 | 1.395 (4) | C14—H14B | 0.9700 |
C11—C12 | 1.503 (4) | C17—C16 | 1.451 (5) |
C11—H11A | 0.9700 | C17—C18 | 1.477 (6) |
C11—H11B | 0.9700 | C17—H17A | 0.9700 |
C2—C3 | 1.384 (4) | C17—H17B | 0.9700 |
C2—H2 | 0.9300 | C16—H16A | 0.9700 |
C6—C5 | 1.371 (4) | C16—H16B | 0.9700 |
C6—H6 | 0.9300 | C18—H18A | 0.9600 |
C5—C4 | 1.373 (5) | C18—H18B | 0.9600 |
C5—H5 | 0.9300 | C18—H18C | 0.9600 |
C9—N2—C8 | 116.6 (2) | C12—C13—H13A | 108.5 |
C9—N2—C11 | 120.8 (2) | C14—C13—H13B | 108.5 |
C8—N2—C11 | 122.6 (2) | C12—C13—H13B | 108.5 |
C8—N1—C7 | 116.6 (2) | H13A—C13—H13B | 107.5 |
O2—C9—N2 | 122.6 (3) | C11—C12—C13 | 113.0 (3) |
O2—C9—C10 | 126.0 (2) | C11—C12—H12A | 109.0 |
N2—C9—C10 | 111.4 (2) | C13—C12—H12A | 109.0 |
N1—C8—N2 | 119.3 (2) | C11—C12—H12B | 109.0 |
N1—C8—S1 | 128.94 (19) | C13—C12—H12B | 109.0 |
N2—C8—S1 | 111.79 (18) | H12A—C12—H12B | 107.8 |
C9—C10—S1 | 108.19 (18) | C2—C3—C4 | 119.8 (3) |
C9—C10—H10A | 110.1 | C2—C3—H3 | 120.1 |
S1—C10—H10A | 110.1 | C4—C3—H3 | 120.1 |
C9—C10—H10B | 110.1 | C14—C15—C16 | 116.1 (4) |
S1—C10—H10B | 110.1 | C14—C15—H15A | 108.3 |
H10A—C10—H10B | 108.4 | C16—C15—H15A | 108.3 |
C8—S1—C10 | 91.98 (12) | C14—C15—H15B | 108.3 |
O1—C7—N1 | 125.0 (2) | C16—C15—H15B | 108.3 |
O1—C7—C1 | 120.7 (2) | H15A—C15—H15B | 107.4 |
N1—C7—C1 | 114.3 (2) | C15—C14—C13 | 117.1 (4) |
C2—C1—C6 | 119.0 (2) | C15—C14—H14A | 108.0 |
C2—C1—C7 | 122.1 (2) | C13—C14—H14A | 108.0 |
C6—C1—C7 | 118.9 (2) | C15—C14—H14B | 108.0 |
N2—C11—C12 | 113.0 (2) | C13—C14—H14B | 108.0 |
N2—C11—H11A | 109.0 | H14A—C14—H14B | 107.3 |
C12—C11—H11A | 109.0 | C16—C17—C18 | 116.8 (4) |
N2—C11—H11B | 109.0 | C16—C17—H17A | 108.1 |
C12—C11—H11B | 109.0 | C18—C17—H17A | 108.1 |
H11A—C11—H11B | 107.8 | C16—C17—H17B | 108.1 |
C1—C2—C3 | 120.5 (3) | C18—C17—H17B | 108.1 |
C1—C2—H2 | 119.7 | H17A—C17—H17B | 107.3 |
C3—C2—H2 | 119.7 | C17—C16—C15 | 118.6 (4) |
C5—C6—C1 | 120.5 (3) | C17—C16—H16A | 107.7 |
C5—C6—H6 | 119.7 | C15—C16—H16A | 107.7 |
C1—C6—H6 | 119.7 | C17—C16—H16B | 107.7 |
C6—C5—C4 | 120.2 (3) | C15—C16—H16B | 107.7 |
C6—C5—H5 | 119.9 | H16A—C16—H16B | 107.1 |
C4—C5—H5 | 119.9 | C17—C18—H18A | 109.5 |
C5—C4—C3 | 119.9 (3) | C17—C18—H18B | 109.5 |
C5—C4—H4 | 120.0 | H18A—C18—H18B | 109.5 |
C3—C4—H4 | 120.0 | C17—C18—H18C | 109.5 |
C14—C13—C12 | 115.2 (3) | H18A—C18—H18C | 109.5 |
C14—C13—H13A | 108.5 | H18B—C18—H18C | 109.5 |
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.45 | 3.365 (4) | 168 |
Symmetry code: (i) x−2, y−1, z. |
Experimental details
Crystal data | |
Chemical formula | C18H24N2O2S |
Mr | 332.45 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.3342 (3), 8.6196 (5), 20.0775 (12) |
α, β, γ (°) | 97.008 (5), 92.870 (4), 99.477 (4) |
V (Å3) | 901.41 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.19 |
Crystal size (mm) | 0.26 × 0.18 × 0.16 |
Data collection | |
Diffractometer | Oxford Diffraction Nova A |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8685, 3205, 2371 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.597 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.051, 0.145, 1.03 |
No. of reflections | 3205 |
No. of parameters | 208 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.18, −0.17 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
C4—H4···O2i | 0.93 | 2.45 | 3.365 (4) | 168 |
Symmetry code: (i) x−2, y−1, z. |
Acknowledgements
The authors thank the Natural Science Foundation of Zhejiang Province, China, for financial support (grant No. Y4080234).
References
Chandrakant, G. & Gaikwad, N. G. (2004). Bioorg. Med. Chem. 12, 2151–2161. Web of Science PubMed Google Scholar
Dwivedi, C., Gupta, T. K. & Parmar, S. S. (1972). J. Med. Chem. 15, 553–554. CrossRef CAS PubMed Web of Science Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Oxford Diffraction (2008). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Peng, Y.-Q., Song, G.-H. & Huang, F.-F. (2004). J. Chem. Res. 10, 676–678. CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Thiazolidinones have broad applications as anticonvulsant (Dwivedi et al., 1972) and anti-microbial drugs (Chandrakant et al., 2004). We report here the structure of a new thiazolidinone derivative, I, Fig. 2.
The thiazolidinyl ring and phenyl ring are almost co-planar with the dihedral angle of 0.67 (0.18)°. In the crystal structure, weak intermolecular C—H···O hydrogen bonds, Table 1, link the molecules to form one-dimensional supra-molecular chains, Fig. 1.