metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-4-(methyl­amino)­benzoato]-κ3O,O′:O;κ3O:O,O′-bis­­{aqua­[4-(methyl­amino)­benzoato-κ2O,O′](nicotinamide-κN)cadmium(II)}

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Ankara University, 06100 Tandoğan, Ankara, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 5 November 2010; accepted 9 November 2010; online 13 November 2010)

In the dinuclear centrosymmetric CdII compound, [Cd2(C8H8NO2)4(C6H6N2O)2(H2O)2], the metal atom is chelated by two carboxyl­ate groups from 4-(methyl­amino)­benzoate (PMAB) anions, and coordinated by one nicotinamide and one water mol­ecule; a carboxyl­ate O atom from the adjacent PMAB anion bridges to the Cd atom, completing the irregular seven-coordination geometry. In the crystal, inter­molecular O—H⋯O, N—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. ππ contacts between the pyridine rings [centroid–centroid distance = 3.965 (1) Å] may further stabilize the structure. A weak C—H⋯π inter­action also occurs.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Greenaway et al. (1984[Greenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67-71.]); Hökelek & Necefoğlu (1996[Hökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128-1131.]); Hökelek et al. (2009a[Hökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416-m1417.],b[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627-m628.],c[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037-m1038.],d[Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365-m1366.], 2010[Hökelek, T., Süzen, Y., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2010). Acta Cryst. E66, m782-m783.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2(C8H8NO2)4(C6H6N2O)2(H2O)2]

  • Mr = 1105.72

  • Triclinic, [P \overline 1]

  • a = 9.5286 (2) Å

  • b = 10.1734 (2) Å

  • c = 13.2876 (3) Å

  • α = 72.831 (3)°

  • β = 75.741 (3)°

  • γ = 67.172 (2)°

  • V = 1121.51 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 100 K

  • 0.37 × 0.26 × 0.10 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.734, Tmax = 0.901

  • 20025 measured reflections

  • 5581 independent reflections

  • 5250 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.061

  • S = 1.08

  • 5581 reflections

  • 324 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.77 e Å−3

  • Δρmin = −0.48 e Å−3

Table 1
Selected bond lengths (Å)

Cd1—N1 2.3265 (15)
Cd1—O1 2.3170 (14)
Cd1—O2 2.3844 (13)
Cd1—O3 2.5099 (15)
Cd1—O4 2.3185 (14)
Cd1—O4i 2.5625 (13)
Cd1—O6 2.3152 (14)
Symmetry code: (i) -x, -y, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.83 (3) 2.13 (3) 2.921 (2) 160 (2)
N2—H2B⋯O3ii 0.86 (3) 2.05 (3) 2.901 (3) 170 (3)
O6—H61⋯O5iii 0.79 (4) 1.91 (4) 2.692 (2) 167 (3)
O6—H62⋯O2iv 0.81 (4) 1.94 (4) 2.743 (2) 179 (3)
C11—H11⋯O2i 0.93 2.39 3.299 (2) 165
C17—H17⋯O1i 0.93 2.36 3.216 (3) 153
C21—H21⋯O2iv 0.93 2.45 3.252 (3) 145
C19—H19⋯Cg3v 0.93 2.74 3.537 (2) 144
Symmetry codes: (i) -x, -y, -z+1; (ii) x, y-1, z; (iii) x, y+1, z; (iv) -x+1, -y, -z+1; (v) x+1, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), consists of dimeric units located around a crystallographic symmetry centre and made up of two Cd cations, four 4-methylaminobenzoate (PMAB) anions, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Each Cd(II) unit is chelated by the carboxylate O atoms of the two PMAB anions, and the two monomeric units are bridged through the two oxygen atoms of the two carboxylate groups about an inversion center. The coordination number of each CdII atom is seven. The Cd1···Cd1i distance is 3.8204 (14) Å and O4-Cd1-O4i angle is 77.12 (5)° (symmetry code: (i) -x, -y, 1 - z).

The average Cd-O bond length (Table 1) is 2.4013 (14) Å, and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by 0.4159 (1) and 0.4085 (1) Å, respectively. In (I), the O1-Cd1-O2 and O3-Cd1-O4 angles are 55.71 (5) and 117.52 (4) °, respectively. The corresponding O-M-O (where M is a metal) angles are 55.96 (4)° and 53.78 (4)° in [Cd2(DMAB)4(NA)2(H2O)2] (Hökelek et al., 2010), 52.91 (4)° and 53.96 (4)° in [Cd(FB)2(INA)2(H2O)].H2O (Hökelek et al., 2009a), 60.70 (4)° in [Co(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009b), 58.45 (9)° in [Mn(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009c), 60.03 (6)° in [Zn(MAB)2(INA)2].H2O (Hökelek et al., 2009d), 58.3 (3)° in [Zn2(DENA)2(HB)4].2H2O (Hökelek & Necefoğlu, 1996) [where NA, INA, DENA, HB, FB, MAB and DMAB are nicotinamide, isonicotinamide, N,N-diethylnicotinamide, 4-hydroxybenzoate, 4-formylbenzoate, 4-methylaminobenzoate and 4-dimethylaminobenzoate, respectively] and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2-C7) and B (C10-C15) are 9.86 (16) and 11.74 (11) °, respectively, while those between rings A, B, C (N1/C17-C21), D (Cd1/O1/O2/C1) and E (Cd1/O3/O4/C9) are A/B = 88.35 (6), A/C = 62.90 (7), B/C = 73.43 (6) and D/E = 63.44 (5)°.

In the crystal structure, intermolecular O-H···O, N-H···O and C-H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the pyridine rings, Cg3—Cg3i [symmetry code: (i) 1 - x, -1 - y, 1 - z, where Cg3 is the centroid of the ring C (N3/C17-C21)] may further stabilize the structure, with centroid-centroid distance of 3.965 (1) Å. There also exists a weak C-H···π interaction (Table 2).

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d, 2010).

Experimental top

The title compound was prepared by the reaction of 3CdSO4.H2O (1.08 g, 5 mmol) in H2O (30 ml) and NA (1.22 g, 10 mmol) in H2O (20 ml) with sodium 4-(methylamino)benzoate (1.73 g, 10 mmol) in H2O (150 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement top

Atoms H3A, H4A (for NH), H2A, H2B (for NH2) and H61, H62 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), consists of dimeric units located around a crystallographic symmetry centre and made up of two Cd cations, four 4-methylaminobenzoate (PMAB) anions, two nicotinamide (NA) ligands and two water molecules (Fig. 1). Each Cd(II) unit is chelated by the carboxylate O atoms of the two PMAB anions, and the two monomeric units are bridged through the two oxygen atoms of the two carboxylate groups about an inversion center. The coordination number of each CdII atom is seven. The Cd1···Cd1i distance is 3.8204 (14) Å and O4-Cd1-O4i angle is 77.12 (5)° (symmetry code: (i) -x, -y, 1 - z).

The average Cd-O bond length (Table 1) is 2.4013 (14) Å, and the Cd atom is displaced out of the least-squares planes of the carboxylate groups (O1/C1/O2) and (O3/C9/O4) by 0.4159 (1) and 0.4085 (1) Å, respectively. In (I), the O1-Cd1-O2 and O3-Cd1-O4 angles are 55.71 (5) and 117.52 (4) °, respectively. The corresponding O-M-O (where M is a metal) angles are 55.96 (4)° and 53.78 (4)° in [Cd2(DMAB)4(NA)2(H2O)2] (Hökelek et al., 2010), 52.91 (4)° and 53.96 (4)° in [Cd(FB)2(INA)2(H2O)].H2O (Hökelek et al., 2009a), 60.70 (4)° in [Co(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009b), 58.45 (9)° in [Mn(DMAB)2(INA)(H2O)2] (Hökelek et al., 2009c), 60.03 (6)° in [Zn(MAB)2(INA)2].H2O (Hökelek et al., 2009d), 58.3 (3)° in [Zn2(DENA)2(HB)4].2H2O (Hökelek & Necefoğlu, 1996) [where NA, INA, DENA, HB, FB, MAB and DMAB are nicotinamide, isonicotinamide, N,N-diethylnicotinamide, 4-hydroxybenzoate, 4-formylbenzoate, 4-methylaminobenzoate and 4-dimethylaminobenzoate, respectively] and 55.2 (1)° in [Cu(Asp)2(py)2] (where Asp is acetylsalicylate and py is pyridine) (Greenaway et al., 1984).

The dihedral angles between the planar carboxylate groups and the adjacent benzene rings A (C2-C7) and B (C10-C15) are 9.86 (16) and 11.74 (11) °, respectively, while those between rings A, B, C (N1/C17-C21), D (Cd1/O1/O2/C1) and E (Cd1/O3/O4/C9) are A/B = 88.35 (6), A/C = 62.90 (7), B/C = 73.43 (6) and D/E = 63.44 (5)°.

In the crystal structure, intermolecular O-H···O, N-H···O and C-H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The ππ contact between the pyridine rings, Cg3—Cg3i [symmetry code: (i) 1 - x, -1 - y, 1 - z, where Cg3 is the centroid of the ring C (N3/C17-C21)] may further stabilize the structure, with centroid-centroid distance of 3.965 (1) Å. There also exists a weak C-H···π interaction (Table 2).

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Greenaway et al. (1984); Hökelek & Necefoğlu (1996); Hökelek et al. (2009a,b,c,d, 2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level. Primed atoms are generated by the symmetry operators: (') - x, - y, 1 - z.
Bis[µ-4-(methylamino)benzoato]- κ3O,O':O;κ3O:O,O'- bis{aqua[4-(methylamino)benzoato-κ2O,O'](nicotinamide- κN)cadmium(II)} top
Crystal data top
[Cd2(C8H8NO2)4(C6H6N2O)2(H2O)2]Z = 1
Mr = 1105.72F(000) = 560
Triclinic, P1Dx = 1.637 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.5286 (2) ÅCell parameters from 9941 reflections
b = 10.1734 (2) Åθ = 2.4–28.4°
c = 13.2876 (3) ŵ = 1.02 mm1
α = 72.831 (3)°T = 100 K
β = 75.741 (3)°Block, colorless
γ = 67.172 (2)°0.37 × 0.26 × 0.10 mm
V = 1121.51 (5) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5581 independent reflections
Radiation source: fine-focus sealed tube5250 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
φ and ω scansθmax = 28.4°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1212
Tmin = 0.734, Tmax = 0.901k = 1313
20025 measured reflectionsl = 1716
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0294P)2 + 0.9733P]
where P = (Fo2 + 2Fc2)/3
5581 reflections(Δ/σ)max < 0.001
324 parametersΔρmax = 1.77 e Å3
1 restraintΔρmin = 0.48 e Å3
Crystal data top
[Cd2(C8H8NO2)4(C6H6N2O)2(H2O)2]γ = 67.172 (2)°
Mr = 1105.72V = 1121.51 (5) Å3
Triclinic, P1Z = 1
a = 9.5286 (2) ÅMo Kα radiation
b = 10.1734 (2) ŵ = 1.02 mm1
c = 13.2876 (3) ÅT = 100 K
α = 72.831 (3)°0.37 × 0.26 × 0.10 mm
β = 75.741 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
5581 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5250 reflections with I > 2σ(I)
Tmin = 0.734, Tmax = 0.901Rint = 0.023
20025 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0241 restraint
wR(F2) = 0.061H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 1.77 e Å3
5581 reflectionsΔρmin = 0.48 e Å3
324 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.183285 (14)0.043205 (13)0.484176 (10)0.01391 (5)
O10.08486 (15)0.16573 (15)0.62175 (12)0.0210 (3)
O20.32071 (15)0.00805 (14)0.62305 (11)0.0175 (3)
O30.04603 (16)0.29436 (15)0.38267 (12)0.0234 (3)
O40.01778 (15)0.10432 (14)0.39110 (11)0.0175 (3)
O50.37181 (18)0.60649 (17)0.33609 (16)0.0357 (4)
O60.37108 (16)0.12104 (15)0.36256 (12)0.0188 (3)
H610.357 (3)0.205 (4)0.357 (2)0.039 (8)*
H620.462 (4)0.084 (3)0.366 (2)0.042 (8)*
N10.32666 (17)0.18369 (16)0.44351 (13)0.0157 (3)
N20.1327 (2)0.4634 (2)0.38591 (18)0.0281 (4)
H2A0.071 (3)0.385 (3)0.400 (2)0.037 (7)*
H2B0.099 (3)0.528 (3)0.380 (2)0.039 (8)*
N30.1429 (3)0.0766 (2)1.10668 (16)0.0335 (4)
H3A0.051 (4)0.113 (4)1.137 (3)0.053 (9)*
N40.3405 (3)0.5412 (3)0.00800 (18)0.0413 (5)
H4A0.345 (5)0.491 (5)0.048 (3)0.100 (17)*
C10.2004 (2)0.09189 (19)0.66971 (15)0.0155 (3)
C20.1916 (2)0.0959 (2)0.78140 (15)0.0170 (3)
C30.0524 (2)0.1725 (2)0.83657 (17)0.0232 (4)
H30.03110.22870.80040.028*
C40.0371 (2)0.1661 (2)0.94354 (18)0.0276 (4)
H40.05650.21790.97850.033*
C50.1613 (2)0.0820 (2)1.00047 (16)0.0240 (4)
C60.3012 (2)0.0073 (2)0.94509 (17)0.0251 (4)
H60.38540.04780.98080.030*
C70.3151 (2)0.0148 (2)0.83732 (16)0.0227 (4)
H70.40910.03540.80170.027*
C80.2541 (4)0.0243 (3)1.1746 (2)0.0446 (6)
H8A0.21180.01991.24740.067*
H8B0.34560.00141.15540.067*
H8C0.27920.12181.16610.067*
C90.0265 (2)0.23868 (19)0.35120 (15)0.0163 (3)
C100.1183 (2)0.32451 (19)0.26270 (15)0.0171 (3)
C110.2098 (2)0.2690 (2)0.23138 (16)0.0207 (4)
H110.22120.18060.27100.025*
C120.2835 (2)0.3414 (2)0.14353 (18)0.0265 (4)
H120.34390.30150.12510.032*
C130.2687 (2)0.4745 (2)0.08146 (18)0.0288 (5)
C140.1827 (3)0.5343 (2)0.1148 (2)0.0324 (5)
H140.17490.62460.07690.039*
C150.1087 (2)0.4601 (2)0.20394 (18)0.0248 (4)
H150.05200.50160.22460.030*
C160.3123 (3)0.6668 (3)0.0834 (2)0.0487 (7)
H16A0.36100.68920.14460.073*
H16B0.20340.64540.10520.073*
H16C0.35380.74910.05060.073*
C170.2634 (2)0.26755 (19)0.42175 (15)0.0157 (3)
H170.15660.24110.43350.019*
C180.3509 (2)0.39229 (19)0.38237 (15)0.0164 (3)
C190.5101 (2)0.4288 (2)0.36180 (18)0.0221 (4)
H190.57150.50920.33280.027*
C200.5760 (2)0.3436 (2)0.38513 (19)0.0244 (4)
H200.68230.36630.37250.029*
C210.4810 (2)0.2241 (2)0.42749 (17)0.0193 (4)
H210.52580.16940.44560.023*
C220.2834 (2)0.4945 (2)0.36559 (16)0.0188 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01123 (7)0.01258 (7)0.01849 (7)0.00263 (5)0.00261 (5)0.00593 (5)
O10.0179 (6)0.0192 (6)0.0262 (7)0.0015 (5)0.0074 (5)0.0088 (6)
O20.0140 (6)0.0195 (6)0.0188 (6)0.0045 (5)0.0017 (5)0.0063 (5)
O30.0197 (7)0.0205 (7)0.0329 (8)0.0079 (5)0.0083 (6)0.0050 (6)
O40.0160 (6)0.0144 (6)0.0197 (7)0.0047 (5)0.0032 (5)0.0003 (5)
O50.0222 (7)0.0254 (8)0.0654 (12)0.0095 (6)0.0063 (7)0.0276 (8)
O60.0144 (6)0.0140 (6)0.0246 (7)0.0028 (5)0.0022 (5)0.0031 (5)
N10.0139 (7)0.0135 (7)0.0195 (8)0.0047 (6)0.0023 (6)0.0035 (6)
N20.0165 (8)0.0182 (8)0.0551 (13)0.0045 (7)0.0054 (8)0.0178 (8)
N30.0388 (11)0.0394 (11)0.0193 (9)0.0110 (9)0.0017 (8)0.0103 (8)
N40.0413 (12)0.0427 (13)0.0295 (11)0.0085 (10)0.0138 (9)0.0059 (10)
C10.0152 (8)0.0129 (7)0.0199 (9)0.0072 (6)0.0012 (7)0.0037 (7)
C20.0170 (8)0.0171 (8)0.0187 (9)0.0080 (7)0.0005 (7)0.0054 (7)
C30.0185 (9)0.0243 (9)0.0265 (10)0.0051 (7)0.0019 (8)0.0092 (8)
C40.0214 (10)0.0338 (11)0.0274 (11)0.0078 (9)0.0038 (8)0.0146 (9)
C50.0299 (10)0.0247 (9)0.0199 (10)0.0138 (8)0.0017 (8)0.0070 (8)
C60.0236 (10)0.0280 (10)0.0213 (10)0.0049 (8)0.0052 (8)0.0060 (8)
C70.0184 (9)0.0268 (10)0.0211 (10)0.0043 (8)0.0016 (7)0.0085 (8)
C80.0619 (18)0.0446 (15)0.0201 (11)0.0107 (13)0.0055 (11)0.0079 (10)
C90.0109 (8)0.0155 (8)0.0193 (9)0.0021 (6)0.0002 (6)0.0045 (7)
C100.0143 (8)0.0138 (8)0.0188 (9)0.0019 (6)0.0010 (7)0.0024 (7)
C110.0209 (9)0.0163 (8)0.0233 (10)0.0036 (7)0.0057 (7)0.0037 (7)
C120.0258 (10)0.0246 (10)0.0279 (11)0.0039 (8)0.0096 (8)0.0061 (8)
C130.0226 (10)0.0263 (10)0.0242 (10)0.0016 (8)0.0048 (8)0.0011 (8)
C140.0267 (11)0.0198 (10)0.0364 (13)0.0050 (8)0.0034 (9)0.0093 (9)
C150.0200 (9)0.0173 (9)0.0328 (11)0.0068 (7)0.0034 (8)0.0007 (8)
C160.0348 (14)0.0494 (16)0.0388 (15)0.0064 (12)0.0058 (11)0.0129 (12)
C170.0125 (8)0.0144 (8)0.0200 (9)0.0045 (6)0.0021 (6)0.0039 (7)
C180.0157 (8)0.0123 (8)0.0210 (9)0.0056 (6)0.0021 (7)0.0029 (7)
C190.0161 (9)0.0146 (8)0.0334 (11)0.0036 (7)0.0009 (8)0.0081 (8)
C200.0118 (8)0.0186 (9)0.0414 (12)0.0052 (7)0.0001 (8)0.0079 (8)
C210.0152 (8)0.0142 (8)0.0292 (10)0.0061 (7)0.0047 (7)0.0035 (7)
C220.0185 (9)0.0140 (8)0.0245 (10)0.0058 (7)0.0035 (7)0.0046 (7)
Geometric parameters (Å, º) top
Cd1—N12.3265 (15)C6—H60.9300
Cd1—O12.3170 (14)C7—C61.387 (3)
Cd1—O22.3844 (13)C7—H70.9300
Cd1—O32.5099 (15)C8—H8A0.9600
Cd1—O42.3185 (14)C8—H8B0.9600
Cd1—O4i2.5625 (13)C8—H8C0.9600
Cd1—O62.3152 (14)C9—C101.489 (3)
Cd1—C12.7077 (18)C10—C111.397 (3)
O1—C11.267 (2)C10—C151.395 (3)
O2—C11.276 (2)C11—C121.376 (3)
O3—C91.249 (2)C11—H110.9300
O4—C91.289 (2)C12—C131.402 (3)
O5—C221.232 (2)C12—H120.9300
O6—H610.80 (3)C13—N41.381 (3)
O6—H620.81 (3)C13—C141.401 (4)
N1—C171.344 (2)C14—H140.9300
N1—C211.343 (2)C15—C141.393 (3)
N2—C221.319 (3)C15—H150.9300
N2—H2A0.83 (3)C16—N41.444 (3)
N2—H2B0.86 (3)C16—H16A0.9600
N3—C51.366 (3)C16—H16B0.9600
N3—C81.439 (4)C16—H16C0.9600
N3—H3A0.86 (3)C17—C181.391 (2)
N4—H4A0.86 (4)C17—H170.9300
C2—C11.478 (3)C19—C181.390 (3)
C2—C31.400 (3)C19—C201.385 (3)
C2—C71.390 (3)C19—H190.9300
C3—H30.9300C20—H200.9300
C4—C31.377 (3)C21—C201.383 (3)
C4—H40.9300C21—H210.9300
C5—C41.407 (3)C22—C181.507 (2)
C5—C61.399 (3)
O1—Cd1—O255.71 (5)C3—C4—H4119.6
O1—Cd1—O380.21 (5)C5—C4—H4119.6
O1—Cd1—O4106.64 (5)N3—C5—C4119.6 (2)
O1—Cd1—O4i79.05 (5)N3—C5—C6122.2 (2)
O1—Cd1—N1143.81 (5)C6—C5—C4118.18 (19)
O1—Cd1—C127.83 (5)C5—C6—H6119.8
O2—Cd1—O3121.55 (5)C7—C6—C5120.5 (2)
O2—Cd1—O4i91.77 (4)C7—C6—H6119.8
O2—Cd1—C128.12 (5)C2—C7—H7119.3
O3—Cd1—O4i117.52 (4)C6—C7—C2121.35 (18)
O3—Cd1—C1103.17 (5)C6—C7—H7119.3
O4—Cd1—O2161.16 (5)N3—C8—H8A109.5
O4—Cd1—O354.22 (4)N3—C8—H8B109.5
O4—Cd1—O4i77.12 (5)N3—C8—H8C109.5
O4—Cd1—N198.06 (5)H8A—C8—H8B109.5
O4—Cd1—C1133.53 (5)H8A—C8—H8C109.5
O4i—Cd1—C182.17 (5)H8B—C8—H8C109.5
O6—Cd1—O1112.54 (5)O3—C9—O4120.79 (17)
O6—Cd1—O288.69 (5)O3—C9—C10120.31 (17)
O6—Cd1—O373.74 (5)O4—C9—C10118.82 (16)
O6—Cd1—O4105.81 (5)C11—C10—C9121.45 (17)
O6—Cd1—O4i165.88 (5)C15—C10—C9120.91 (18)
O6—Cd1—N184.67 (5)C15—C10—C11117.54 (18)
O6—Cd1—C1104.26 (5)C10—C11—H11119.1
N1—Cd1—O295.16 (5)C12—C11—C10121.82 (19)
N1—Cd1—O3135.97 (5)C12—C11—H11119.1
N1—Cd1—O4i81.23 (5)C11—C12—C13120.8 (2)
N1—Cd1—C1119.34 (6)C11—C12—H12119.6
C1—O1—Cd193.51 (11)C13—C12—H12119.6
C1—O2—Cd190.17 (11)N4—C13—C12119.0 (2)
C9—O3—Cd188.13 (11)N4—C13—C14123.2 (2)
Cd1—O4—Cd1i102.88 (5)C14—C13—C12117.8 (2)
C9—O4—Cd195.93 (11)C13—C14—H14119.6
C9—O4—Cd1i139.46 (11)C15—C14—C13120.8 (2)
Cd1—O6—H61113 (2)C15—C14—H14119.6
Cd1—O6—H62124 (2)C10—C15—H15119.5
H61—O6—H62102 (3)C14—C15—C10121.1 (2)
C17—N1—Cd1123.06 (12)C14—C15—H15119.5
C21—N1—Cd1118.29 (12)N4—C16—H16A109.5
C21—N1—C17118.08 (15)N4—C16—H16B109.5
C22—N2—H2A123 (2)N4—C16—H16C109.5
C22—N2—H2B116.2 (19)H16A—C16—H16B109.5
H2A—N2—H2B120 (3)H16A—C16—H16C109.5
C5—N3—C8123.2 (2)H16B—C16—H16C109.5
C5—N3—H3A117 (2)N1—C17—C18122.70 (16)
C8—N3—H3A117 (2)N1—C17—H17118.6
C13—N4—C16121.7 (2)C18—C17—H17118.6
C13—N4—H4A122 (3)C17—C18—C22123.63 (16)
C16—N4—H4A103 (3)C19—C18—C17118.41 (17)
O1—C1—Cd158.66 (9)C19—C18—C22117.89 (16)
O1—C1—O2119.58 (17)C18—C19—H19120.5
O1—C1—C2119.89 (16)C20—C19—C18119.07 (17)
O2—C1—Cd161.71 (10)C20—C19—H19120.5
O2—C1—C2120.41 (17)C19—C20—H20120.6
C2—C1—Cd1167.59 (12)C21—C20—C19118.87 (17)
C3—C2—C1120.01 (17)C21—C20—H20120.6
C7—C2—C1121.66 (17)N1—C21—C20122.78 (17)
C7—C2—C3118.10 (18)N1—C21—H21118.6
C2—C3—H3119.4C20—C21—H21118.6
C4—C3—C2121.1 (2)O5—C22—N2122.37 (18)
C4—C3—H3119.4O5—C22—C18118.50 (17)
C3—C4—C5120.76 (19)N2—C22—C18119.10 (16)
O2—Cd1—O1—C15.82 (10)O6—Cd1—C1—C2161.5 (6)
O3—Cd1—O1—C1145.30 (11)N1—Cd1—C1—O1156.66 (10)
O4—Cd1—O1—C1166.82 (10)N1—Cd1—C1—O233.58 (12)
O4i—Cd1—O1—C193.97 (11)N1—Cd1—C1—C269.7 (6)
O6—Cd1—O1—C177.59 (11)Cd1—O1—C1—O210.37 (17)
N1—Cd1—O1—C135.80 (15)Cd1—O1—C1—C2165.67 (14)
O1—Cd1—O2—C15.76 (10)Cd1—O2—C1—O110.05 (16)
O3—Cd1—O2—C154.46 (11)Cd1—O2—C1—C2165.96 (14)
O4—Cd1—O2—C116.57 (19)Cd1—O3—C9—O49.37 (17)
O4i—Cd1—O2—C169.69 (10)Cd1—O3—C9—C10167.39 (15)
O6—Cd1—O2—C1124.42 (10)Cd1—O4—C9—O310.20 (18)
N1—Cd1—O2—C1151.05 (10)Cd1i—O4—C9—O3107.6 (2)
O1—Cd1—O3—C9124.35 (11)Cd1—O4—C9—C10166.61 (13)
O2—Cd1—O3—C9163.39 (10)Cd1i—O4—C9—C1075.6 (2)
O4—Cd1—O3—C95.50 (10)Cd1—N1—C17—C18170.27 (14)
O4i—Cd1—O3—C952.25 (12)C21—N1—C17—C180.8 (3)
O6—Cd1—O3—C9118.55 (11)Cd1—N1—C21—C20168.42 (16)
N1—Cd1—O3—C954.71 (13)C17—N1—C21—C203.1 (3)
C1—Cd1—O3—C9140.19 (11)C8—N3—C5—C4169.5 (2)
O1—Cd1—O4—Cd1i74.23 (6)C8—N3—C5—C611.1 (4)
O1—Cd1—O4—C969.63 (11)C3—C2—C1—Cd175.0 (6)
O2—Cd1—O4—Cd1i55.11 (15)C3—C2—C1—O14.7 (3)
O2—Cd1—O4—C988.75 (17)C3—C2—C1—O2171.30 (17)
O3—Cd1—O4—Cd1i138.50 (7)C7—C2—C1—Cd199.4 (6)
O3—Cd1—O4—C95.36 (10)C7—C2—C1—O1179.06 (17)
O4i—Cd1—O4—Cd1i0.0C7—C2—C1—O23.1 (3)
O4i—Cd1—O4—C9143.86 (12)C1—C2—C3—C4173.52 (18)
O6—Cd1—O4—Cd1i165.74 (5)C7—C2—C3—C41.0 (3)
O6—Cd1—O4—C950.40 (11)C1—C2—C7—C6173.35 (18)
N1—Cd1—O4—Cd1i79.03 (5)C3—C2—C7—C61.1 (3)
N1—Cd1—O4—C9137.11 (11)C5—C4—C3—C20.0 (3)
C1—Cd1—O4—Cd1i65.79 (7)N3—C5—C4—C3179.5 (2)
C1—Cd1—O4—C978.07 (12)C6—C5—C4—C31.0 (3)
O1—Cd1—N1—C17105.36 (15)N3—C5—C6—C7179.6 (2)
O1—Cd1—N1—C2183.55 (16)C4—C5—C6—C71.0 (3)
O2—Cd1—N1—C17138.80 (14)C2—C7—C6—C50.1 (3)
O2—Cd1—N1—C2150.11 (15)O3—C9—C10—C11175.08 (17)
O3—Cd1—N1—C1773.07 (16)O3—C9—C10—C158.7 (3)
O3—Cd1—N1—C2198.02 (15)O4—C9—C10—C118.1 (3)
O4—Cd1—N1—C1727.75 (15)O4—C9—C10—C15168.09 (17)
O4i—Cd1—N1—C1747.80 (14)C9—C10—C11—C12173.83 (18)
O4—Cd1—N1—C21143.34 (14)C15—C10—C11—C122.5 (3)
O4i—Cd1—N1—C21141.11 (15)C9—C10—C15—C14173.80 (19)
O6—Cd1—N1—C17133.01 (15)C11—C10—C15—C142.5 (3)
O6—Cd1—N1—C2138.08 (14)C10—C11—C12—C130.3 (3)
C1—Cd1—N1—C17123.62 (14)C11—C12—C13—N4177.9 (2)
C1—Cd1—N1—C2165.29 (15)C11—C12—C13—C143.0 (3)
O1—Cd1—C1—O2169.76 (17)C12—C13—N4—C16171.1 (2)
O1—Cd1—C1—C287.0 (6)C14—C13—N4—C169.9 (4)
O2—Cd1—C1—O1169.76 (17)N4—C13—C14—C15178.1 (2)
O2—Cd1—C1—C2103.2 (6)C12—C13—C14—C152.9 (3)
O3—Cd1—C1—O135.18 (11)C10—C15—C14—C130.1 (3)
O3—Cd1—C1—O2134.59 (10)N1—C17—C18—C192.0 (3)
O3—Cd1—C1—C2122.2 (6)N1—C17—C18—C22174.98 (18)
O4—Cd1—C1—O117.53 (13)C20—C19—C18—C172.6 (3)
O4i—Cd1—C1—O181.36 (11)C20—C19—C18—C22174.56 (19)
O4—Cd1—C1—O2172.70 (9)C18—C19—C20—C210.5 (3)
O4i—Cd1—C1—O2108.88 (10)N1—C21—C20—C192.5 (3)
O4—Cd1—C1—C269.5 (6)O5—C22—C18—C17175.9 (2)
O4i—Cd1—C1—C25.6 (6)O5—C22—C18—C191.1 (3)
O6—Cd1—C1—O1111.46 (11)N2—C22—C18—C172.1 (3)
O6—Cd1—C1—O258.31 (11)N2—C22—C18—C19179.1 (2)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.83 (3)2.13 (3)2.921 (2)160 (2)
N2—H2B···O3ii0.86 (3)2.05 (3)2.901 (3)170 (3)
O6—H61···O5iii0.79 (4)1.91 (4)2.692 (2)167 (3)
O6—H62···O2iv0.81 (4)1.94 (4)2.743 (2)179 (3)
C11—H11···O2i0.932.393.299 (2)165
C17—H17···O1i0.932.363.216 (3)153
C21—H21···O2iv0.932.453.252 (3)145
C19—H19···Cg3v0.932.743.537 (2)144
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Cd2(C8H8NO2)4(C6H6N2O)2(H2O)2]
Mr1105.72
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.5286 (2), 10.1734 (2), 13.2876 (3)
α, β, γ (°)72.831 (3), 75.741 (3), 67.172 (2)
V3)1121.51 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.37 × 0.26 × 0.10
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.734, 0.901
No. of measured, independent and
observed [I > 2σ(I)] reflections
20025, 5581, 5250
Rint0.023
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.061, 1.08
No. of reflections5581
No. of parameters324
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.77, 0.48

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Cd1—N12.3265 (15)Cd1—O42.3185 (14)
Cd1—O12.3170 (14)Cd1—O4i2.5625 (13)
Cd1—O22.3844 (13)Cd1—O62.3152 (14)
Cd1—O32.5099 (15)
Symmetry code: (i) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.83 (3)2.13 (3)2.921 (2)160 (2)
N2—H2B···O3ii0.86 (3)2.05 (3)2.901 (3)170 (3)
O6—H61···O5iii0.79 (4)1.91 (4)2.692 (2)167 (3)
O6—H62···O2iv0.81 (4)1.94 (4)2.743 (2)179 (3)
C11—H11···O2i0.932.393.299 (2)165
C17—H17···O1i0.932.363.216 (3)153
C21—H21···O2iv0.932.453.252 (3)145
C19—H19···Cg3v0.932.743.537 (2)144
Symmetry codes: (i) x, y, z+1; (ii) x, y1, z; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x+1, y1, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGreenaway, F. T., Pezeshk, A., Cordes, A. W., Noble, M. C. & Sorenson, J. R. J. (1984). Inorg. Chim. Acta, 93, 67–71.  CSD CrossRef CAS Web of Science Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009b). Acta Cryst. E65, m627–m628.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009c). Acta Cryst. E65, m1037–m1038.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2009d). Acta Cryst. E65, m1365–m1366.  Web of Science CrossRef IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1996). Acta Cryst. C52, 1128–1131.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T., Süzen, Y., Tercan, B., Aybirdi, Ö. & Necefoğlu, H. (2010). Acta Cryst. E66, m782–m783.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Yılmaz, F., Tercan, B., Gürgen, F. & Necefoğlu, H. (2009a). Acta Cryst. E65, m1416–m1417.  Web of Science CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds