metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­aqua­bis­­[4-(di­methyl­amino)­benzoato-κO]bis­­(nicotinamide-κN1)zinc(II) dihydrate

aDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, bDepartment of Chemistry, Ankara University, 06100 Tandoğan, Ankara, Turkey, cDepartment of Physics, Karabük University, 78050 Karabük, Turkey, and dDepartment of Chemistry, Kafkas University, 36100 Kars, Turkey
*Correspondence e-mail: merzifon@hacettepe.edu.tr

(Received 11 November 2010; accepted 12 November 2010; online 24 November 2010)

In the centrosymmetric title structure, [Zn(C9H10NO2)2(C6H6N2O)2(H2O)2]·2H2O, the ZnII cation, located on an inversion center, is coordinated by two 4-(methyl­amino)­benzoate anions, two nicotinamide ligands and two water mol­ecules in a slightly distorted octa­hedral geometry. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 3.09 (9)°, while the pyridine and benzene rings are oriented at a dihedral angle of 77.10 (4)°. The uncoordinated water mol­ecule is linked to nicotinamide ligands by O—H⋯O hydrogen bonds. In the crystal, inter­molecular N—H⋯O, O—H⋯O and C—H⋯O hydrogen bonds link the mol­ecules into a three-dimensional network. A weak N—H⋯π inter­action also occurs.

Related literature

For niacin, see: Krishnamachari (1974[Krishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108-111.]). For N,N-diethyl­nicotinamide, see: Bigoli et al. (1972[Bigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962-966.]). For related structures, see: Hökelek et al. (1996[Hökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470-2473.], 2009a[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466-m467.],b[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513-m514.],c[Hökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607-m608.]); Hökelek & Necefoğlu (1998[Hökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242-1244.]); Necefoğlu et al. (2010a[Necefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334-m335.],b[Necefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010b). Acta Cryst. E66, m361-m362.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C9H10NO2)2(C6H6N2O)2(H2O)2]·2H2O

  • Mr = 710.07

  • Triclinic, [P \overline 1]

  • a = 8.1810 (2) Å

  • b = 9.9877 (2) Å

  • c = 10.1982 (3) Å

  • α = 76.141 (2)°

  • β = 88.894 (3)°

  • γ = 78.200 (2)°

  • V = 791.55 (4) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 100 K

  • 0.40 × 0.24 × 0.18 mm

Data collection
  • Bruker Kappa APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.]) Tmin = 0.783, Tmax = 0.856

  • 14586 measured reflections

  • 3975 independent reflections

  • 3725 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.068

  • S = 1.05

  • 3975 reflections

  • 240 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—O1 2.0442 (9)
Zn1—O4 2.1503 (11)
Zn1—N1 2.1963 (10)

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C2–C7 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H21⋯O5i 0.85 (2) 2.05 (2) 2.8826 (19) 169.3 (2)
O4—H41⋯O2ii 0.78 (2) 2.00 (2) 2.7370 (16) 159 (2)
O4—H42⋯O3iii 0.81 (2) 1.96 (2) 2.7681 (15) 175.1 (2)
O5—H51⋯O2 0.85 (3) 2.02 (3) 2.8732 (19) 174 (3)
O5—H52⋯O2iv 0.81 (3) 2.11 (3) 2.9150 (18) 173 (2)
C13—H13⋯O4v 0.93 2.52 3.4422 (19) 170
N2—H22⋯Cg1ii 0.829 (19) 2.79 (2) 3.5200 (15) 147.9 (2)
Symmetry codes: (i) x, y+1, z-1; (ii) -x, -y, -z; (iii) x, y-1, z; (iv) -x, -y, -z+1; (v) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, where the ZnII ion is located on a crystallographic inversion center. The asymmetric unit contains one 4-(methylamino)benzoate (PMAB) anion, one nicotinamide (NA) ligand, one coordinated and one uncoordinated water molecules, all ligands are monodentate (Fig. 1). The crystal structures of some NA and/or DENA complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Cu2(C8H7O2)4(C6H6N2O)2], (III) (Necefoğlu et al., 2010a), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (IV) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (V) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (VI) (Necefoğlu et al., 2010b), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VII) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VIII) (Hökelek et al., 2009c) have also been reported. In (II), two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in other structures all ligands being monodentate.

The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the ZnII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.2691 (16) Å] and C1—O2 [1.2624 (17) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Zn—O bond length is 2.0973 (10) Å (Table 1), and the ZnII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.8557 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 3.09 (9)°, while that between rings A and B (N1/C10—C14) is 77.10 (4)°. The uncoordinated water molecules are linked to the NA ligands by O—H···O hydrogen bonds (Table 2 and Fig. 1).

In the crystal structure, intermolecular N—H···O, O—H···O, and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. There also exists a weak N-H···π interaction (Table 2).

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010a,b).

Experimental top

The title compound was prepared by the reaction of ZnSO4.H2O (0.90 g, 5 mmol) in H2O (50 ml) and nicotinamide (1.22 g, 10 mmol) in H2O (30 ml) with sodium 4-dimethylaminobenzoate (1.88 g, 10 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving colorless single crystals.

Refinement top

Atoms H21, H22 (for NH2) and H41, H42, H51, H52 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.93 and 0.96 Å for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, where the ZnII ion is located on a crystallographic inversion center. The asymmetric unit contains one 4-(methylamino)benzoate (PMAB) anion, one nicotinamide (NA) ligand, one coordinated and one uncoordinated water molecules, all ligands are monodentate (Fig. 1). The crystal structures of some NA and/or DENA complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Cu2(C8H7O2)4(C6H6N2O)2], (III) (Necefoğlu et al., 2010a), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (IV) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (V) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (VI) (Necefoğlu et al., 2010b), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VII) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VIII) (Hökelek et al., 2009c) have also been reported. In (II), two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in other structures all ligands being monodentate.

The four O atoms (O1, O4, and the symmetry-related atoms, O1', O4') in the equatorial plane around the ZnII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.2691 (16) Å] and C1—O2 [1.2624 (17) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Zn—O bond length is 2.0973 (10) Å (Table 1), and the ZnII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by -0.8557 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 3.09 (9)°, while that between rings A and B (N1/C10—C14) is 77.10 (4)°. The uncoordinated water molecules are linked to the NA ligands by O—H···O hydrogen bonds (Table 2 and Fig. 1).

In the crystal structure, intermolecular N—H···O, O—H···O, and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. There also exists a weak N-H···π interaction (Table 2).

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010a,b).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator: (') -x, -y, -z. Only one of the crystal water molecules is shown [dashed line indicates the O—H···O hydrogen-bond].
Diaquabis[4-(dimethylamino)benzoato-κO]bis(nicotinamide-κN1)zinc(II) dihydrate top
Crystal data top
[Zn(C9H10NO2)2(C6H6N2O)2(H2O)2]·2H2OZ = 1
Mr = 710.07F(000) = 372
Triclinic, P1Dx = 1.490 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1810 (2) ÅCell parameters from 7854 reflections
b = 9.9877 (2) Åθ = 2.6–28.4°
c = 10.1982 (3) ŵ = 0.84 mm1
α = 76.141 (2)°T = 100 K
β = 88.894 (3)°Block, colorless
γ = 78.200 (2)°0.40 × 0.24 × 0.18 mm
V = 791.55 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3975 independent reflections
Radiation source: fine-focus sealed tube3725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 28.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.783, Tmax = 0.856k = 1313
14586 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0322P)2 + 0.2491P]
where P = (Fo2 + 2Fc2)/3
3975 reflections(Δ/σ)max < 0.001
240 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
[Zn(C9H10NO2)2(C6H6N2O)2(H2O)2]·2H2Oγ = 78.200 (2)°
Mr = 710.07V = 791.55 (4) Å3
Triclinic, P1Z = 1
a = 8.1810 (2) ÅMo Kα radiation
b = 9.9877 (2) ŵ = 0.84 mm1
c = 10.1982 (3) ÅT = 100 K
α = 76.141 (2)°0.40 × 0.24 × 0.18 mm
β = 88.894 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3975 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3725 reflections with I > 2σ(I)
Tmin = 0.783, Tmax = 0.856Rint = 0.020
14586 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.068H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.32 e Å3
3975 reflectionsΔρmin = 0.21 e Å3
240 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.00000.02409 (7)
O10.14766 (12)0.13955 (9)0.15299 (10)0.0301 (2)
O20.01781 (15)0.12085 (10)0.34423 (11)0.0406 (3)
O30.22843 (14)0.63006 (10)0.11818 (13)0.0428 (3)
O40.16532 (13)0.08200 (11)0.14162 (11)0.0305 (2)
H410.128 (3)0.035 (2)0.211 (2)0.057 (6)*
H420.179 (3)0.165 (2)0.138 (2)0.052 (6)*
O50.1009 (2)0.13619 (14)0.61334 (15)0.0543 (3)
H510.070 (3)0.136 (3)0.533 (3)0.083 (9)*
H520.086 (3)0.063 (3)0.628 (2)0.069 (7)*
N10.15651 (14)0.15584 (11)0.00723 (11)0.0266 (2)
N20.00655 (17)0.58552 (13)0.21424 (13)0.0355 (3)
H210.027 (2)0.671 (2)0.2554 (18)0.040 (5)*
H220.047 (2)0.529 (2)0.2306 (19)0.041 (5)*
N30.45941 (17)0.75023 (13)0.50923 (14)0.0395 (3)
C10.11626 (17)0.18927 (13)0.27526 (13)0.0272 (3)
C20.20133 (16)0.33741 (13)0.33617 (13)0.0261 (3)
C30.31531 (17)0.41206 (14)0.26313 (14)0.0314 (3)
H30.33530.36880.17460.038*
C40.39964 (18)0.54815 (15)0.31784 (15)0.0341 (3)
H40.47490.59490.26590.041*
C50.37268 (17)0.61713 (13)0.45193 (14)0.0300 (3)
C60.2540 (2)0.54300 (15)0.52383 (15)0.0373 (3)
H60.23040.58660.61140.045*
C70.1715 (2)0.40668 (15)0.46724 (14)0.0347 (3)
H70.09430.36000.51780.042*
C80.5794 (3)0.82465 (18)0.4327 (2)0.0539 (5)
H8A0.63010.91510.48860.081*
H8B0.66400.77120.40280.081*
H8C0.52410.83730.35570.081*
C90.4290 (2)0.82016 (16)0.64594 (18)0.0481 (4)
H9A0.50450.91000.67120.072*
H9B0.31600.83360.65150.072*
H9C0.44640.76330.70610.072*
C100.10521 (16)0.29304 (13)0.06636 (13)0.0254 (2)
H100.00260.32380.10400.030*
C110.20513 (16)0.39157 (13)0.07418 (13)0.0255 (2)
C120.36499 (18)0.34448 (15)0.01643 (16)0.0333 (3)
H120.43470.40760.01810.040*
C130.41990 (18)0.20295 (16)0.04360 (17)0.0384 (3)
H130.52730.16920.08160.046*
C140.31197 (18)0.11262 (14)0.04593 (15)0.0335 (3)
H140.34910.01740.08630.040*
C150.14646 (17)0.54593 (13)0.13868 (14)0.0290 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.02776 (11)0.01681 (10)0.02584 (11)0.00591 (7)0.00232 (8)0.00020 (7)
O10.0319 (5)0.0245 (4)0.0288 (5)0.0056 (4)0.0030 (4)0.0035 (4)
O20.0583 (7)0.0255 (5)0.0311 (5)0.0038 (4)0.0011 (5)0.0040 (4)
O30.0468 (6)0.0225 (5)0.0621 (7)0.0132 (4)0.0022 (5)0.0111 (5)
O40.0348 (5)0.0206 (4)0.0342 (6)0.0030 (4)0.0019 (4)0.0046 (4)
O50.0850 (10)0.0309 (6)0.0437 (8)0.0101 (6)0.0006 (7)0.0043 (5)
N10.0290 (5)0.0203 (5)0.0297 (6)0.0068 (4)0.0013 (4)0.0029 (4)
N20.0466 (7)0.0213 (5)0.0367 (7)0.0077 (5)0.0003 (5)0.0024 (5)
N30.0471 (7)0.0252 (6)0.0382 (7)0.0033 (5)0.0064 (6)0.0005 (5)
C10.0325 (6)0.0206 (5)0.0275 (6)0.0065 (5)0.0063 (5)0.0023 (5)
C20.0303 (6)0.0206 (5)0.0255 (6)0.0049 (5)0.0032 (5)0.0017 (5)
C30.0349 (7)0.0297 (6)0.0254 (6)0.0046 (5)0.0014 (5)0.0003 (5)
C40.0359 (7)0.0300 (7)0.0316 (7)0.0012 (5)0.0029 (5)0.0050 (5)
C50.0329 (7)0.0224 (6)0.0320 (7)0.0036 (5)0.0062 (5)0.0025 (5)
C60.0497 (9)0.0280 (7)0.0263 (7)0.0015 (6)0.0031 (6)0.0030 (5)
C70.0440 (8)0.0270 (6)0.0273 (7)0.0007 (6)0.0048 (6)0.0023 (5)
C80.0595 (11)0.0315 (8)0.0609 (11)0.0102 (7)0.0030 (9)0.0085 (7)
C90.0647 (11)0.0267 (7)0.0436 (9)0.0036 (7)0.0102 (8)0.0054 (6)
C100.0279 (6)0.0217 (5)0.0267 (6)0.0062 (5)0.0004 (5)0.0050 (5)
C110.0320 (6)0.0212 (5)0.0254 (6)0.0085 (5)0.0062 (5)0.0076 (5)
C120.0322 (7)0.0300 (6)0.0423 (8)0.0145 (5)0.0037 (6)0.0110 (6)
C130.0299 (7)0.0349 (7)0.0494 (9)0.0081 (6)0.0076 (6)0.0067 (6)
C140.0325 (7)0.0240 (6)0.0409 (8)0.0053 (5)0.0053 (6)0.0016 (5)
C150.0373 (7)0.0209 (6)0.0304 (7)0.0086 (5)0.0107 (5)0.0078 (5)
Geometric parameters (Å, º) top
Zn1—O12.0442 (9)C3—C41.3795 (19)
Zn1—O1i2.0442 (9)C3—H30.9300
Zn1—O42.1503 (11)C4—H40.9300
Zn1—O4i2.1503 (11)C5—C41.411 (2)
Zn1—N12.1963 (10)C5—C61.403 (2)
Zn1—N1i2.1963 (10)C6—H60.9300
O1—C11.2691 (16)C7—C61.3802 (19)
O2—C11.2624 (17)C7—H70.9300
O3—C151.2327 (17)C8—H8A0.9600
O4—H410.78 (2)C8—H8B0.9600
O4—H420.81 (2)C8—H8C0.9600
O5—H510.85 (3)C9—H9A0.9600
O5—H520.81 (3)C9—H9B0.9600
N1—C101.3402 (15)C9—H9C0.9600
N1—C141.3371 (17)C10—C111.3900 (17)
N2—C151.3279 (19)C10—H100.9300
N2—H210.845 (19)C11—C121.3871 (19)
N2—H220.829 (19)C12—C131.382 (2)
N3—C51.3675 (17)C12—H120.9300
N3—C81.440 (2)C13—H130.9300
N3—C91.444 (2)C14—C131.3816 (19)
C1—C21.4881 (17)C14—H140.9300
C2—C31.3911 (19)C15—C111.5045 (17)
C2—C71.3923 (19)
O1i—Zn1—O1180.00 (9)C5—C4—H4119.7
O1—Zn1—O488.47 (4)N3—C5—C4121.30 (13)
O1i—Zn1—O491.53 (4)N3—C5—C6121.57 (13)
O1—Zn1—O4i91.53 (4)C6—C5—C4117.13 (12)
O1i—Zn1—O4i88.47 (4)C5—C6—H6119.4
O1—Zn1—N190.96 (4)C7—C6—C5121.30 (13)
O1i—Zn1—N189.04 (4)C7—C6—H6119.4
O1—Zn1—N1i89.04 (4)C2—C7—H7119.2
O1i—Zn1—N1i90.96 (4)C6—C7—C2121.51 (14)
O4—Zn1—O4i180.00 (8)C6—C7—H7119.2
O4—Zn1—N187.36 (4)N3—C8—H8A109.5
O4i—Zn1—N192.64 (4)N3—C8—H8B109.5
O4—Zn1—N1i92.64 (4)N3—C8—H8C109.5
O4i—Zn1—N1i87.36 (4)H8A—C8—H8B109.5
N1i—Zn1—N1180.0H8A—C8—H8C109.5
C1—O1—Zn1130.87 (9)H8B—C8—H8C109.5
Zn1—O4—H41102.7 (16)N3—C9—H9A109.5
Zn1—O4—H42117.8 (15)N3—C9—H9B109.5
H42—O4—H41113 (2)N3—C9—H9C109.5
H52—O5—H51106 (2)H9A—C9—H9B109.5
C10—N1—Zn1122.97 (8)H9A—C9—H9C109.5
C14—N1—Zn1119.13 (8)H9B—C9—H9C109.5
C14—N1—C10117.87 (11)N1—C10—C11123.24 (12)
C15—N2—H21120.5 (12)N1—C10—H10118.4
C15—N2—H22123.3 (13)C11—C10—H10118.4
H21—N2—H22115.9 (17)C10—C11—C15123.17 (12)
C5—N3—C8120.47 (14)C12—C11—C10117.79 (11)
C5—N3—C9120.68 (14)C12—C11—C15119.02 (11)
C8—N3—C9118.82 (13)C11—C12—H12120.3
O1—C1—C2116.26 (12)C13—C12—C11119.49 (12)
O2—C1—O1123.66 (11)C13—C12—H12120.3
O2—C1—C2120.08 (12)C12—C13—H13120.7
C3—C2—C1120.65 (12)C14—C13—C12118.62 (13)
C3—C2—C7117.35 (12)C14—C13—H13120.7
C7—C2—C1122.00 (12)N1—C14—C13122.98 (12)
C2—C3—H3118.9N1—C14—H14118.5
C4—C3—C2122.10 (13)C13—C14—H14118.5
C4—C3—H3118.9O3—C15—N2122.89 (13)
C3—C4—C5120.56 (13)O3—C15—C11119.01 (13)
C3—C4—H4119.7N2—C15—C11118.10 (12)
O4—Zn1—O1—C1158.28 (11)O1—C1—C2—C7176.86 (13)
O4i—Zn1—O1—C121.72 (11)O2—C1—C2—C3177.34 (13)
N1—Zn1—O1—C1114.39 (11)O2—C1—C2—C72.4 (2)
N1i—Zn1—O1—C165.61 (11)C1—C2—C3—C4178.22 (13)
O1—Zn1—N1—C1419.82 (11)C7—C2—C3—C41.5 (2)
O1i—Zn1—N1—C14160.18 (11)C1—C2—C7—C6178.48 (14)
O1—Zn1—N1—C10162.18 (11)C3—C2—C7—C61.3 (2)
O1i—Zn1—N1—C1017.82 (11)C2—C3—C4—C50.1 (2)
O4—Zn1—N1—C10109.39 (11)N3—C5—C4—C3177.74 (14)
O4i—Zn1—N1—C1070.61 (11)C6—C5—C4—C31.9 (2)
O4—Zn1—N1—C1468.60 (11)N3—C5—C6—C7177.47 (15)
O4i—Zn1—N1—C14111.40 (11)C4—C5—C6—C72.2 (2)
Zn1—O1—C1—O233.61 (19)C2—C7—C6—C50.6 (2)
Zn1—O1—C1—C2145.62 (9)N1—C10—C11—C120.6 (2)
Zn1—N1—C10—C11178.36 (9)N1—C10—C11—C15179.02 (12)
C14—N1—C10—C110.3 (2)C10—C11—C12—C131.3 (2)
Zn1—N1—C14—C13178.79 (12)C15—C11—C12—C13179.73 (14)
C10—N1—C14—C130.7 (2)C11—C12—C13—C141.0 (2)
C8—N3—C5—C41.0 (2)N1—C14—C13—C120.0 (3)
C8—N3—C5—C6179.36 (15)O3—C15—C11—C10165.58 (13)
C9—N3—C5—C4179.22 (15)O3—C15—C11—C1212.8 (2)
C9—N3—C5—C61.1 (2)N2—C15—C11—C1013.6 (2)
O1—C1—C2—C33.40 (18)N2—C15—C11—C12168.04 (13)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O5ii0.85 (2)2.05 (2)2.8826 (19)169.3 (2)
O4—H41···O2i0.78 (2)2.00 (2)2.7370 (16)159 (2)
O4—H42···O3iii0.81 (2)1.96 (2)2.7681 (15)175.1 (2)
O5—H51···O20.85 (3)2.02 (3)2.8732 (19)174 (3)
O5—H52···O2iv0.81 (3)2.11 (3)2.9150 (18)173 (2)
C13—H13···O4v0.932.523.4422 (19)170
N2—H22···Cg1i0.829 (19)2.79 (2)3.5200 (15)147.9 (2)
Symmetry codes: (i) x, y, z; (ii) x, y+1, z1; (iii) x, y1, z; (iv) x, y, z+1; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Zn(C9H10NO2)2(C6H6N2O)2(H2O)2]·2H2O
Mr710.07
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1810 (2), 9.9877 (2), 10.1982 (3)
α, β, γ (°)76.141 (2), 88.894 (3), 78.200 (2)
V3)791.55 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.84
Crystal size (mm)0.40 × 0.24 × 0.18
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.783, 0.856
No. of measured, independent and
observed [I > 2σ(I)] reflections
14586, 3975, 3725
Rint0.020
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.068, 1.05
No. of reflections3975
No. of parameters240
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.21

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX publication routines (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Zn1—O12.0442 (9)Zn1—N12.1963 (10)
Zn1—O42.1503 (11)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
N2—H21···O5i0.85 (2)2.05 (2)2.8826 (19)169.3 (2)
O4—H41···O2ii0.78 (2)2.00 (2)2.7370 (16)159 (2)
O4—H42···O3iii0.81 (2)1.96 (2)2.7681 (15)175.1 (2)
O5—H51···O20.85 (3)2.02 (3)2.8732 (19)174 (3)
O5—H52···O2iv0.81 (3)2.11 (3)2.9150 (18)173 (2)
C13—H13···O4v0.932.523.4422 (19)170
N2—H22···Cg1ii0.829 (19)2.79 (2)3.5200 (15)147.9 (2)
Symmetry codes: (i) x, y+1, z1; (ii) x, y, z; (iii) x, y1, z; (iv) x, y, z+1; (v) x+1, y, z.
 

Acknowledgements

The authors are indebted to Anadolu University and the Medicinal Plants and Medicine Research Centre of Anadolu University, Eskişehir, Turkey, for the use of X-ray diffractometer. This work was supported financially by Kafkas University Research Fund (grant No. 2009-FEF-03).

References

First citationBigoli, F., Braibanti, A., Pellinghelli, M. A. & Tiripicchio, A. (1972). Acta Cryst. B28, 962–966.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc. Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009a). Acta Cryst. E65, m466–m467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009b). Acta Cryst. E65, m513–m514.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Dal, H., Tercan, B., Özbek, F. E. & Necefoğlu, H. (2009c). Acta Cryst. E65, m607–m608.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHökelek, T., Gündüz, H. & Necefoğlu, H. (1996). Acta Cryst. C52, 2470–2473.  CSD CrossRef Web of Science IUCr Journals Google Scholar
First citationHökelek, T. & Necefoğlu, H. (1998). Acta Cryst. C54, 1242–1244.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKrishnamachari, K. A. V. R. (1974). Am. J. Clin. Nutr. 27, 108–111.  CAS PubMed Web of Science Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Dal, H. & Hökelek, T. (2010a). Acta Cryst. E66, m334–m335.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNecefoğlu, H., Çimen, E., Tercan, B., Ermiş, E. & Hökelek, T. (2010b). Acta Cryst. E66, m361–m362.  Web of Science CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds