metal-organic compounds
(meso-5,5,7,12,12,14-Hexamethyl-1,4,8,11-tetraazacyclotetradecane)copper(II) bis[O,O′-(o-phenylene)dithiophosphate]
aCollege of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering , 643000 Zigong, Sichuan, People's Republic of China
*Correspondence e-mail: fjsh8177@163.com
In the title compound, [Cu(C16H36N4)](C6H4O2PS2)2, the CuII cation lies on an inversion center and is chelated by the macrocyclic tetraamine ligand in a slightly distorted CuN4 square-planar geometry. The axial positions are occupied by two O,O′-(o-phenylene)dithiophosphate anions with long Cu⋯S distances of 3.0940 (7) Å. Intermolecular N—H⋯S and C—H⋯O hydrogen bonding is present between the anions and the cation and helps to stabilize the crystal structure.
Related literature
For applications of macrocyclic tetraamine compounds, see: Groeta et al. (2000); Aoki & Kimura (2002). For related structures, see: Feng et al. (2009); He et al. (2010); Xie et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell CrysAlis PRO CCD; data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
https://doi.org/10.1107/S1600536810046684/xu5086sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810046684/xu5086Isup2.hkl
[Et3NH][(o-C6H4O2)PS2] was prepared by adding P2S5 (0.05 mol, 11.1 g) and catechol (0.1 mol, 11 g) to a solution of triethylamine (15 mL) in 50 mL toluene with stirring. The mixture was stirred for 45 min at 368 K and then refluxed for 15 min. After cooled to room temperature, the precipitate was filtered off and washed successively with methanol, diethyl ether and acetone. The white crystalline product was obtained by recrystallization in hot methanol, yield 79%.
A solution of meso-5,5,7,12,12,14- hexamethyl-1,4,8,11- tetraazacyclotetradecane dihydrate (0.32 g, 1 mmol) and CuCl2.2H2O (0.17 g, 1 mmol) in 20 ml methanol was quickly added to [Et3NH][(o-C6H4O2)PS2] (2 mmol, 0.61 g) dissolved in 20 ml hot methanol with stirring. The mixture was refluxed for 4 h and cooled to room temperature, the precipitate was filtered off, washed with diethyl ether and recrystallized from benzene to leave a dark-violet solid, which was dissolved in hot methanol and filtered. The filtrate was kept at room temperature and dark-violet block crystals of the title compound suitable for X-ray diffraction studies were obtained after a week.
H atoms on C and N atoms were fixed geometrically and treated as riding, with C—H = 0.98 (methine), 0.97 (methylene), 0.96 (methyl), 0.93 (aromatic) and N—H = 0.91 Å. The Uiso(H) = 1.5Ueq(C) for methyl and Uiso(H) = 1.2Ueq(C,N) for the other H atoms.
The synthesis and structural investigation of tetraamine macrocycle have attracted much attention due to their wide potential applications (Groeta et al., 2000; Aoki & Kimura, 2002). In our quest for mimetic
we have recently reported several structures of tetramine macrocyclic transition metal adducts with O,O'-dialkyldithiophosphate (Feng et al., 2009; Xie et al., 2009; He et al., 2010). Herein, we report the structure of [Cu(meso-hmta)] [(o-C6H4O2)PS2]2, where meso-hmta is meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.The molecular of the title adduct comprises a complex mononuclear [Cu(meso-hmta)]2+ cation and two O,O'-(1,2-phenylene)dithiophosphate anions. Its structure is remarkably similar to the analogues, [Cu(trans-[14]dien)][S2P(OC6H4Me-4)2]2 (He et al., 2010), where trans-[14]dien is meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca -4,11-diene. The CuII atom lies on an inversion center and is chelated by tetraamine macrocycle ligand with a relatively undistorted CuN4 square-planar geometry (Fig.1). Two uncoordinated O,O'- (1,2-phenylene)dithiophosphate anions occupy at the axial positions with the longer Cu···S distances of 3.0940 (7) Å, forming an octahedral
Intermolecular N—H···S hydrogen bonding is present between the anions and the cation and help to stabilize the (Table 1). The strain in the O,O'- (1,2-phenylene)dithiophosphate anions is illustrated by the distorted tetrahedral angles of P atoms, which range between 94.43 (7) and 120.01 (4)°.For applications of macrocyclic tetraamine compounds, see: Groeta et al. (2000); Aoki & Kimura (2002). For related structures, see: Feng et al. (2009); He et al. (2010); Xie et al. (2009).
Data collection: CrysAlis PRO CCD (Oxford Diffraction, 2009); cell
CrysAlis PRO CCD (Oxford Diffraction, 2009); data reduction: CrysAlis PRO RED (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu(C16H36N4)](C6H4O2PS2)2 | F(000) = 790 |
Mr = 754.39 | Dx = 1.416 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -P 2ybc | Cell parameters from 4041 reflections |
a = 12.3107 (4) Å | θ = 3.2–29.2° |
b = 12.1612 (3) Å | µ = 0.98 mm−1 |
c = 12.3703 (4) Å | T = 294 K |
β = 107.136 (3)° | Block, dark-violet |
V = 1769.78 (9) Å3 | 0.38 × 0.34 × 0.28 mm |
Z = 2 |
Oxford Diffraction Xcalibur Eos diffractometer | 3621 independent reflections |
Radiation source: fine-focus sealed tube | 2662 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.018 |
Detector resolution: 16.0874 pixels mm-1 | θmax = 26.4°, θmin = 3.3° |
ω scans | h = −14→15 |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) | k = −15→14 |
Tmin = 0.697, Tmax = 0.761 | l = −15→8 |
7203 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0358P)2] where P = (Fo2 + 2Fc2)/3 |
3621 reflections | (Δ/σ)max = 0.001 |
199 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.37 e Å−3 |
[Cu(C16H36N4)](C6H4O2PS2)2 | V = 1769.78 (9) Å3 |
Mr = 754.39 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.3107 (4) Å | µ = 0.98 mm−1 |
b = 12.1612 (3) Å | T = 294 K |
c = 12.3703 (4) Å | 0.38 × 0.34 × 0.28 mm |
β = 107.136 (3)° |
Oxford Diffraction Xcalibur Eos diffractometer | 3621 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) | 2662 reflections with I > 2σ(I) |
Tmin = 0.697, Tmax = 0.761 | Rint = 0.018 |
7203 measured reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.072 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.23 e Å−3 |
3621 reflections | Δρmin = −0.37 e Å−3 |
199 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.60607 (18) | 0.32263 (15) | 0.63651 (17) | 0.0421 (5) | |
H1A | 0.6460 | 0.2530 | 0.6438 | 0.050* | |
H1B | 0.5573 | 0.3210 | 0.6854 | 0.050* | |
C6 | 0.5147 (2) | 0.85983 (17) | 0.5043 (2) | 0.0750 (9) | |
H6B | 0.4588 | 0.8709 | 0.5434 | 0.113* | |
H6A | 0.4810 | 0.8734 | 0.4250 | 0.113* | |
H6C | 0.5770 | 0.9096 | 0.5336 | 0.113* | |
C3 | 0.69922 (17) | 0.62275 (15) | 0.67689 (17) | 0.0385 (5) | |
C4 | 0.62020 (18) | 0.72195 (15) | 0.64523 (18) | 0.0448 (5) | |
H4A | 0.5636 | 0.7154 | 0.6853 | 0.054* | |
H4B | 0.6647 | 0.7872 | 0.6739 | 0.054* | |
C2 | 0.69001 (16) | 0.41537 (15) | 0.67066 (18) | 0.0417 (5) | |
H2B | 0.7315 | 0.4094 | 0.7503 | 0.050* | |
H2A | 0.7441 | 0.4122 | 0.6275 | 0.050* | |
C5 | 0.55801 (18) | 0.74158 (14) | 0.52163 (18) | 0.0412 (5) | |
H5 | 0.6116 | 0.7305 | 0.4777 | 0.049* | |
C8 | 0.7587 (2) | 0.62675 (19) | 0.80430 (19) | 0.0669 (7) | |
H8A | 0.7031 | 0.6214 | 0.8445 | 0.100* | |
H8C | 0.7993 | 0.6949 | 0.8231 | 0.100* | |
H8B | 0.8111 | 0.5665 | 0.8253 | 0.100* | |
C7 | 0.78770 (19) | 0.62258 (17) | 0.6133 (2) | 0.0589 (7) | |
H7B | 0.8442 | 0.5677 | 0.6449 | 0.088* | |
H7C | 0.8232 | 0.6936 | 0.6198 | 0.088* | |
H7A | 0.7516 | 0.6063 | 0.5349 | 0.088* | |
P1 | 0.76165 (4) | 0.41284 (4) | 0.34491 (4) | 0.03621 (14) | |
S1 | 0.62560 (5) | 0.50447 (5) | 0.31713 (5) | 0.05140 (17) | |
S2 | 0.77079 (5) | 0.27519 (4) | 0.42553 (5) | 0.04891 (16) | |
O1 | 0.79072 (12) | 0.39508 (11) | 0.22398 (12) | 0.0475 (4) | |
O2 | 0.87362 (11) | 0.49007 (10) | 0.40083 (12) | 0.0452 (4) | |
C9 | 0.91021 (16) | 0.53308 (17) | 0.31328 (19) | 0.0411 (5) | |
N1 | 0.53721 (13) | 0.33932 (11) | 0.51843 (12) | 0.0309 (4) | |
H1 | 0.5849 | 0.3263 | 0.4759 | 0.037* | |
C10 | 0.98455 (17) | 0.61848 (17) | 0.3208 (2) | 0.0554 (6) | |
H10 | 1.0162 | 0.6554 | 0.3886 | 0.067* | |
C13 | 0.8889 (2) | 0.50583 (19) | 0.1159 (2) | 0.0611 (7) | |
H13 | 0.8572 | 0.4685 | 0.0483 | 0.073* | |
C14 | 0.86346 (18) | 0.47825 (17) | 0.21245 (19) | 0.0438 (5) | |
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.03160 (11) | |
N2 | 0.62678 (12) | 0.52077 (11) | 0.64861 (13) | 0.0315 (4) | |
H2 | 0.5886 | 0.5211 | 0.7014 | 0.038* | |
C11 | 1.0108 (2) | 0.6478 (2) | 0.2226 (3) | 0.0656 (8) | |
H11 | 1.0605 | 0.7058 | 0.2246 | 0.079* | |
C12 | 0.9647 (2) | 0.5925 (2) | 0.1231 (3) | 0.0713 (8) | |
H12 | 0.9844 | 0.6133 | 0.0590 | 0.086* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0483 (13) | 0.0289 (10) | 0.0428 (12) | 0.0079 (9) | 0.0039 (10) | 0.0100 (9) |
C6 | 0.095 (2) | 0.0260 (11) | 0.086 (2) | −0.0022 (12) | −0.0002 (17) | 0.0049 (12) |
C3 | 0.0387 (11) | 0.0351 (11) | 0.0366 (12) | −0.0048 (9) | 0.0034 (9) | −0.0070 (9) |
C4 | 0.0538 (14) | 0.0319 (11) | 0.0451 (13) | −0.0057 (10) | 0.0093 (11) | −0.0101 (10) |
C2 | 0.0377 (11) | 0.0350 (11) | 0.0446 (13) | 0.0084 (10) | −0.0001 (10) | 0.0061 (9) |
C5 | 0.0477 (13) | 0.0242 (10) | 0.0493 (14) | −0.0043 (9) | 0.0107 (11) | 0.0009 (9) |
C8 | 0.0761 (18) | 0.0619 (15) | 0.0461 (15) | −0.0064 (14) | −0.0075 (13) | −0.0119 (12) |
C7 | 0.0427 (13) | 0.0543 (14) | 0.0793 (19) | −0.0091 (11) | 0.0173 (13) | −0.0009 (13) |
P1 | 0.0333 (3) | 0.0453 (3) | 0.0317 (3) | −0.0046 (2) | 0.0121 (2) | −0.0077 (2) |
S1 | 0.0385 (3) | 0.0599 (4) | 0.0593 (4) | 0.0075 (3) | 0.0198 (3) | 0.0164 (3) |
S2 | 0.0556 (4) | 0.0443 (3) | 0.0498 (4) | 0.0056 (3) | 0.0203 (3) | −0.0009 (3) |
O1 | 0.0522 (9) | 0.0577 (9) | 0.0393 (9) | −0.0202 (8) | 0.0239 (7) | −0.0174 (7) |
O2 | 0.0381 (8) | 0.0580 (9) | 0.0381 (8) | −0.0114 (7) | 0.0092 (7) | −0.0122 (7) |
C9 | 0.0276 (11) | 0.0434 (12) | 0.0522 (14) | −0.0006 (9) | 0.0116 (10) | 0.0005 (10) |
N1 | 0.0352 (8) | 0.0224 (8) | 0.0354 (9) | 0.0057 (7) | 0.0107 (7) | 0.0047 (7) |
C10 | 0.0321 (12) | 0.0496 (13) | 0.0775 (19) | −0.0012 (10) | 0.0050 (12) | 0.0001 (13) |
C13 | 0.0662 (16) | 0.0712 (17) | 0.0568 (16) | −0.0033 (14) | 0.0352 (14) | −0.0009 (13) |
C14 | 0.0371 (12) | 0.0526 (14) | 0.0468 (14) | −0.0015 (10) | 0.0201 (10) | −0.0047 (10) |
Cu1 | 0.03122 (18) | 0.02070 (16) | 0.0368 (2) | 0.00205 (14) | 0.00057 (14) | 0.00432 (14) |
N2 | 0.0308 (9) | 0.0325 (9) | 0.0305 (9) | 0.0028 (7) | 0.0080 (7) | 0.0025 (7) |
C11 | 0.0361 (13) | 0.0555 (15) | 0.109 (2) | 0.0023 (12) | 0.0270 (15) | 0.0229 (16) |
C12 | 0.0622 (17) | 0.0794 (19) | 0.087 (2) | 0.0072 (15) | 0.0440 (17) | 0.0226 (16) |
C1—H1A | 0.9700 | C7—H7A | 0.9600 |
C1—H1B | 0.9700 | P1—S1 | 1.9560 (7) |
C1—C2 | 1.504 (3) | P1—S2 | 1.9348 (8) |
C1—N1 | 1.471 (2) | P1—O1 | 1.6517 (14) |
C6—H6B | 0.9600 | P1—O2 | 1.6429 (14) |
C6—H6A | 0.9600 | O1—C14 | 1.386 (2) |
C6—H6C | 0.9600 | O2—C9 | 1.392 (2) |
C6—C5 | 1.527 (3) | C9—C10 | 1.369 (3) |
C3—C4 | 1.527 (3) | C9—C14 | 1.382 (3) |
C3—C8 | 1.531 (3) | N1—C5i | 1.499 (2) |
C3—C7 | 1.520 (3) | N1—H1 | 0.9100 |
C3—N2 | 1.507 (2) | N1—Cu1 | 2.0047 (13) |
C4—H4A | 0.9700 | C10—H10 | 0.9300 |
C4—H4B | 0.9700 | C10—C11 | 1.391 (3) |
C4—C5 | 1.514 (3) | C13—H13 | 0.9300 |
C2—H2B | 0.9700 | C13—C14 | 1.363 (3) |
C2—H2A | 0.9700 | C13—C12 | 1.393 (3) |
C2—N2 | 1.483 (2) | Cu1—N1i | 2.0047 (13) |
C5—H5 | 0.9800 | Cu1—N2 | 2.0466 (15) |
C5—N1i | 1.498 (2) | Cu1—N2i | 2.0466 (15) |
C8—H8A | 0.9600 | N2—H2 | 0.9100 |
C8—H8C | 0.9600 | C11—H11 | 0.9300 |
C8—H8B | 0.9600 | C11—C12 | 1.370 (4) |
C7—H7B | 0.9600 | C12—H12 | 0.9300 |
C7—H7C | 0.9600 | ||
C1—C2—H2B | 110.0 | S2—P1—S1 | 120.01 (4) |
C1—C2—H2A | 110.0 | O1—P1—S1 | 108.55 (6) |
C1—N1—C5i | 113.81 (14) | O1—P1—S2 | 111.01 (6) |
C1—N1—H1 | 105.6 | O2—P1—S1 | 108.48 (5) |
C1—N1—Cu1 | 107.04 (11) | O2—P1—S2 | 111.31 (6) |
H1A—C1—H1B | 108.3 | O2—P1—O1 | 94.43 (7) |
C6—C5—H5 | 108.4 | C9—O2—P1 | 108.12 (12) |
H6B—C6—H6A | 109.5 | C9—C10—H10 | 121.4 |
H6B—C6—H6C | 109.5 | C9—C10—C11 | 117.2 (2) |
H6A—C6—H6C | 109.5 | C9—C14—O1 | 111.67 (19) |
C3—C4—H4A | 107.7 | N1—C1—H1A | 109.9 |
C3—C4—H4B | 107.7 | N1—C1—H1B | 109.9 |
C3—C8—H8A | 109.5 | N1—C1—C2 | 108.83 (15) |
C3—C8—H8C | 109.5 | N1i—C5—C6 | 111.41 (17) |
C3—C8—H8B | 109.5 | N1i—C5—C4 | 110.13 (15) |
C3—C7—H7B | 109.5 | N1i—C5—H5 | 108.4 |
C3—C7—H7C | 109.5 | N1—Cu1—N1i | 180.0 |
C3—C7—H7A | 109.5 | N1i—Cu1—N2i | 85.98 (6) |
C3—N2—Cu1 | 123.54 (11) | N1—Cu1—N2i | 94.02 (6) |
C3—N2—H2 | 103.1 | N1—Cu1—N2 | 85.98 (6) |
C4—C3—C8 | 108.33 (17) | N1i—Cu1—N2 | 94.02 (6) |
C4—C5—C6 | 110.00 (17) | C10—C9—O2 | 126.6 (2) |
C4—C5—H5 | 108.4 | C10—C9—C14 | 121.3 (2) |
H4A—C4—H4B | 107.1 | C10—C11—H11 | 119.4 |
C2—C1—H1A | 109.9 | C13—C14—O1 | 126.3 (2) |
C2—C1—H1B | 109.9 | C13—C14—C9 | 122.0 (2) |
C2—N2—C3 | 115.21 (15) | C13—C12—H12 | 119.3 |
C2—N2—Cu1 | 106.18 (11) | C14—O1—P1 | 108.47 (12) |
C2—N2—H2 | 103.1 | C14—C9—O2 | 112.15 (18) |
H2B—C2—H2A | 108.4 | C14—C13—H13 | 121.5 |
C5—C6—H6B | 109.5 | C14—C13—C12 | 116.9 (2) |
C5—C6—H6A | 109.5 | Cu1—N1—H1 | 105.6 |
C5—C6—H6C | 109.5 | Cu1—N2—H2 | 103.1 |
C5—C4—C3 | 118.56 (17) | N2—C3—C4 | 107.57 (15) |
C5—C4—H4A | 107.7 | N2—C3—C8 | 109.63 (16) |
C5—C4—H4B | 107.7 | N2—C3—C7 | 110.12 (16) |
C5i—N1—H1 | 105.6 | N2—C2—C1 | 108.46 (15) |
C5i—N1—Cu1 | 118.17 (12) | N2—C2—H2B | 110.0 |
H8A—C8—H8C | 109.5 | N2—C2—H2A | 110.0 |
H8A—C8—H8B | 109.5 | N2—Cu1—N2i | 180.0 |
H8C—C8—H8B | 109.5 | C11—C10—H10 | 121.4 |
C7—C3—C4 | 111.59 (18) | C11—C12—C13 | 121.4 (3) |
C7—C3—C8 | 109.55 (19) | C11—C12—H12 | 119.3 |
H7B—C7—H7C | 109.5 | C12—C13—H13 | 121.5 |
H7B—C7—H7A | 109.5 | C12—C11—C10 | 121.1 (2) |
H7C—C7—H7A | 109.5 | C12—C11—H11 | 119.4 |
C1—C2—N2—C3 | −179.14 (16) | S1—P1—O2—C9 | −90.46 (12) |
C1—C2—N2—Cu1 | −38.57 (18) | S2—P1—O1—C14 | −135.33 (12) |
C1—N1—Cu1—N2 | 15.68 (13) | S2—P1—O2—C9 | 135.39 (11) |
C1—N1—Cu1—N2i | −164.32 (13) | O1—P1—O2—C9 | 20.78 (13) |
C3—C4—C5—C6 | −162.4 (2) | O2—P1—O1—C14 | −20.48 (14) |
C3—C4—C5—N1i | 74.4 (2) | O2—C9—C10—C11 | 179.29 (18) |
C4—C3—N2—C2 | 178.22 (16) | O2—C9—C14—O1 | 0.8 (3) |
C4—C3—N2—Cu1 | 45.3 (2) | O2—C9—C14—C13 | −179.1 (2) |
C2—C1—N1—C5i | −173.86 (16) | C9—C10—C11—C12 | −0.6 (3) |
C2—C1—N1—Cu1 | −41.42 (18) | N1—C1—C2—N2 | 54.5 (2) |
C5i—N1—Cu1—N2 | 145.70 (14) | N1—Cu1—N2—C3 | 149.25 (14) |
C5i—N1—Cu1—N2i | −34.30 (14) | N1i—Cu1—N2—C3 | −30.75 (14) |
C8—C3—C4—C5 | 175.34 (19) | N1i—Cu1—N2—C2 | −167.17 (12) |
C8—C3—N2—C2 | −64.2 (2) | N1—Cu1—N2—C2 | 12.83 (12) |
C8—C3—N2—Cu1 | 162.85 (14) | C10—C9—C14—O1 | −179.94 (17) |
C7—C3—C4—C5 | 54.7 (2) | C10—C9—C14—C13 | 0.2 (3) |
C7—C3—N2—C2 | 56.4 (2) | C10—C11—C12—C13 | 0.7 (4) |
C7—C3—N2—Cu1 | −76.55 (19) | C14—C9—C10—C11 | 0.1 (3) |
P1—O1—C14—C9 | 14.3 (2) | C14—C13—C12—C11 | −0.4 (4) |
P1—O1—C14—C13 | −165.8 (2) | N2—C3—C4—C5 | −66.2 (2) |
P1—O2—C9—C10 | 165.19 (17) | C12—C13—C14—O1 | −179.9 (2) |
P1—O2—C9—C14 | −15.6 (2) | C12—C13—C14—C9 | −0.1 (3) |
S1—P1—O1—C14 | 90.71 (13) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S2 | 0.91 | 2.62 | 3.4849 (16) | 160 |
N2—H2···S1i | 0.91 | 2.60 | 3.2715 (16) | 132 |
C1—H1A···O1ii | 0.97 | 2.52 | 3.449 (2) | 160 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C16H36N4)](C6H4O2PS2)2 |
Mr | 754.39 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 294 |
a, b, c (Å) | 12.3107 (4), 12.1612 (3), 12.3703 (4) |
β (°) | 107.136 (3) |
V (Å3) | 1769.78 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.98 |
Crystal size (mm) | 0.38 × 0.34 × 0.28 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos |
Absorption correction | Multi-scan (CrysAlis PRO RED; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.697, 0.761 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7203, 3621, 2662 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.072, 1.02 |
No. of reflections | 3621 |
No. of parameters | 199 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.37 |
Computer programs: CrysAlis PRO CCD (Oxford Diffraction, 2009), CrysAlis PRO RED (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXL97 (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···S2 | 0.91 | 2.62 | 3.4849 (16) | 159.5 |
N2—H2···S1i | 0.91 | 2.60 | 3.2715 (16) | 131.5 |
C1—H1A···O1ii | 0.97 | 2.52 | 3.449 (2) | 160 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2. |
Acknowledgements
This work was supported by the Education Committee of Sichuan Province (No. 09ZA057), the Science and Technology Office of Zigong City (No. 08X01, No. 10X05) and the Science and Technology Committee of Sichuan Province, China (No. 2010GZ0130).
References
Aoki, S. & Kimura, E. (2002). Rev. Mol. Biotechnol. 90, 129–155. CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Feng, J.-S., Zou, L.-K., Xie, B. & Wu, Y. (2009). Acta Cryst. E65, m1022. Web of Science CSD CrossRef IUCr Journals Google Scholar
Groeta, A. F., Howard, J. A. K., Maffeo, D., Puschman, H., Walliams, J. A. G. & Yufit, D. S. (2000). J. Chem. Soc. Dalton Trans. pp. 1873–1880. Google Scholar
He, L.-X., Zou, L.-K., Xie, B., Xiang, Y.-G. & Feng, J.-S. (2010). Acta Cryst. E66, m428. Web of Science CrossRef IUCr Journals Google Scholar
Oxford Diffraction (2009). CrysAlis PRO CCD and CrysAlis PRO RED. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Xie, B., Xiang, Y.-G., Zou, L.-K., Chang, X.-L. & Ji, C.-Y. (2009). Acta Cryst. E65, m1053. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The synthesis and structural investigation of tetraamine macrocycle have attracted much attention due to their wide potential applications (Groeta et al., 2000; Aoki & Kimura, 2002). In our quest for mimetic hydrolases, we have recently reported several structures of tetramine macrocyclic transition metal adducts with O,O'-dialkyldithiophosphate (Feng et al., 2009; Xie et al., 2009; He et al., 2010). Herein, we report the structure of [Cu(meso-hmta)] [(o-C6H4O2)PS2]2, where meso-hmta is meso-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane.
The molecular of the title adduct comprises a complex mononuclear [Cu(meso-hmta)]2+ cation and two O,O'-(1,2-phenylene)dithiophosphate anions. Its structure is remarkably similar to the analogues, [Cu(trans-[14]dien)][S2P(OC6H4Me-4)2]2 (He et al., 2010), where trans-[14]dien is meso-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca -4,11-diene. The CuII atom lies on an inversion center and is chelated by tetraamine macrocycle ligand with a relatively undistorted CuN4 square-planar geometry (Fig.1). Two uncoordinated O,O'- (1,2-phenylene)dithiophosphate anions occupy at the axial positions with the longer Cu···S distances of 3.0940 (7) Å, forming an octahedral asymmetric unit. Intermolecular N—H···S hydrogen bonding is present between the anions and the cation and help to stabilize the crystal structure (Table 1). The strain in the O,O'- (1,2-phenylene)dithiophosphate anions is illustrated by the distorted tetrahedral angles of P atoms, which range between 94.43 (7) and 120.01 (4)°.