organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(1H-Tetra­zol-5-yl)pyridinium chloride

aDepartment of Chemical & Environmental Engineering, Anyang Institute of Technology, Anyang 455000, People's Republic of China
*Correspondence e-mail: ayitzhang@yahoo.com.cn

(Received 16 November 2010; accepted 17 November 2010; online 24 November 2010)

In the cation of the title compound, C6H6N5+·Cl, the tetra­zole and pyridine rings are nearly coplanar, making a dihedral angle of 5.58 (11)°. The organic cations are linked to the chloride anions via N—H⋯Cl hydrogen bonds, forming chains along [110].

Related literature

For supra­molecular self-assembly chemistry, see: Fender et al. (2002[Fender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286-293.]). For the structures of related tetra­zole derivatives, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·Cl

  • Mr = 183.61

  • Monoclinic, P 21

  • a = 4.8552 (10) Å

  • b = 7.5862 (15) Å

  • c = 10.884 (2) Å

  • β = 92.88 (3)°

  • V = 400.36 (14) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.42 mm−1

  • T = 298 K

  • 0.30 × 0.05 × 0.05 mm

Data collection
  • Rigaku Mercury CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.910, Tmax = 1.000

  • 4104 measured reflections

  • 1825 independent reflections

  • 1687 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.071

  • S = 1.11

  • 1825 reflections

  • 109 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.26 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 840 Friedel pairs

  • Flack parameter: 0.07 (6)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯Cl1i 0.86 2.21 3.0704 (18) 176
N5—H5A⋯Cl1ii 0.86 2.22 3.0344 (18) 159
Symmetry codes: (i) x, y+1, z; (ii) x-1, y, z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years there is a rapidly increasing interest in the construction of various kinds of supramolecular systems for understanding molecular self-assembly principles and for designing molecular recognition devices (Fender et al. 2002). We report here the crystal structure of the title compound, 4-(1H-tetrazol-5-yl)pyridinium chloride.

In the title compound (Fig.1), the pyridine N atom is protonated. The tetrazole and pyridine rings are nearly coplanar and only twisted from each other by a dihedral angle of 5.58 (11)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Fu et al., 2009).

In the crystal structure, the organic cations are connected by the Cl- anions through two type of N—H···Cl hydrogen bonds, with the N···Cl distance of 3.0704 (2)Å and 3.0344 (2) Å, respectively. Those H-bonds link the ion units into a one-dimensional chain along the [1 1 0] direction (Table 1 and Fig. 2).

Related literature top

For supramolecular self-assembly chemistry, see: Fender et al. (2002). For the structures of related tetrazole derivatives, see: Fu et al. (2009).

Experimental top

4-(1H-Tetrazol-5-yl)pyridinium chloride was obtained commercially, and the single crystals were obtained from an ethanol solution.

Refinement top

H atoms attached to N atoms were located in a difference Fourier map, and refined in riding mode with N–H = 0.86 Å and Uiso(H) = 1.2Ueq(N). Other H atoms were fixed geometrically and treated as riding with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

In recent years there is a rapidly increasing interest in the construction of various kinds of supramolecular systems for understanding molecular self-assembly principles and for designing molecular recognition devices (Fender et al. 2002). We report here the crystal structure of the title compound, 4-(1H-tetrazol-5-yl)pyridinium chloride.

In the title compound (Fig.1), the pyridine N atom is protonated. The tetrazole and pyridine rings are nearly coplanar and only twisted from each other by a dihedral angle of 5.58 (11)°. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Fu et al., 2009).

In the crystal structure, the organic cations are connected by the Cl- anions through two type of N—H···Cl hydrogen bonds, with the N···Cl distance of 3.0704 (2)Å and 3.0344 (2) Å, respectively. Those H-bonds link the ion units into a one-dimensional chain along the [1 1 0] direction (Table 1 and Fig. 2).

For supramolecular self-assembly chemistry, see: Fender et al. (2002). For the structures of related tetrazole derivatives, see: Fu et al. (2009).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted for clarity.
4-(1H-Tetrazol-5-yl)pyridinium chloride top
Crystal data top
C6H6N5+·ClF(000) = 188
Mr = 183.61Dx = 1.523 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1825 reflections
a = 4.8552 (10) Åθ = 3.3–27.5°
b = 7.5862 (15) ŵ = 0.42 mm1
c = 10.884 (2) ÅT = 298 K
β = 92.88 (3)°Block, colorless
V = 400.36 (14) Å30.30 × 0.05 × 0.05 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
1825 independent reflections
Radiation source: fine-focus sealed tube1687 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.3°
φ and ω scanh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 99
Tmin = 0.910, Tmax = 1.000l = 1414
4104 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071 w = 1/[σ2(Fo2) + (0.029P)2 + 0.0441P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
1825 reflectionsΔρmax = 0.16 e Å3
109 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Flack (1983), 840 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.07 (6)
Crystal data top
C6H6N5+·ClV = 400.36 (14) Å3
Mr = 183.61Z = 2
Monoclinic, P21Mo Kα radiation
a = 4.8552 (10) ŵ = 0.42 mm1
b = 7.5862 (15) ÅT = 298 K
c = 10.884 (2) Å0.30 × 0.05 × 0.05 mm
β = 92.88 (3)°
Data collection top
Rigaku Mercury CCD
diffractometer
1825 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1687 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 1.000Rint = 0.024
4104 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.071Δρmax = 0.16 e Å3
S = 1.11Δρmin = 0.26 e Å3
1825 reflectionsAbsolute structure: Flack (1983), 840 Friedel pairs
109 parametersAbsolute structure parameter: 0.07 (6)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N30.6191 (4)0.2346 (2)0.94401 (17)0.0448 (5)
C40.5024 (4)0.7071 (3)0.67942 (18)0.0354 (4)
H40.36110.64170.64070.043*
N40.4093 (4)0.2114 (2)0.86534 (18)0.0426 (4)
N50.3900 (3)0.3586 (2)0.79785 (15)0.0356 (4)
H5A0.26780.37860.73960.043*
C60.5897 (4)0.4690 (2)0.83517 (16)0.0290 (4)
N10.7754 (3)0.9626 (2)0.69060 (16)0.0390 (4)
H1A0.81751.06320.66040.047*
C20.8551 (4)0.7442 (3)0.83953 (19)0.0360 (5)
H20.95280.70300.90940.043*
N20.7348 (4)0.3944 (2)0.92686 (16)0.0389 (4)
C10.9159 (5)0.9050 (3)0.7917 (2)0.0400 (5)
H11.05410.97430.82920.048*
C50.5724 (4)0.8690 (3)0.63512 (18)0.0401 (5)
H50.47750.91420.56570.048*
C30.6467 (4)0.6419 (3)0.78358 (16)0.0293 (4)
Cl10.95294 (9)0.32109 (6)0.59025 (4)0.04239 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N30.0493 (10)0.0393 (10)0.0450 (10)0.0036 (9)0.0050 (8)0.0062 (9)
C40.0335 (10)0.0399 (11)0.0322 (10)0.0090 (9)0.0049 (8)0.0024 (8)
N40.0449 (10)0.0337 (10)0.0484 (10)0.0080 (8)0.0059 (8)0.0056 (8)
N50.0347 (8)0.0346 (11)0.0366 (8)0.0080 (7)0.0062 (7)0.0042 (7)
C60.0258 (9)0.0326 (10)0.0286 (8)0.0027 (7)0.0009 (7)0.0047 (7)
N10.0460 (10)0.0302 (9)0.0412 (9)0.0088 (8)0.0058 (8)0.0008 (7)
C20.0338 (10)0.0387 (11)0.0345 (10)0.0071 (9)0.0083 (8)0.0026 (9)
N20.0416 (9)0.0362 (9)0.0377 (9)0.0024 (8)0.0082 (7)0.0023 (7)
C10.0381 (11)0.0380 (11)0.0436 (12)0.0112 (9)0.0019 (9)0.0067 (10)
C50.0442 (11)0.0419 (13)0.0338 (10)0.0059 (9)0.0021 (9)0.0036 (8)
C30.0296 (9)0.0299 (9)0.0285 (9)0.0029 (7)0.0028 (7)0.0042 (7)
Cl10.0465 (3)0.0433 (3)0.0362 (2)0.0112 (3)0.00936 (18)0.0070 (2)
Geometric parameters (Å, º) top
N3—N41.309 (3)C6—C31.459 (3)
N3—N21.353 (2)N1—C51.334 (3)
C4—C51.369 (3)N1—C11.338 (3)
C4—C31.393 (3)N1—H1A0.8600
C4—H40.9300C2—C11.365 (3)
N4—N51.337 (2)C2—C31.391 (3)
N5—C61.330 (2)C2—H20.9300
N5—H5A0.8600C1—H10.9300
C6—N21.320 (2)C5—H50.9300
N4—N3—N2110.18 (18)C1—C2—C3119.9 (2)
C5—C4—C3118.78 (19)C1—C2—H2120.0
C5—C4—H4120.6C3—C2—H2120.0
C3—C4—H4120.6C6—N2—N3106.21 (16)
N3—N4—N5106.13 (17)N1—C1—C2119.6 (2)
C6—N5—N4109.17 (15)N1—C1—H1120.2
C6—N5—H5A125.4C2—C1—H1120.2
N4—N5—H5A125.4N1—C5—C4120.6 (2)
N2—C6—N5108.31 (17)N1—C5—H5119.7
N2—C6—C3124.90 (17)C4—C5—H5119.7
N5—C6—C3126.77 (16)C2—C3—C4118.91 (18)
C5—N1—C1122.22 (18)C2—C3—C6118.76 (17)
C5—N1—H1A118.9C4—C3—C6122.33 (17)
C1—N1—H1A118.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.213.0704 (18)176
N5—H5A···Cl1ii0.862.223.0344 (18)159
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.

Experimental details

Crystal data
Chemical formulaC6H6N5+·Cl
Mr183.61
Crystal system, space groupMonoclinic, P21
Temperature (K)298
a, b, c (Å)4.8552 (10), 7.5862 (15), 10.884 (2)
β (°) 92.88 (3)
V3)400.36 (14)
Z2
Radiation typeMo Kα
µ (mm1)0.42
Crystal size (mm)0.30 × 0.05 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.910, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4104, 1825, 1687
Rint0.024
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.071, 1.11
No. of reflections1825
No. of parameters109
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.26
Absolute structureFlack (1983), 840 Friedel pairs
Absolute structure parameter0.07 (6)

Computer programs: CrystalClear (Rigaku, 2005), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cl1i0.862.213.0704 (18)176.0
N5—H5A···Cl1ii0.862.223.0344 (18)158.5
Symmetry codes: (i) x, y+1, z; (ii) x1, y, z.
 

Acknowledgements

This work was supported by a start-up grant from Anyang Institute of Technology, China.

References

First citationFender, N. S., Kahwa, I. A. & Fronczek, F. R. (2002). J. Solid State Chem. 163, 286–293.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds