organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(3-Morpholino­prop­yl)-2,3-di­hydro-1H-pyrrolo­[3,4-b]quinolin-1-one monohydrate

aSchool of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China
*Correspondence e-mail: yuhualong68@hotmail.com

(Received 7 November 2010; accepted 10 November 2010; online 13 November 2010)

In the title compound, C18H21N3O2·H2O, the fused-ring system is approximately planar [maximum atomic deviation = 0.028 (3) Å]; the morpholine ring displays a chair conformation. The crystal packing is stabilized by classical inter­molecular O—H⋯O and O—H⋯N hydrogen bonds and weak C—H⋯O hydrogen bonds between the organic mol­ecules and the water mol­ecules.

Related literature

For the properties and biological activity of quinoline deriv­atives, see: Vaitilingam et al. (2004[Vaitilingam, B., Nayyar, A., Palde, P. B., Monga, V., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem. 12, 4179-4188.]); Lee et al. (2004[Lee, B. D., Li, Z., French, K. J., Zhuang, Y., Xia, Z. & Smith, C. D. (2004). J. Med. Chem. 47, 1413-1422.]); Zwaagstra et al. (1998[Zwaagstra, M. E., Timmerman, H., Van De Stolpe, A. C., De Kanter, F. J., Tamura, M., Wada, Y. & Zhang, M.-Q. (1998). J. Med. Chem. 41, 1428-1438.]); Roma et al. (2000[Roma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021-1035.]); Ferrarini et al. (2000[Ferrarini, P. L., Mori, C., Badawneh, M., Calderonem, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Med. Chem. 35, 815-826.]). For the preparation of quinoline derivatives, see: Zhou et al. (2010[Zhou, T., Long, Y., Yang, D., Zhang, H. & Wang, W. (2010). Acta Cryst. E66, o2155.]); Yang et al. (2008[Yang, D.-Q., Guo, W., Cai, Y.-P., Jiang, L.-S., Jiang, K.-L. & Wu, X.-B. (2008). Heteroat. Chem. 19, 229-233.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21N3O2·H2O

  • Mr = 329.39

  • Orthorhombic, P b c a

  • a = 7.0107 (16) Å

  • b = 12.655 (3) Å

  • c = 37.609 (9) Å

  • V = 3336.7 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 296 K

  • 0.30 × 0.28 × 0.27 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • 15458 measured reflections

  • 2943 independent reflections

  • 1864 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.057

  • wR(F2) = 0.144

  • S = 1.04

  • 2943 reflections

  • 225 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N3i 0.86 (4) 2.15 (4) 2.961 (4) 155 (4)
O1W—H2W⋯O1ii 0.87 (4) 1.98 (4) 2.843 (3) 174 (4)
C11—H11B⋯O1W 0.97 2.47 3.326 (4) 147
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Quinoline analogues have been reported to display promising antibacterial (Vaitilingam et al., 2004), an-ticancer and antiplatelet (Lee et al., 2004), antiasthmatic (Zwaagstra et al., 1998), antiinflammatory (Roma et al., 2000), and antihypertensive activities (Ferrarini et al., 2000). We have synthesized some new quinoline derivatives (Yang et al., 2008). In continuation of our efforts to develop quinoline derivatives with a new structure-activity relationship, herein, we report the synthesis and structure determination the title compound.

The molecular geometry and the atom-labeling scheme of the title compound is illustrated in Fig. 1. The molecule contains three approximately coplanar rings and the dihedral angle between the three rings 1.60 (2)° and 1.20 (5)°, respectively; the C—N2—C—C torsion angles are 43.59° and -137.51°; the morpholine ring shows a stable chair conformation. The crystal structure can be depicted as layers along a-axis which ring systems are parallel to one another. The crystal packing is stabilized by intermolecular interactions between O and H atoms [C—H···O = 2.638Å].

Related literature top

For the properties and biological activity of quinoline derivatives, see: Vaitilingam et al. (2004); Lee et al. (2004); Zwaagstra et al. (1998); Roma et al. (2000); Ferrarini et al. (2000). For the preparation of quinoline derivatives, see: Zhou et al. (2010); Yang et al. (2008).

Experimental top

The precursor, ethyl 2-(bromomethyl)quinoline-3-carboxylate, was prepared according to the literature procedure (Yang et al., 2008; Zhou et al., 2010). The title compoud was synthesized by treating 1 mmol of ethyl 2-(bromomethyl)quinoline-3-carboxylate with 1.2 mmol of 3-morpholinopropan-1-amine in the presence of NaHCO3 in acetonitrile. The reaction was carried out under the stirring at room temperature for 10 h. Once the reaction was complete, the solid salt was filtered off and the filtrate was then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography with the mixture of methanol and ethyl acetate (v /v = 1/20) to afford the white product. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solution of petroleum ether and dichloromethane, in which the small amount of water was not removed.

Refinement top

Water H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Quinoline analogues have been reported to display promising antibacterial (Vaitilingam et al., 2004), an-ticancer and antiplatelet (Lee et al., 2004), antiasthmatic (Zwaagstra et al., 1998), antiinflammatory (Roma et al., 2000), and antihypertensive activities (Ferrarini et al., 2000). We have synthesized some new quinoline derivatives (Yang et al., 2008). In continuation of our efforts to develop quinoline derivatives with a new structure-activity relationship, herein, we report the synthesis and structure determination the title compound.

The molecular geometry and the atom-labeling scheme of the title compound is illustrated in Fig. 1. The molecule contains three approximately coplanar rings and the dihedral angle between the three rings 1.60 (2)° and 1.20 (5)°, respectively; the C—N2—C—C torsion angles are 43.59° and -137.51°; the morpholine ring shows a stable chair conformation. The crystal structure can be depicted as layers along a-axis which ring systems are parallel to one another. The crystal packing is stabilized by intermolecular interactions between O and H atoms [C—H···O = 2.638Å].

For the properties and biological activity of quinoline derivatives, see: Vaitilingam et al. (2004); Lee et al. (2004); Zwaagstra et al. (1998); Roma et al. (2000); Ferrarini et al. (2000). For the preparation of quinoline derivatives, see: Zhou et al. (2010); Yang et al. (2008).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound.
[Figure 3] Fig. 3. Reaction scheme for the title compound.
2-(3-Morpholinopropyl)-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-one monohydrate top
Crystal data top
C18H21N3O2·H2OF(000) = 1408.0
Mr = 329.39Dx = 1.311 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1868 reflections
a = 7.0107 (16) Åθ = 3.1–20.4°
b = 12.655 (3) ŵ = 0.09 mm1
c = 37.609 (9) ÅT = 296 K
V = 3336.7 (13) Å3Block, colorless
Z = 80.30 × 0.28 × 0.27 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1864 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.067
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
φ and ω scansh = 87
15458 measured reflectionsk = 1514
2943 independent reflectionsl = 4441
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0611P)2 + 1.0475P]
where P = (Fo2 + 2Fc2)/3
2943 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.28 e Å3
3 restraintsΔρmin = 0.41 e Å3
Crystal data top
C18H21N3O2·H2OV = 3336.7 (13) Å3
Mr = 329.39Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.0107 (16) ŵ = 0.09 mm1
b = 12.655 (3) ÅT = 296 K
c = 37.609 (9) Å0.30 × 0.28 × 0.27 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1864 reflections with I > 2σ(I)
15458 measured reflectionsRint = 0.067
2943 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0573 restraints
wR(F2) = 0.144H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.28 e Å3
2943 reflectionsΔρmin = 0.41 e Å3
225 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1806 (3)0.84470 (14)0.25789 (5)0.0447 (5)
O10.1534 (3)1.07919 (12)0.35666 (4)0.0547 (5)
N20.1728 (3)0.89892 (13)0.35114 (5)0.0406 (5)
N30.1048 (3)0.66704 (14)0.44146 (5)0.0431 (5)
O20.2365 (3)0.47670 (15)0.47362 (5)0.0807 (7)
C60.1586 (3)1.02874 (17)0.23807 (6)0.0401 (6)
C50.1701 (3)0.91850 (17)0.23121 (6)0.0402 (6)
C40.1701 (4)0.8838 (2)0.19565 (6)0.0509 (7)
H40.17440.81190.19070.061*
C10.1522 (4)1.09912 (19)0.20898 (7)0.0519 (7)
H10.14461.17140.21320.062*
C30.1638 (4)0.9544 (2)0.16832 (7)0.0561 (7)
H30.16420.93010.14500.067*
C20.1569 (4)1.0629 (2)0.17496 (7)0.0582 (7)
H20.15541.11040.15610.070*
C90.1791 (3)0.88333 (16)0.29006 (6)0.0386 (6)
C80.1644 (3)0.99006 (16)0.29942 (5)0.0371 (6)
C100.1624 (3)0.99828 (17)0.33838 (6)0.0399 (6)
C70.1545 (3)1.06426 (17)0.27334 (6)0.0416 (6)
H70.14541.13580.27870.050*
C110.1741 (4)0.87224 (18)0.38875 (6)0.0445 (6)
H11A0.13050.93250.40250.053*
H11B0.30340.85600.39610.053*
C130.0266 (4)0.75468 (17)0.43519 (6)0.0443 (6)
H13A0.15070.73700.44500.053*
H13B0.01970.81710.44740.053*
C120.0472 (4)0.77880 (18)0.39619 (6)0.0454 (6)
H12A0.09900.71720.38430.054*
H12B0.07810.79240.38630.054*
C150.1663 (5)0.4788 (2)0.43826 (7)0.0720 (9)
H15A0.27170.49000.42200.086*
H15B0.10900.41110.43270.086*
C170.1709 (5)0.6639 (2)0.47821 (7)0.0656 (9)
H17A0.22900.73100.48440.079*
H17B0.06360.65210.49400.079*
C140.0214 (4)0.56444 (18)0.43321 (7)0.0547 (7)
H14A0.08710.55170.44860.066*
H14B0.02340.56410.40880.066*
C160.3143 (5)0.5764 (2)0.48256 (9)0.0875 (12)
H16A0.35810.57480.50700.105*
H16B0.42370.59050.46750.105*
C180.1877 (4)0.81867 (18)0.32341 (6)0.0467 (6)
H18A0.08260.76900.32460.056*
H18B0.30720.78030.32510.056*
O1W0.5672 (4)0.72672 (19)0.39612 (10)0.1179 (11)
H1W0.638 (6)0.695 (3)0.4116 (10)0.17 (2)*
H2W0.506 (6)0.678 (3)0.3845 (11)0.20 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0601 (15)0.0386 (10)0.0354 (11)0.0044 (10)0.0005 (9)0.0000 (8)
O10.0741 (14)0.0385 (9)0.0515 (10)0.0030 (8)0.0045 (9)0.0100 (8)
N20.0512 (13)0.0360 (10)0.0346 (10)0.0028 (9)0.0013 (9)0.0007 (8)
N30.0506 (13)0.0402 (11)0.0384 (11)0.0036 (9)0.0092 (9)0.0022 (8)
O20.120 (2)0.0528 (12)0.0695 (13)0.0217 (12)0.0372 (13)0.0008 (9)
C60.0372 (15)0.0409 (13)0.0424 (13)0.0019 (11)0.0023 (11)0.0071 (10)
C50.0361 (14)0.0451 (14)0.0393 (13)0.0026 (11)0.0004 (11)0.0037 (10)
C40.0583 (18)0.0533 (15)0.0410 (14)0.0107 (13)0.0017 (12)0.0002 (12)
C10.0547 (18)0.0467 (14)0.0543 (16)0.0010 (12)0.0034 (13)0.0114 (12)
C30.0527 (18)0.0750 (19)0.0406 (14)0.0123 (14)0.0010 (12)0.0058 (13)
C20.0565 (19)0.0665 (18)0.0517 (17)0.0026 (14)0.0005 (14)0.0192 (13)
C90.0429 (15)0.0352 (12)0.0378 (13)0.0001 (10)0.0004 (11)0.0005 (10)
C80.0382 (14)0.0332 (12)0.0400 (13)0.0036 (10)0.0025 (11)0.0001 (9)
C100.0389 (14)0.0363 (13)0.0444 (14)0.0037 (10)0.0019 (11)0.0029 (10)
C70.0445 (16)0.0338 (12)0.0465 (14)0.0035 (11)0.0017 (12)0.0003 (10)
C110.0495 (16)0.0495 (14)0.0346 (13)0.0068 (12)0.0018 (11)0.0005 (10)
C130.0513 (16)0.0429 (13)0.0387 (13)0.0055 (12)0.0027 (11)0.0000 (10)
C120.0519 (17)0.0450 (14)0.0393 (13)0.0069 (12)0.0013 (11)0.0015 (10)
C150.096 (3)0.0501 (16)0.070 (2)0.0123 (16)0.0266 (18)0.0086 (14)
C170.091 (2)0.0552 (16)0.0503 (16)0.0108 (16)0.0242 (15)0.0076 (12)
C140.068 (2)0.0441 (14)0.0522 (15)0.0011 (13)0.0158 (14)0.0000 (11)
C160.114 (3)0.062 (2)0.086 (2)0.0226 (19)0.054 (2)0.0117 (16)
C180.0626 (18)0.0372 (13)0.0402 (13)0.0027 (12)0.0009 (12)0.0006 (10)
O1W0.091 (2)0.0689 (15)0.194 (3)0.0150 (14)0.066 (2)0.0318 (18)
Geometric parameters (Å, º) top
N1—C91.305 (3)C8—C101.469 (3)
N1—C51.373 (3)C7—H70.9300
O1—C101.235 (3)C11—C121.506 (3)
N2—C101.348 (3)C11—H11A0.9700
N2—C111.454 (3)C11—H11B0.9700
N2—C181.460 (3)C13—C121.505 (3)
N3—C141.458 (3)C13—H13A0.9700
N3—C171.458 (3)C13—H13B0.9700
N3—C131.461 (3)C12—H12A0.9700
O2—C151.418 (3)C12—H12B0.9700
O2—C161.415 (4)C15—C141.498 (4)
C6—C71.401 (3)C15—H15A0.9700
C6—C11.411 (3)C15—H15B0.9700
C6—C51.421 (3)C17—C161.505 (4)
C5—C41.408 (3)C17—H17A0.9700
C4—C31.362 (3)C17—H17B0.9700
C4—H40.9300C14—H14A0.9700
C1—C21.360 (3)C14—H14B0.9700
C1—H10.9300C16—H16A0.9700
C3—C21.397 (4)C16—H16B0.9700
C3—H30.9300C18—H18A0.9700
C2—H20.9300C18—H18B0.9700
C9—C81.400 (3)O1W—H1W0.86 (4)
C9—C181.499 (3)O1W—H2W0.87 (4)
C8—C71.360 (3)
C9—N1—C5114.99 (18)N3—C13—C12111.82 (18)
C10—N2—C11124.29 (19)N3—C13—H13A109.3
C10—N2—C18113.48 (18)C12—C13—H13A109.3
C11—N2—C18122.21 (17)N3—C13—H13B109.3
C14—N3—C17107.80 (19)C12—C13—H13B109.3
C14—N3—C13112.86 (19)H13A—C13—H13B107.9
C17—N3—C13111.95 (18)C11—C12—C13113.39 (19)
C15—O2—C16109.9 (2)C11—C12—H12A108.9
C7—C6—C1122.1 (2)C13—C12—H12A108.9
C7—C6—C5119.21 (19)C11—C12—H12B108.9
C1—C6—C5118.7 (2)C13—C12—H12B108.9
N1—C5—C4118.8 (2)H12A—C12—H12B107.7
N1—C5—C6122.6 (2)O2—C15—C14111.6 (2)
C4—C5—C6118.6 (2)O2—C15—H15A109.3
C3—C4—C5120.8 (2)C14—C15—H15A109.3
C3—C4—H4119.6O2—C15—H15B109.3
C5—C4—H4119.6C14—C15—H15B109.3
C2—C1—C6121.1 (2)H15A—C15—H15B108.0
C2—C1—H1119.5N3—C17—C16109.6 (2)
C6—C1—H1119.5N3—C17—H17A109.8
C4—C3—C2120.7 (2)C16—C17—H17A109.8
C4—C3—H3119.6N3—C17—H17B109.8
C2—C3—H3119.6C16—C17—H17B109.8
C1—C2—C3120.0 (2)H17A—C17—H17B108.2
C1—C2—H2120.0N3—C14—C15110.2 (2)
C3—C2—H2120.0N3—C14—H14A109.6
N1—C9—C8126.5 (2)C15—C14—H14A109.6
N1—C9—C18124.83 (19)N3—C14—H14B109.6
C8—C9—C18108.63 (18)C15—C14—H14B109.6
C7—C8—C9119.3 (2)H14A—C14—H14B108.1
C7—C8—C10132.08 (19)O2—C16—C17111.9 (3)
C9—C8—C10108.65 (18)O2—C16—H16A109.2
O1—C10—N2125.3 (2)C17—C16—H16A109.2
O1—C10—C8127.9 (2)O2—C16—H16B109.2
N2—C10—C8106.78 (18)C17—C16—H16B109.2
C8—C7—C6117.4 (2)H16A—C16—H16B107.9
C8—C7—H7121.3N2—C18—C9102.43 (17)
C6—C7—H7121.3N2—C18—H18A111.3
N2—C11—C12111.07 (18)C9—C18—H18A111.3
N2—C11—H11A109.4N2—C18—H18B111.3
C12—C11—H11A109.4C9—C18—H18B111.3
N2—C11—H11B109.4H18A—C18—H18B109.2
C12—C11—H11B109.4H1W—O1W—H2W107 (4)
H11A—C11—H11B108.0
C9—N1—C5—C4179.8 (2)C7—C8—C10—N2179.0 (3)
C9—N1—C5—C60.1 (3)C9—C8—C10—N20.9 (3)
C7—C6—C5—N11.1 (4)C9—C8—C7—C60.4 (3)
C1—C6—C5—N1178.7 (2)C10—C8—C7—C6179.5 (2)
C7—C6—C5—C4178.7 (2)C1—C6—C7—C8179.0 (2)
C1—C6—C5—C41.4 (3)C5—C6—C7—C80.8 (3)
N1—C5—C4—C3178.7 (2)C10—N2—C11—C12137.0 (2)
C6—C5—C4—C31.5 (4)C18—N2—C11—C1244.5 (3)
C7—C6—C1—C2179.8 (2)C14—N3—C13—C1275.8 (3)
C5—C6—C1—C20.0 (4)C17—N3—C13—C12162.4 (2)
C5—C4—C3—C20.1 (4)N2—C11—C12—C13173.9 (2)
C6—C1—C2—C31.5 (4)N3—C13—C12—C11177.1 (2)
C4—C3—C2—C11.4 (4)C16—O2—C15—C1456.8 (4)
C5—N1—C9—C81.3 (4)C14—N3—C17—C1658.6 (3)
C5—N1—C9—C18179.5 (2)C13—N3—C17—C16176.7 (2)
N1—C9—C8—C71.6 (4)C17—N3—C14—C1559.0 (3)
C18—C9—C8—C7180.0 (2)C13—N3—C14—C15176.9 (2)
N1—C9—C8—C10178.3 (2)O2—C15—C14—N359.0 (3)
C18—C9—C8—C100.2 (3)C15—O2—C16—C1757.1 (4)
C11—N2—C10—O10.3 (4)N3—C17—C16—O259.1 (4)
C18—N2—C10—O1178.3 (2)C10—N2—C18—C91.7 (3)
C11—N2—C10—C8179.8 (2)C11—N2—C18—C9179.7 (2)
C18—N2—C10—C81.6 (3)N1—C9—C18—N2177.5 (2)
C7—C8—C10—O11.1 (5)C8—C9—C18—N21.0 (3)
C9—C8—C10—O1179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N3i0.86 (4)2.15 (4)2.961 (4)155 (4)
O1W—H2W···O1ii0.87 (4)1.98 (4)2.843 (3)174 (4)
C11—H11B···O1W0.972.473.326 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC18H21N3O2·H2O
Mr329.39
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.0107 (16), 12.655 (3), 37.609 (9)
V3)3336.7 (13)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.28 × 0.27
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15458, 2943, 1864
Rint0.067
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.144, 1.04
No. of reflections2943
No. of parameters225
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.41

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N3i0.86 (4)2.15 (4)2.961 (4)155 (4)
O1W—H2W···O1ii0.87 (4)1.98 (4)2.843 (3)174 (4)
C11—H11B···O1W0.972.473.326 (4)147
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z.
 

Acknowledgements

We are grateful to the National Natural Science Foundation of China (grant No. 20802021) and the Natural Science Foundation of Guangdong Province, China (grant No. 8251063101000002).

References

First citationFerrarini, P. L., Mori, C., Badawneh, M., Calderonem, V., Greco, R., Manera, C., Martinelli, A., Nieri, P. & Saccomanni, G. (2000). Eur. J. Med. Chem. 35, 815–826.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLee, B. D., Li, Z., French, K. J., Zhuang, Y., Xia, Z. & Smith, C. D. (2004). J. Med. Chem. 47, 1413–1422.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRoma, G., Braccio, M. D., Grossi, G., Mattioli, F. & Ghia, M. (2000). Eur. J. Med. Chem. 35, 1021–1035.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationVaitilingam, B., Nayyar, A., Palde, P. B., Monga, V., Jain, R., Kaur, S. & Singh, P. P. (2004). Bioorg. Med. Chem. 12, 4179–4188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationYang, D.-Q., Guo, W., Cai, Y.-P., Jiang, L.-S., Jiang, K.-L. & Wu, X.-B. (2008). Heteroat. Chem. 19, 229–233.  Web of Science CrossRef CAS Google Scholar
First citationZhou, T., Long, Y., Yang, D., Zhang, H. & Wang, W. (2010). Acta Cryst. E66, o2155.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZwaagstra, M. E., Timmerman, H., Van De Stolpe, A. C., De Kanter, F. J., Tamura, M., Wada, Y. & Zhang, M.-Q. (1998). J. Med. Chem. 41, 1428–1438.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds