organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Benzoyl-1H-benzimidazole

aCollege of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 6 November 2010; accepted 7 November 2010; online 13 November 2010)

In the title compound, C14H10N2O, the benzoyl ring and benzimidazole ring system are aligned at a dihedral angle of 50.2 (2)°. In the crystal, inter­molecular N—H⋯N hydrogen bonds between adjacent imidazole groups generate supra­molecular C(4) chains running along the b axis.

Related literature

For phototropism of 2-acetyl­benzimidazole and 2-benzoyl­benzimidazole, see: Chowdhury et al. (2005[Chowdhury, P., Panja, S., Chatterjee, A., Bhattacharya, P. & Chakravorti, S. (2005). J. Photochem. Photobiol. A, 170, 131-141.]). For the crystal structure of 2-acetyl­benzimidazole, see: Yang et al. (2006[Yang, X.-Y., Li, Y., Li, Y., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o1936-o1937.]).

[Scheme 1]

Experimental

Crystal data
  • C14H10N2O

  • Mr = 222.24

  • Orthorhombic, P b c a

  • a = 14.7356 (8) Å

  • b = 9.9530 (12) Å

  • c = 15.7981 (12) Å

  • V = 2317.0 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.40 × 0.40 × 0.20 mm

Data collection
  • Bruker SMART APEX diffractometer

  • 10324 measured reflections

  • 2658 independent reflections

  • 1885 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.115

  • S = 1.01

  • 2658 reflections

  • 159 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯N2i 0.90 (2) 1.95 (2) 2.829 (2) 164 (1)
Symmetry code: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Acetyl-2-benzimidazole and benzoyl-2-benzimidazole are reported to exhibit excited-state prototropism in solvents at different pH levels (Chowdhury et al., 2005). Acetyl-2-benzimidazole exists in the solid state as an N–H···O hydrogen bonded dimer; the molecule is essentially planar (Yang et al., 2006). With the larger phenyl ring in place of the methyl group, the aromatic analog (Scheme I) requires rotation of the aromatic ring in order to reduce strain; this is reflected in the 50.2 (2) ° dihedral angle between the phenyl and benzimidazolyl rings (Fig. 1). Adjacent molecules are linked into a chan by N–H···O hydrogen bonds (Fig. 2).

Related literature top

For phototropism of 2-acetylbenzimidazole and 2-benzoylbenzimidazole, see: Chowdhury et al. (2005). For the crystal structure of 2-acetylbenzimidazole, see: Yang et al. (2006).

Experimental top

The compound was synthesized by using a literature procedure (Chowdhury et al., 2005), and crystals were grown from a methanol solution of the compound.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C–H 0.93 Å) and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2Ueq(C).

The amino H-atom was located in a difference Fourier map and was refined isotropically.

Structure description top

Acetyl-2-benzimidazole and benzoyl-2-benzimidazole are reported to exhibit excited-state prototropism in solvents at different pH levels (Chowdhury et al., 2005). Acetyl-2-benzimidazole exists in the solid state as an N–H···O hydrogen bonded dimer; the molecule is essentially planar (Yang et al., 2006). With the larger phenyl ring in place of the methyl group, the aromatic analog (Scheme I) requires rotation of the aromatic ring in order to reduce strain; this is reflected in the 50.2 (2) ° dihedral angle between the phenyl and benzimidazolyl rings (Fig. 1). Adjacent molecules are linked into a chan by N–H···O hydrogen bonds (Fig. 2).

For phototropism of 2-acetylbenzimidazole and 2-benzoylbenzimidazole, see: Chowdhury et al. (2005). For the crystal structure of 2-acetylbenzimidazole, see: Yang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of C14H11N2O at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.
[Figure 2] Fig. 2. Hydrogen-bonded chain structure.
2-Benzoyl-1H-benzimidazole top
Crystal data top
C14H10N2OF(000) = 928
Mr = 222.24Dx = 1.274 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2496 reflections
a = 14.7356 (8) Åθ = 2.8–26.7°
b = 9.9530 (12) ŵ = 0.08 mm1
c = 15.7981 (12) ÅT = 293 K
V = 2317.0 (4) Å3Block, colorless
Z = 80.40 × 0.40 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
1885 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 27.5°, θmin = 2.8°
ω scansh = 1019
10324 measured reflectionsk = 1211
2658 independent reflectionsl = 1520
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0549P)2 + 0.2609P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max = 0.001
2658 reflectionsΔρmax = 0.16 e Å3
159 parametersΔρmin = 0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0093 (12)
Crystal data top
C14H10N2OV = 2317.0 (4) Å3
Mr = 222.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.7356 (8) ŵ = 0.08 mm1
b = 9.9530 (12) ÅT = 293 K
c = 15.7981 (12) Å0.40 × 0.40 × 0.20 mm
Data collection top
Bruker SMART APEX
diffractometer
1885 reflections with I > 2σ(I)
10324 measured reflectionsRint = 0.030
2658 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.16 e Å3
2658 reflectionsΔρmin = 0.14 e Å3
159 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38338 (7)0.51103 (10)0.45822 (7)0.0647 (3)
N10.23286 (7)0.52044 (10)0.35142 (7)0.0456 (3)
H10.2500 (10)0.6048 (17)0.3643 (9)0.066 (4)*
N20.22405 (7)0.29711 (9)0.35955 (7)0.0450 (3)
C10.16927 (9)0.48272 (12)0.29302 (8)0.0446 (3)
C20.11547 (10)0.55500 (15)0.23652 (9)0.0609 (4)
H20.11890.64810.23280.073*
C30.05747 (12)0.48239 (18)0.18687 (10)0.0733 (5)
H30.02070.52740.14830.088*
C40.05192 (13)0.34275 (18)0.19233 (10)0.0767 (5)
H40.01110.29720.15770.092*
C50.10482 (11)0.27110 (15)0.24714 (10)0.0647 (4)
H50.10110.17790.25010.078*
C60.16460 (9)0.34273 (12)0.29846 (8)0.0453 (3)
C70.26312 (9)0.40660 (11)0.38936 (7)0.0411 (3)
C80.33717 (9)0.41037 (12)0.45261 (8)0.0444 (3)
C90.35378 (9)0.28972 (13)0.50523 (8)0.0471 (3)
C100.28375 (11)0.21174 (15)0.53695 (9)0.0613 (4)
H100.22380.23260.52400.074*
C110.30339 (17)0.10285 (19)0.58787 (11)0.0904 (7)
H110.25660.05200.61100.108*
C120.3922 (2)0.0697 (2)0.60441 (13)0.1081 (8)
H120.40520.00530.63730.130*
C130.46157 (16)0.1462 (2)0.57286 (13)0.0942 (7)
H130.52140.12240.58400.113*
C140.44330 (11)0.25789 (16)0.52484 (9)0.0632 (4)
H140.49040.31190.50550.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0593 (6)0.0444 (6)0.0904 (8)0.0143 (5)0.0074 (5)0.0005 (5)
N10.0576 (7)0.0243 (5)0.0551 (6)0.0016 (5)0.0001 (5)0.0018 (5)
N20.0574 (7)0.0269 (5)0.0506 (6)0.0008 (4)0.0037 (5)0.0015 (4)
C10.0526 (7)0.0335 (6)0.0477 (7)0.0013 (5)0.0040 (6)0.0032 (5)
C20.0731 (10)0.0441 (8)0.0656 (9)0.0079 (7)0.0038 (8)0.0136 (7)
C30.0784 (11)0.0751 (11)0.0663 (9)0.0043 (9)0.0174 (9)0.0174 (9)
C40.0894 (13)0.0752 (12)0.0656 (9)0.0134 (10)0.0262 (9)0.0048 (9)
C50.0858 (11)0.0455 (8)0.0630 (8)0.0114 (7)0.0168 (8)0.0004 (7)
C60.0561 (8)0.0329 (6)0.0469 (6)0.0008 (5)0.0013 (6)0.0019 (5)
C70.0486 (7)0.0273 (6)0.0475 (6)0.0014 (5)0.0044 (5)0.0009 (5)
C80.0437 (7)0.0354 (6)0.0543 (7)0.0020 (5)0.0046 (6)0.0045 (6)
C90.0559 (8)0.0403 (7)0.0450 (6)0.0009 (6)0.0049 (6)0.0037 (6)
C100.0725 (10)0.0583 (9)0.0531 (8)0.0141 (7)0.0062 (7)0.0077 (7)
C110.1331 (19)0.0743 (12)0.0637 (10)0.0338 (12)0.0211 (11)0.0238 (9)
C120.160 (2)0.0778 (14)0.0864 (13)0.0021 (15)0.0520 (15)0.0288 (11)
C130.1035 (16)0.0826 (14)0.0967 (14)0.0211 (12)0.0447 (12)0.0051 (12)
C140.0632 (9)0.0625 (9)0.0641 (9)0.0056 (7)0.0151 (7)0.0065 (7)
Geometric parameters (Å, º) top
O1—C81.2146 (14)C5—H50.9300
N1—C71.3571 (15)C7—C81.4800 (18)
N1—C11.3677 (17)C8—C91.4809 (18)
N1—H10.900 (17)C9—C101.3851 (19)
N2—C71.3195 (15)C9—C141.392 (2)
N2—C61.3802 (16)C10—C111.380 (2)
C1—C21.3938 (19)C10—H100.9300
C1—C61.3977 (17)C11—C121.375 (3)
C2—C31.367 (2)C11—H110.9300
C2—H20.9300C12—C131.369 (3)
C3—C41.395 (2)C12—H120.9300
C3—H30.9300C13—C141.372 (2)
C4—C51.366 (2)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—C61.3933 (19)
C7—N1—C1107.09 (10)N2—C7—C8125.70 (11)
C7—N1—H1125.9 (10)N1—C7—C8121.28 (10)
C1—N1—H1127.0 (10)O1—C8—C7118.92 (12)
C7—N2—C6104.76 (10)O1—C8—C9122.35 (12)
N1—C1—C2132.85 (12)C7—C8—C9118.71 (10)
N1—C1—C6105.42 (11)C10—C9—C14119.88 (13)
C2—C1—C6121.73 (13)C10—C9—C8122.30 (13)
C3—C2—C1116.76 (14)C14—C9—C8117.79 (13)
C3—C2—H2121.6C11—C10—C9119.64 (17)
C1—C2—H2121.6C11—C10—H10120.2
C2—C3—C4121.88 (15)C9—C10—H10120.2
C2—C3—H3119.1C12—C11—C10119.92 (19)
C4—C3—H3119.1C12—C11—H11120.0
C5—C4—C3121.72 (15)C10—C11—H11120.0
C5—C4—H4119.1C13—C12—C11120.55 (18)
C3—C4—H4119.1C13—C12—H12119.7
C4—C5—C6117.55 (14)C11—C12—H12119.7
C4—C5—H5121.2C12—C13—C14120.36 (19)
C6—C5—H5121.2C12—C13—H13119.8
N2—C6—C5129.77 (12)C14—C13—H13119.8
N2—C6—C1109.86 (11)C13—C14—C9119.56 (17)
C5—C6—C1120.36 (12)C13—C14—H14120.2
N2—C7—N1112.86 (11)C9—C14—H14120.2
C7—N1—C1—C2179.42 (14)C1—N1—C7—C8176.10 (11)
C7—N1—C1—C60.39 (14)N2—C7—C8—O1160.44 (13)
N1—C1—C2—C3179.47 (15)N1—C7—C8—O114.80 (19)
C6—C1—C2—C30.3 (2)N2—C7—C8—C917.95 (19)
C1—C2—C3—C40.2 (2)N1—C7—C8—C9166.81 (11)
C2—C3—C4—C50.6 (3)O1—C8—C9—C10142.64 (14)
C3—C4—C5—C60.5 (3)C7—C8—C9—C1039.03 (18)
C7—N2—C6—C5179.18 (15)O1—C8—C9—C1435.36 (19)
C7—N2—C6—C10.19 (14)C7—C8—C9—C14142.97 (12)
C4—C5—C6—N2178.85 (14)C14—C9—C10—C110.0 (2)
C4—C5—C6—C10.0 (2)C8—C9—C10—C11177.95 (14)
N1—C1—C6—N20.37 (14)C9—C10—C11—C122.2 (3)
C2—C1—C6—N2179.47 (12)C10—C11—C12—C132.0 (3)
N1—C1—C6—C5179.46 (13)C11—C12—C13—C140.6 (3)
C2—C1—C6—C50.4 (2)C12—C13—C14—C92.8 (3)
C6—N2—C7—N10.06 (14)C10—C9—C14—C132.5 (2)
C6—N2—C7—C8175.65 (11)C8—C9—C14—C13179.45 (14)
C1—N1—C7—N20.29 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.90 (2)1.95 (2)2.829 (2)164 (1)
Symmetry code: (i) x+1/2, y+1/2, z.

Experimental details

Crystal data
Chemical formulaC14H10N2O
Mr222.24
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)14.7356 (8), 9.9530 (12), 15.7981 (12)
V3)2317.0 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.40 × 0.20
Data collection
DiffractometerBruker SMART APEX
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10324, 2658, 1885
Rint0.030
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.115, 1.01
No. of reflections2658
No. of parameters159
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.90 (2)1.95 (2)2.829 (2)164 (1)
Symmetry code: (i) x+1/2, y+1/2, z.
 

Acknowledgements

We thank Beijing Normal University and the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChowdhury, P., Panja, S., Chatterjee, A., Bhattacharya, P. & Chakravorti, S. (2005). J. Photochem. Photobiol. A, 170, 131–141.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYang, X.-Y., Li, Y., Li, Y., Li, X.-M. & Zhang, S.-S. (2006). Acta Cryst. E62, o1936–o1937.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds