metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[tetra­aqua­[μ2-1,4-bis­­(1,2,4-triazol-1-yl)butane-κ2N4:N4′]cadmium(II)] sulfate]

aCollege of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 1 November 2010; accepted 3 November 2010; online 10 November 2010)

In the polymeric title compound, {[Cd(C8H12N6)(H2O)4]SO4}n, the CdII atom is located on an inversion center and coordinated by four water mol­ecules and two 1,4-bis­(1,2,4-triazol-yl)butane ligands in a distorted CdO4N2 octa­hedral geometry. The 1,4-bis­(1,2,4-triazol-yl)butane ligand is centrosymmetric, the mid-point of the central C—C bond being located on an inversion center. It links adjacent water-coordinated metal atoms into polymeric chains running along the c axis. Adjacent chains are linked by O—H⋯N hydrogen bonds. The S atom of the sulfate anion is located on a twofold rotation axis, thus the sulfate anion is equally disordered over two sites. The sulfate anion links with the polymeric chains via O—H⋯O hydrogen bonds, generating a three-dimensional supra­molecular network.

Related literature

For a related structure, see: Ding et al. (2008[Ding, J.-G., Liu, X.-G., Li, B.-L., Wang, Y.-Y. & Zhang, Y. (2008). Inorg. Chem. Commun. 11, 1079-1081.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C8H12N6)(H2O)4]SO4

  • Mr = 472.76

  • Monoclinic, C 2/c

  • a = 12.1858 (9) Å

  • b = 10.9733 (8) Å

  • c = 12.4916 (9) Å

  • β = 90.227 (1)°

  • V = 1670.3 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.48 mm−1

  • T = 295 K

  • 0.35 × 0.20 × 0.10 mm

Data collection
  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.625, Tmax = 0.866

  • 7091 measured reflections

  • 1922 independent reflections

  • 1703 reflections with I > 2σ(I)

  • Rint = 0.026

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.075

  • S = 1.03

  • 1922 reflections

  • 145 parameters

  • 25 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.86 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—O1 2.3308 (18)
Cd1—O2 2.2923 (19)
Cd1—N1 2.297 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H11⋯O3 0.84 (3) 1.94 (2) 2.765 (10) 169 (4)
O1—H12⋯N2i 0.84 (3) 2.04 (1) 2.855 (3) 165 (4)
O2—H21⋯O4 0.84 (3) 1.91 (1) 2.736 (4) 167 (4)
O2—H21⋯O5ii 0.84 (3) 1.79 (2) 2.588 (4) 158 (4)
O2—H22⋯O4iii 0.83 (3) 1.94 (2) 2.749 (4) 162 (4)
O2—H22⋯O6iv 0.83 (3) 1.99 (2) 2.753 (4) 152 (4)
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y, -z+{\script{1\over 2}}]; (iii) -x+1, -y, -z+1; (iv) [x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The flexible bis-1,4-(1,2,4-triazol-1-yl)butane ligand binds to a number of cadmium salts to render chain motifs; when the counterion is also capable of bridging, two- and three-dimensional coordination networks are formed. The cadmium atom in polymeric [Cd(H2O)4(C8H12N6)2+.SO42–]n (Scheme I, Fig. 1) lies on a center-of-inversion. The ligand links adjacent water-coordinated metal atoms into a chain; the sulfate ion is not directly involved in coordination to the metal center. Adjacent chains are linked by hydrogen bonds to the disordered sulfate ion to generate a three-dimensional hydrogen-bonded network (Table 1). The metal center shows octahedral coordination.

With cadmium bis(perchlorate) and bis(tetrafluoroborate), the cadmium atom is connected to two ligands, and the six-coordinate geometry is completed by two water molecules (Ding et al., 2008).

Related literature top

For a related structure, see: Ding et al. (2008).

Experimental top

Cadmium sulfate (0.209 g, 0.10 mmol) was dissolved in a water-DFM mixture (5 ml:3 ml), and to this was addded 1,4-bis(1,2,4-triazol-1-yl)butane (0.384 g, 0.20 mmol) dissolved in water (5 ml). The solution was set aside for the growth of colorless crystals.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C).

The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H 0.84±0.01 Å; their temperature factors were refined.

The sulfate ion is disodered with respect to the oxygen atoms only; these were refined as half-occupancy atoms off the twofold rotation axis. The sulfur–oxygen distances were restrained to within 0.01 Å of each other as were the oxygen–oxygen distances.

Structure description top

The flexible bis-1,4-(1,2,4-triazol-1-yl)butane ligand binds to a number of cadmium salts to render chain motifs; when the counterion is also capable of bridging, two- and three-dimensional coordination networks are formed. The cadmium atom in polymeric [Cd(H2O)4(C8H12N6)2+.SO42–]n (Scheme I, Fig. 1) lies on a center-of-inversion. The ligand links adjacent water-coordinated metal atoms into a chain; the sulfate ion is not directly involved in coordination to the metal center. Adjacent chains are linked by hydrogen bonds to the disordered sulfate ion to generate a three-dimensional hydrogen-bonded network (Table 1). The metal center shows octahedral coordination.

With cadmium bis(perchlorate) and bis(tetrafluoroborate), the cadmium atom is connected to two ligands, and the six-coordinate geometry is completed by two water molecules (Ding et al., 2008).

For a related structure, see: Ding et al. (2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. [Thermal ellipsoid plot (Barbour, 2001) of a fragment of the polymeric structure of [Cd(H2O)4(C8H12N6)2+.SO42–]n at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius. Inversion symmetry-related atoms are not labeled.
catena-Poly[[tetraaqua[µ2-1,4-bis(1,2,4-triazol-1-yl)butane- κ2N4:N4']cadmium(II)] sulfate] top
Crystal data top
[Cd(C8H12N6)(H2O)4]SO4F(000) = 952
Mr = 472.76Dx = 1.880 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4284 reflections
a = 12.1858 (9) Åθ = 2.5–27.6°
b = 10.9733 (8) ŵ = 1.48 mm1
c = 12.4916 (9) ÅT = 295 K
β = 90.227 (1)°Prism, colorless
V = 1670.3 (2) Å30.35 × 0.20 × 0.10 mm
Z = 4
Data collection top
Bruker SMART APEX
diffractometer
1922 independent reflections
Radiation source: fine-focus sealed tube1703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1515
Tmin = 0.625, Tmax = 0.866k = 1314
7091 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0459P)2 + 1.6989P]
where P = (Fo2 + 2Fc2)/3
1922 reflections(Δ/σ)max = 0.001
145 parametersΔρmax = 0.57 e Å3
25 restraintsΔρmin = 0.86 e Å3
Crystal data top
[Cd(C8H12N6)(H2O)4]SO4V = 1670.3 (2) Å3
Mr = 472.76Z = 4
Monoclinic, C2/cMo Kα radiation
a = 12.1858 (9) ŵ = 1.48 mm1
b = 10.9733 (8) ÅT = 295 K
c = 12.4916 (9) Å0.35 × 0.20 × 0.10 mm
β = 90.227 (1)°
Data collection top
Bruker SMART APEX
diffractometer
1922 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1703 reflections with I > 2σ(I)
Tmin = 0.625, Tmax = 0.866Rint = 0.026
7091 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02425 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.57 e Å3
1922 reflectionsΔρmin = 0.86 e Å3
145 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.75000.25000.50000.02963 (11)
S10.50000.07764 (7)0.25000.02981 (18)
O10.60887 (16)0.34194 (16)0.40281 (15)0.0409 (4)
O20.65422 (17)0.07057 (19)0.50971 (16)0.0459 (5)
O30.4869 (9)0.2093 (3)0.2565 (9)0.0469 (19)0.50
O40.5016 (3)0.0222 (4)0.3542 (3)0.0521 (10)0.50
O50.4146 (3)0.0243 (4)0.1823 (3)0.0525 (11)0.50
O60.6087 (3)0.0513 (4)0.1970 (3)0.0590 (11)0.50
N10.82340 (17)0.1877 (2)0.34004 (15)0.0371 (4)
N20.8666 (2)0.0739 (2)0.19781 (18)0.0438 (5)
N30.87109 (16)0.1946 (2)0.17182 (16)0.0347 (4)
C10.8375 (2)0.0763 (3)0.2994 (2)0.0443 (6)
H10.82760.00590.33960.053*
C20.8456 (3)0.2611 (2)0.2566 (2)0.0368 (6)
H20.84330.34580.25830.044*
C30.8972 (2)0.2345 (2)0.0628 (2)0.0393 (6)
H3A0.96100.19020.03760.047*
H3B0.91540.32050.06380.047*
C40.8012 (2)0.2132 (3)0.0145 (2)0.0382 (5)
H4A0.78280.12720.01470.046*
H4B0.82390.23500.08640.046*
H110.579 (3)0.296 (3)0.358 (2)0.064 (10)*
H120.619 (3)0.4147 (14)0.385 (3)0.062 (10)*
H210.616 (3)0.056 (4)0.455 (2)0.078 (12)*
H220.618 (3)0.040 (4)0.560 (2)0.088 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.03598 (16)0.03235 (16)0.02057 (15)0.00111 (8)0.00354 (10)0.00067 (8)
S10.0366 (4)0.0257 (4)0.0271 (4)0.0000.0052 (3)0.000
O10.0520 (10)0.0321 (10)0.0386 (9)0.0044 (8)0.0095 (8)0.0052 (8)
O20.0569 (12)0.0455 (11)0.0352 (10)0.0168 (9)0.0035 (9)0.0039 (8)
O30.063 (5)0.0271 (13)0.051 (3)0.011 (3)0.015 (3)0.009 (3)
O40.060 (2)0.068 (3)0.0287 (18)0.019 (2)0.0095 (17)0.0215 (18)
O50.065 (3)0.047 (2)0.045 (2)0.019 (2)0.028 (2)0.0080 (18)
O60.054 (2)0.064 (3)0.059 (3)0.005 (2)0.017 (2)0.012 (2)
N10.0476 (11)0.0398 (12)0.0240 (9)0.0033 (9)0.0033 (8)0.0036 (8)
N20.0611 (14)0.0348 (11)0.0357 (11)0.0066 (10)0.0042 (10)0.0007 (9)
N30.0382 (10)0.0387 (11)0.0273 (10)0.0016 (9)0.0004 (8)0.0009 (9)
C10.0628 (16)0.0365 (13)0.0336 (12)0.0015 (12)0.0049 (12)0.0030 (10)
C20.0476 (15)0.0340 (13)0.0287 (13)0.0014 (9)0.0025 (11)0.0054 (9)
C30.0392 (13)0.0501 (16)0.0287 (13)0.0042 (10)0.0063 (11)0.0036 (10)
C40.0464 (14)0.0427 (13)0.0254 (11)0.0018 (12)0.0024 (10)0.0020 (11)
Geometric parameters (Å, º) top
Cd1—O12.3308 (18)N1—C11.334 (3)
Cd1—O1i2.3308 (18)N1—C21.345 (4)
Cd1—O2i2.2923 (19)N2—C11.319 (3)
Cd1—O22.2923 (19)N2—N31.365 (3)
Cd1—N12.297 (2)N3—C21.325 (4)
Cd1—N1i2.2967 (19)N3—C31.467 (4)
S1—O41.437 (3)C1—H10.9300
S1—O31.456 (3)C2—H20.9300
S1—O51.461 (3)C3—C41.533 (4)
S1—O61.511 (3)C3—H3A0.9700
O1—H110.84 (3)C3—H3B0.9700
O1—H120.84 (3)C4—C4ii1.530 (5)
O2—H210.84 (3)C4—H4A0.9700
O2—H220.83 (3)C4—H4B0.9700
O2i—Cd1—O2180.0H21—O2—H22104 (4)
O2i—Cd1—N190.55 (8)C1—N1—C2103.1 (2)
O2—Cd1—N189.45 (8)C1—N1—Cd1130.93 (17)
O2i—Cd1—N1i89.45 (8)C2—N1—Cd1125.14 (17)
O2—Cd1—N1i90.55 (8)C1—N2—N3102.7 (2)
N1—Cd1—N1i180.0C2—N3—N2109.6 (2)
O2i—Cd1—O188.59 (7)C2—N3—C3129.1 (2)
O2—Cd1—O191.41 (7)N2—N3—C3121.3 (2)
N1—Cd1—O187.98 (7)N2—C1—N1114.9 (2)
N1i—Cd1—O192.02 (7)N2—C1—H1122.6
O2i—Cd1—O1i91.41 (7)N1—C1—H1122.6
O2—Cd1—O1i88.59 (7)N3—C2—N1109.8 (2)
N1—Cd1—O1i92.02 (7)N3—C2—H2125.1
N1i—Cd1—O1i87.98 (7)N1—C2—H2125.1
O1—Cd1—O1i180.0N3—C3—C4111.8 (2)
O4—S1—O3111.7 (4)N3—C3—H3A109.3
O4—S1—O5111.2 (2)C4—C3—H3A109.3
O3—S1—O5110.6 (4)N3—C3—H3B109.3
O4—S1—O6107.9 (2)C4—C3—H3B109.3
O3—S1—O6108.1 (4)H3A—C3—H3B107.9
O5—S1—O6107.1 (2)C4ii—C4—C3113.0 (3)
Cd1—O1—H11114 (3)C4ii—C4—H4A109.0
Cd1—O1—H12116 (2)C3—C4—H4A109.0
H11—O1—H12118 (4)C4ii—C4—H4B109.0
Cd1—O2—H21114 (3)C3—C4—H4B109.0
Cd1—O2—H22131 (3)H4A—C4—H4B107.8
O2i—Cd1—N1—C1156.6 (2)N3—N2—C1—N10.1 (3)
O2—Cd1—N1—C123.4 (2)C2—N1—C1—N20.0 (3)
O1—Cd1—N1—C1114.8 (2)Cd1—N1—C1—N2169.75 (18)
O1i—Cd1—N1—C165.2 (2)N2—N3—C2—N10.2 (3)
O2i—Cd1—N1—C235.6 (2)C3—N3—C2—N1177.6 (2)
O2—Cd1—N1—C2144.4 (2)C1—N1—C2—N30.1 (3)
O1—Cd1—N1—C252.9 (2)Cd1—N1—C2—N3170.44 (16)
O1i—Cd1—N1—C2127.1 (2)C2—N3—C3—C4103.8 (3)
C1—N2—N3—C20.1 (3)N2—N3—C3—C473.7 (3)
C1—N2—N3—C3177.9 (2)N3—C3—C4—C4ii63.0 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+1; (ii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O30.84 (3)1.94 (2)2.765 (10)169 (4)
O1—H12···N2iii0.84 (3)2.04 (1)2.855 (3)165 (4)
O2—H21···O40.84 (3)1.91 (1)2.736 (4)167 (4)
O2—H21···O5iv0.84 (3)1.79 (2)2.588 (4)158 (4)
O2—H22···O4v0.83 (3)1.94 (2)2.749 (4)162 (4)
O2—H22···O6vi0.83 (3)1.99 (2)2.753 (4)152 (4)
Symmetry codes: (iii) x+3/2, y+1/2, z+1/2; (iv) x+1, y, z+1/2; (v) x+1, y, z+1; (vi) x, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cd(C8H12N6)(H2O)4]SO4
Mr472.76
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)12.1858 (9), 10.9733 (8), 12.4916 (9)
β (°) 90.227 (1)
V3)1670.3 (2)
Z4
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.35 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART APEX
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.625, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
7091, 1922, 1703
Rint0.026
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.075, 1.03
No. of reflections1922
No. of parameters145
No. of restraints25
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.86

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Cd1—O12.3308 (18)Cd1—N12.297 (2)
Cd1—O22.2923 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H11···O30.84 (3)1.94 (2)2.765 (10)169 (4)
O1—H12···N2i0.84 (3)2.04 (1)2.855 (3)165 (4)
O2—H21···O40.84 (3)1.91 (1)2.736 (4)167 (4)
O2—H21···O5ii0.84 (3)1.79 (2)2.588 (4)158 (4)
O2—H22···O4iii0.83 (3)1.94 (2)2.749 (4)162 (4)
O2—H22···O6iv0.83 (3)1.99 (2)2.753 (4)152 (4)
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x+1, y, z+1/2; (iii) x+1, y, z+1; (iv) x, y, z+1/2.
 

Acknowledgements

We thank the Key Laboratory of Environmental Material and Environmental Engineering of Jiangsu Province, Yangzhou University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDing, J.-G., Liu, X.-G., Li, B.-L., Wang, Y.-Y. & Zhang, Y. (2008). Inorg. Chem. Commun. 11, 1079–1081.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds