organic compounds
14-(1,3-Benzodioxol-5-yl)-7,14-dihydrodibenzo[a,j]acridine
aLianyungang Teachers' College, Lianyungang 222006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: jiarunhong@126.com
The title compound, C28H19NO2, was synthesized by the reaction of 1,3-benzodioxole-5-carbaldehyde with naphthalen-2-amine catalyzed by thiosalicylic acid in acetic acid. The central dihydropyridine ring adopts a boat conformation. The two planar (r.m.s. deviations = 0.0158 and 0.0552 Å) bicyclic parts make a dihedral angle of 16.16 (5)° with respect to each other. The crystal packing is stabilized by intermolecular N—H⋯O hydrogen bonds and C—H⋯π interactions.
Related literature
For a similar et al. (1995). For the applications of charge-transport materials, see: Marder et al. (2005). For the use of dihydroacridine derivatives as therapeutic agents, see: Rudler et al. (2008). For their biological activities, see Ellis & Stevens (2001). For literature on this class of compound, see: Llama et al. (1989). For literature on drug development, see: Khurana et al. (1990). For puckering parameters, see: Cremer & Pople (1975).
see: RayExperimental
Crystal data
|
Refinement
|
Data collection: SMART (Bruker, 1998); cell SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810044302/zq2067sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810044302/zq2067Isup2.hkl
The title compound was prepared by the reaction of 1,3-benzodioxole-5-carbaldehyde (1 mmol) and naphthalen-2-amine (2 mmol), with thiosalicylic acid (1 mmol) as catalyst in acetic acid (1.5 ml). Single crystals were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 75%; m.p. >573 K). IR (cm-1): 3406.0, 3020.6, 1587.9, 1530.5, 1484.6, 1246.2, 1033.7, 922.0, 807.1, 746.4. 1H NMR (DMSO-d6): 9.54 (s, 1H, NH), 8.56 (d, J = 8.4 Hz, 2H, ArH), 7.79 (d, J = 8.0 Hz, 2H, ArH), 7.75 (d, J = 8.8 Hz, 2H, ArH), 7.52 (t, J = 7.6 Hz, 2H, ArH), 7.35 (d, J = 8.4 Hz, 2H, ArH), 7.29 (t, J = 7.2 Hz, 2H, ArH), 7.12–7.08 (m, 2H, ArH), 6.64 (d, J = 7.6 Hz, 2H, ArH), 6.63 (s, 1H, CH), 5.77 (s, 2H, CH2)
All H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and C—H = 0.93–0.97 Å, and included in the final cycles of
using a riding model, with Uiso(H) = 1.2Ueq(parent atom).The charge-transport materials can be used in organic electronic devices such as organic light-emitting diodes, lasers, photovoltaic cells, photodetectors, active and passive electronic devices, and memories (Marder et al., 2005). The extended angular fused aza-heterocycles (V-type fused aza-heterocycles) exhibit important photophysics properties, which are widely applied in the charge-transport materials due to their strong skeleton rigidity and large conjugation systems. With large conjugation systems, dibenzacridine derivatives, especially the acridinium ions, possess interesting photophysical properties such as the presence of intramolecular electron-transfer state of a high energy and long lifetime, which have been tested and applied as an efficient photocatalyst in modeling the photosynthetic reactions. Furthermore, dihydroacridine derivatives with an 1,4-DHPs parent nucleus are well known as therapeutic agents (Rudler et al., 2008). Due to their interesting biological activities such as antimalarial and antitumor, they have immense utility in pharmaceutical industry (Ellis et al., 2001). Therefore, this class of compounds has been the focus of much recent research (Llama et al., 1989), and has led to intensive interest in the synthesis of several drugs based on them (Khurana et al., 1990). For these reasons, the synthesis of dihydroacridine with an 1,4-DHPs parent nucleus is strongly desired.
In the title molecule (Fig. 1), the dihydropyrimidine ring system is in a boat conformation. The puckering parameters (Cremer & Pople, 1975) are q2 = 0.240 (2) Å, and φ2 = 174.3 (5)°, Q = 0.248 (2) Å and θ = 75.7 (5) °. Besides, the distances between atoms N1 and C11, and the mean plane C1/C10/C12/C21 (r.m.s. deviation = 0.012 Å) are 0.133 (2) and 0.286 Å, which also confirm the conformation of the pyridine ring. The dihedral angle between the aforementioned weighted plane and phenyl ring of C22—C27 is 85.66 (7)°, which shows that the two units are nearly perpendicular. The two planar bicyclic parts make a dihedral angle of 16.16 (5) with respect to each other, which is smaller than that of the previously reported of 14-methyl-7,14-dihydrodibenzo[a,j]acridine (Ray et al., 1995).
The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds and C—H···π interactions (Table 1, Fig.2).
For a similar
see: Ray et al. (1995). For the applications of charge-transport materials, see: Marder et al. (2005). For the use of dihydroacridine derivatives as therapeutic agents, see: Rudler et al. (2008). For their biological activities, see Ellis & Stevens (2001). For literature on this class of compound, see: Llama et al. (1989). For literature on drug development, see: Khurana et al. (1990). Ok as rewritten? For related literature [on what subject?], see: Cremer & Pople (1975).Data collection: SMART (Bruker, 1998); cell
SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids. | |
Fig. 2. The packing diagram of the title compound viewed along the a axis. |
C28H19NO2 | Dx = 1.352 Mg m−3 |
Mr = 401.44 | Melting point = 522–524 K |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 9.4920 (11) Å | Cell parameters from 1646 reflections |
b = 11.2767 (16) Å | θ = 2.7–25.3° |
c = 18.883 (2) Å | µ = 0.09 mm−1 |
β = 102.650 (2)° | T = 298 K |
V = 1972.1 (4) Å3 | Block, yellow |
Z = 4 | 0.18 × 0.12 × 0.10 mm |
F(000) = 840 |
Bruker SMART CCD area-detector diffractometer | 3484 independent reflections |
Radiation source: fine-focus sealed tube | 1877 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.059 |
φ and ω scans | θmax = 25.0°, θmin = 2.1° |
Absorption correction: multi-scan (SABABS; Sheldrick, 1996) | h = −10→11 |
Tmin = 0.985, Tmax = 0.992 | k = −9→13 |
10175 measured reflections | l = −22→20 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.042 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.03 | w = 1/[σ2(Fo2) + (0.003P)2] where P = (Fo2 + 2Fc2)/3 |
3484 reflections | (Δ/σ)max < 0.001 |
280 parameters | Δρmax = 0.15 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C28H19NO2 | V = 1972.1 (4) Å3 |
Mr = 401.44 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 9.4920 (11) Å | µ = 0.09 mm−1 |
b = 11.2767 (16) Å | T = 298 K |
c = 18.883 (2) Å | 0.18 × 0.12 × 0.10 mm |
β = 102.650 (2)° |
Bruker SMART CCD area-detector diffractometer | 3484 independent reflections |
Absorption correction: multi-scan (SABABS; Sheldrick, 1996) | 1877 reflections with I > 2σ(I) |
Tmin = 0.985, Tmax = 0.992 | Rint = 0.059 |
10175 measured reflections |
R[F2 > 2σ(F2)] = 0.042 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.03 | Δρmax = 0.15 e Å−3 |
3484 reflections | Δρmin = −0.15 e Å−3 |
280 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.45989 (16) | 0.20369 (16) | 0.04518 (9) | 0.0462 (5) | |
H1 | 0.4105 | 0.1523 | 0.0631 | 0.055* | |
O1 | 0.99695 (14) | 0.01008 (13) | 0.12539 (7) | 0.0528 (4) | |
O2 | 1.20015 (14) | 0.07828 (14) | 0.08905 (8) | 0.0558 (5) | |
C1 | 0.4820 (2) | 0.18618 (19) | −0.02422 (11) | 0.0381 (6) | |
C2 | 0.3990 (2) | 0.0986 (2) | −0.06736 (12) | 0.0497 (6) | |
H2 | 0.3326 | 0.0545 | −0.0487 | 0.060* | |
C3 | 0.4150 (2) | 0.0779 (2) | −0.13573 (13) | 0.0532 (7) | |
H3 | 0.3610 | 0.0186 | −0.1634 | 0.064* | |
C4 | 0.5134 (2) | 0.1458 (2) | −0.16540 (12) | 0.0447 (6) | |
C5 | 0.5262 (2) | 0.1275 (2) | −0.23780 (12) | 0.0589 (7) | |
H5 | 0.4712 | 0.0690 | −0.2658 | 0.071* | |
C6 | 0.6184 (2) | 0.1946 (2) | −0.26691 (12) | 0.0623 (8) | |
H6 | 0.6264 | 0.1817 | −0.3145 | 0.075* | |
C7 | 0.7013 (2) | 0.2831 (2) | −0.22529 (12) | 0.0576 (7) | |
H7 | 0.7642 | 0.3285 | −0.2456 | 0.069* | |
C8 | 0.6910 (2) | 0.30386 (19) | −0.15506 (11) | 0.0458 (6) | |
H8 | 0.7465 | 0.3633 | −0.1284 | 0.055* | |
C9 | 0.5960 (2) | 0.23510 (19) | −0.12254 (11) | 0.0380 (6) | |
C10 | 0.58159 (19) | 0.25377 (18) | −0.04931 (11) | 0.0335 (5) | |
C11 | 0.68212 (19) | 0.33592 (18) | 0.00266 (10) | 0.0345 (5) | |
H11 | 0.6959 | 0.4083 | −0.0238 | 0.041* | |
C12 | 0.61922 (19) | 0.37069 (19) | 0.06732 (10) | 0.0331 (5) | |
C13 | 0.6730 (2) | 0.46985 (19) | 0.11175 (11) | 0.0374 (6) | |
C14 | 0.7842 (2) | 0.5444 (2) | 0.09827 (11) | 0.0474 (6) | |
H14 | 0.8244 | 0.5294 | 0.0585 | 0.057* | |
C15 | 0.8335 (2) | 0.6380 (2) | 0.14276 (12) | 0.0580 (7) | |
H15 | 0.9064 | 0.6859 | 0.1326 | 0.070* | |
C16 | 0.7766 (3) | 0.6629 (2) | 0.20290 (12) | 0.0602 (7) | |
H16 | 0.8115 | 0.7268 | 0.2328 | 0.072* | |
C17 | 0.6702 (2) | 0.5938 (2) | 0.21792 (12) | 0.0550 (7) | |
H17 | 0.6319 | 0.6111 | 0.2580 | 0.066* | |
C18 | 0.6164 (2) | 0.4957 (2) | 0.17369 (11) | 0.0420 (6) | |
C19 | 0.5078 (2) | 0.4219 (2) | 0.19024 (11) | 0.0506 (7) | |
H19 | 0.4698 | 0.4385 | 0.2305 | 0.061* | |
C20 | 0.4587 (2) | 0.3275 (2) | 0.14816 (11) | 0.0479 (7) | |
H20 | 0.3875 | 0.2794 | 0.1598 | 0.057* | |
C21 | 0.5148 (2) | 0.3012 (2) | 0.08644 (11) | 0.0378 (6) | |
C22 | 0.82907 (19) | 0.27519 (19) | 0.02735 (10) | 0.0333 (5) | |
C23 | 0.8363 (2) | 0.17159 (19) | 0.06878 (10) | 0.0374 (6) | |
H23 | 0.7561 | 0.1442 | 0.0847 | 0.045* | |
C24 | 0.9643 (2) | 0.11199 (19) | 0.08518 (10) | 0.0356 (6) | |
C25 | 1.0846 (2) | 0.1529 (2) | 0.06323 (11) | 0.0385 (6) | |
C26 | 1.0822 (2) | 0.2545 (2) | 0.02452 (11) | 0.0484 (6) | |
H26 | 1.1644 | 0.2825 | 0.0107 | 0.058* | |
C27 | 0.9509 (2) | 0.31549 (19) | 0.00623 (10) | 0.0422 (6) | |
H27 | 0.9456 | 0.3849 | −0.0208 | 0.051* | |
C28 | 1.1380 (2) | −0.0228 (2) | 0.11716 (11) | 0.0524 (7) | |
H28A | 1.1318 | −0.0892 | 0.0839 | 0.063* | |
H28B | 1.1974 | −0.0461 | 0.1636 | 0.063* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0464 (12) | 0.0452 (14) | 0.0529 (13) | −0.0096 (10) | 0.0238 (10) | 0.0007 (10) |
O1 | 0.0437 (10) | 0.0507 (12) | 0.0685 (11) | 0.0108 (8) | 0.0221 (8) | 0.0212 (9) |
O2 | 0.0379 (9) | 0.0599 (13) | 0.0721 (11) | 0.0095 (9) | 0.0178 (8) | 0.0188 (9) |
C1 | 0.0336 (13) | 0.0388 (16) | 0.0412 (15) | 0.0018 (12) | 0.0068 (12) | −0.0004 (12) |
C2 | 0.0463 (15) | 0.0457 (18) | 0.0574 (17) | −0.0052 (13) | 0.0118 (13) | −0.0005 (14) |
C3 | 0.0491 (15) | 0.0473 (18) | 0.0576 (17) | −0.0048 (13) | −0.0004 (13) | −0.0091 (14) |
C4 | 0.0413 (14) | 0.0477 (18) | 0.0416 (15) | 0.0067 (13) | 0.0015 (12) | −0.0028 (13) |
C5 | 0.0602 (17) | 0.064 (2) | 0.0474 (17) | 0.0077 (15) | 0.0002 (13) | −0.0054 (14) |
C6 | 0.074 (2) | 0.076 (2) | 0.0361 (15) | 0.0201 (17) | 0.0112 (14) | 0.0007 (15) |
C7 | 0.0629 (17) | 0.071 (2) | 0.0428 (16) | 0.0125 (15) | 0.0199 (14) | 0.0116 (14) |
C8 | 0.0458 (14) | 0.0505 (17) | 0.0427 (15) | 0.0053 (12) | 0.0132 (12) | 0.0051 (12) |
C9 | 0.0332 (13) | 0.0407 (16) | 0.0395 (14) | 0.0097 (12) | 0.0069 (11) | 0.0027 (12) |
C10 | 0.0283 (12) | 0.0343 (15) | 0.0375 (14) | 0.0064 (11) | 0.0063 (11) | 0.0024 (11) |
C11 | 0.0368 (13) | 0.0321 (15) | 0.0360 (13) | −0.0006 (11) | 0.0111 (10) | 0.0026 (10) |
C12 | 0.0317 (13) | 0.0317 (15) | 0.0377 (13) | 0.0037 (11) | 0.0115 (11) | 0.0035 (11) |
C13 | 0.0385 (14) | 0.0357 (16) | 0.0381 (14) | 0.0078 (12) | 0.0085 (11) | 0.0034 (11) |
C14 | 0.0573 (16) | 0.0391 (17) | 0.0471 (15) | −0.0036 (13) | 0.0142 (13) | −0.0011 (12) |
C15 | 0.0632 (17) | 0.0503 (19) | 0.0568 (17) | −0.0076 (14) | 0.0049 (14) | −0.0035 (14) |
C16 | 0.0711 (19) | 0.047 (2) | 0.0538 (18) | 0.0056 (15) | −0.0063 (15) | −0.0119 (14) |
C17 | 0.0616 (17) | 0.057 (2) | 0.0444 (16) | 0.0192 (15) | 0.0065 (14) | −0.0062 (14) |
C18 | 0.0445 (15) | 0.0429 (17) | 0.0373 (14) | 0.0107 (13) | 0.0062 (12) | −0.0017 (12) |
C19 | 0.0493 (15) | 0.062 (2) | 0.0454 (16) | 0.0121 (14) | 0.0213 (13) | −0.0013 (13) |
C20 | 0.0419 (14) | 0.0581 (19) | 0.0500 (16) | −0.0008 (13) | 0.0237 (12) | 0.0014 (13) |
C21 | 0.0354 (13) | 0.0391 (16) | 0.0399 (14) | 0.0010 (12) | 0.0102 (11) | −0.0017 (12) |
C22 | 0.0303 (12) | 0.0365 (15) | 0.0350 (13) | −0.0004 (11) | 0.0110 (11) | −0.0012 (11) |
C23 | 0.0326 (13) | 0.0418 (16) | 0.0410 (14) | −0.0025 (12) | 0.0152 (11) | 0.0018 (11) |
C24 | 0.0356 (13) | 0.0369 (16) | 0.0355 (13) | 0.0006 (12) | 0.0104 (11) | 0.0067 (11) |
C25 | 0.0312 (13) | 0.0431 (17) | 0.0413 (14) | 0.0067 (12) | 0.0080 (11) | 0.0047 (12) |
C26 | 0.0354 (13) | 0.0579 (19) | 0.0559 (16) | −0.0014 (13) | 0.0182 (12) | 0.0131 (13) |
C27 | 0.0367 (13) | 0.0427 (16) | 0.0484 (14) | −0.0020 (12) | 0.0120 (12) | 0.0118 (12) |
C28 | 0.0466 (15) | 0.0515 (19) | 0.0596 (17) | 0.0128 (13) | 0.0128 (13) | 0.0121 (13) |
N1—C21 | 1.382 (2) | C12—C21 | 1.372 (2) |
N1—C1 | 1.386 (2) | C12—C13 | 1.424 (3) |
N1—H1 | 0.8600 | C13—C14 | 1.416 (2) |
O1—C24 | 1.375 (2) | C13—C18 | 1.420 (2) |
O1—C28 | 1.4297 (19) | C14—C15 | 1.367 (3) |
O2—C25 | 1.384 (2) | C14—H14 | 0.9300 |
O2—C28 | 1.437 (2) | C15—C16 | 1.389 (3) |
C1—C10 | 1.377 (2) | C15—H15 | 0.9300 |
C1—C2 | 1.407 (3) | C16—C17 | 1.354 (3) |
C2—C3 | 1.353 (2) | C16—H16 | 0.9300 |
C2—H2 | 0.9300 | C17—C18 | 1.412 (3) |
C3—C4 | 1.415 (3) | C17—H17 | 0.9300 |
C3—H3 | 0.9300 | C18—C19 | 1.412 (3) |
C4—C5 | 1.414 (3) | C19—C20 | 1.349 (3) |
C4—C9 | 1.416 (3) | C19—H19 | 0.9300 |
C5—C6 | 1.361 (3) | C20—C21 | 1.415 (2) |
C5—H5 | 0.9300 | C20—H20 | 0.9300 |
C6—C7 | 1.401 (3) | C22—C27 | 1.380 (2) |
C6—H6 | 0.9300 | C22—C23 | 1.399 (2) |
C7—C8 | 1.371 (2) | C23—C24 | 1.363 (2) |
C7—H7 | 0.9300 | C23—H23 | 0.9300 |
C8—C9 | 1.426 (2) | C24—C25 | 1.377 (2) |
C8—H8 | 0.9300 | C25—C26 | 1.357 (3) |
C9—C10 | 1.435 (2) | C26—C27 | 1.399 (2) |
C10—C11 | 1.524 (2) | C26—H26 | 0.9300 |
C11—C12 | 1.523 (2) | C27—H27 | 0.9300 |
C11—C22 | 1.532 (2) | C28—H28A | 0.9700 |
C11—H11 | 0.9800 | C28—H28B | 0.9700 |
C21—N1—C1 | 121.99 (18) | C15—C14—H14 | 119.4 |
C21—N1—H1 | 119.0 | C13—C14—H14 | 119.4 |
C1—N1—H1 | 119.0 | C14—C15—C16 | 121.1 (2) |
C24—O1—C28 | 105.07 (15) | C14—C15—H15 | 119.5 |
C25—O2—C28 | 104.73 (15) | C16—C15—H15 | 119.5 |
C10—C1—N1 | 120.3 (2) | C17—C16—C15 | 119.8 (2) |
C10—C1—C2 | 122.0 (2) | C17—C16—H16 | 120.1 |
N1—C1—C2 | 117.8 (2) | C15—C16—H16 | 120.1 |
C3—C2—C1 | 120.5 (2) | C16—C17—C18 | 121.1 (2) |
C3—C2—H2 | 119.7 | C16—C17—H17 | 119.5 |
C1—C2—H2 | 119.7 | C18—C17—H17 | 119.5 |
C2—C3—C4 | 120.4 (2) | C17—C18—C19 | 121.2 (2) |
C2—C3—H3 | 119.8 | C17—C18—C13 | 119.7 (2) |
C4—C3—H3 | 119.8 | C19—C18—C13 | 119.1 (2) |
C5—C4—C3 | 120.5 (2) | C20—C19—C18 | 120.7 (2) |
C5—C4—C9 | 120.2 (2) | C20—C19—H19 | 119.7 |
C3—C4—C9 | 119.3 (2) | C18—C19—H19 | 119.7 |
C6—C5—C4 | 120.5 (2) | C19—C20—C21 | 120.4 (2) |
C6—C5—H5 | 119.7 | C19—C20—H20 | 119.8 |
C4—C5—H5 | 119.7 | C21—C20—H20 | 119.8 |
C5—C6—C7 | 120.1 (2) | C12—C21—N1 | 120.74 (19) |
C5—C6—H6 | 119.9 | C12—C21—C20 | 121.4 (2) |
C7—C6—H6 | 119.9 | N1—C21—C20 | 117.9 (2) |
C8—C7—C6 | 120.9 (2) | C27—C22—C23 | 119.66 (18) |
C8—C7—H7 | 119.5 | C27—C22—C11 | 121.97 (18) |
C6—C7—H7 | 119.5 | C23—C22—C11 | 118.25 (17) |
C7—C8—C9 | 120.6 (2) | C24—C23—C22 | 118.09 (18) |
C7—C8—H8 | 119.7 | C24—C23—H23 | 121.0 |
C9—C8—H8 | 119.7 | C22—C23—H23 | 121.0 |
C4—C9—C8 | 117.6 (2) | C23—C24—O1 | 128.30 (19) |
C4—C9—C10 | 119.8 (2) | C23—C24—C25 | 121.5 (2) |
C8—C9—C10 | 122.5 (2) | O1—C24—C25 | 110.14 (18) |
C1—C10—C9 | 117.90 (19) | C26—C25—C24 | 121.9 (2) |
C1—C10—C11 | 119.70 (19) | C26—C25—O2 | 128.45 (19) |
C9—C10—C11 | 122.12 (18) | C24—C25—O2 | 109.64 (18) |
C12—C11—C10 | 111.88 (16) | C25—C26—C27 | 117.18 (18) |
C12—C11—C22 | 111.21 (15) | C25—C26—H26 | 121.4 |
C10—C11—C22 | 108.92 (16) | C27—C26—H26 | 121.4 |
C12—C11—H11 | 108.2 | C22—C27—C26 | 121.64 (19) |
C10—C11—H11 | 108.2 | C22—C27—H27 | 119.2 |
C22—C11—H11 | 108.2 | C26—C27—H27 | 119.2 |
C21—C12—C13 | 118.67 (19) | O1—C28—O2 | 107.74 (16) |
C21—C12—C11 | 119.76 (19) | O1—C28—H28A | 110.2 |
C13—C12—C11 | 121.44 (18) | O2—C28—H28A | 110.2 |
C14—C13—C18 | 117.2 (2) | O1—C28—H28B | 110.2 |
C14—C13—C12 | 123.07 (19) | O2—C28—H28B | 110.2 |
C18—C13—C12 | 119.7 (2) | H28A—C28—H28B | 108.5 |
C15—C14—C13 | 121.1 (2) | ||
C21—N1—C1—C10 | 12.1 (3) | C15—C16—C17—C18 | 0.5 (3) |
C21—N1—C1—C2 | −167.48 (19) | C16—C17—C18—C19 | 178.5 (2) |
C10—C1—C2—C3 | 0.0 (3) | C16—C17—C18—C13 | −0.9 (3) |
N1—C1—C2—C3 | 179.57 (19) | C14—C13—C18—C17 | 1.0 (3) |
C1—C2—C3—C4 | −1.3 (3) | C12—C13—C18—C17 | 179.7 (2) |
C2—C3—C4—C5 | −177.5 (2) | C14—C13—C18—C19 | −178.43 (19) |
C2—C3—C4—C9 | 0.6 (3) | C12—C13—C18—C19 | 0.3 (3) |
C3—C4—C5—C6 | 178.5 (2) | C17—C18—C19—C20 | −179.0 (2) |
C9—C4—C5—C6 | 0.4 (3) | C13—C18—C19—C20 | 0.4 (3) |
C4—C5—C6—C7 | −0.2 (4) | C18—C19—C20—C21 | −0.3 (3) |
C5—C6—C7—C8 | −0.2 (4) | C13—C12—C21—N1 | −179.68 (19) |
C6—C7—C8—C9 | 0.4 (3) | C11—C12—C21—N1 | −3.8 (3) |
C5—C4—C9—C8 | −0.2 (3) | C13—C12—C21—C20 | 1.1 (3) |
C3—C4—C9—C8 | −178.31 (19) | C11—C12—C21—C20 | 176.98 (18) |
C5—C4—C9—C10 | 179.55 (18) | C1—N1—C21—C12 | −14.5 (3) |
C3—C4—C9—C10 | 1.4 (3) | C1—N1—C21—C20 | 164.76 (18) |
C7—C8—C9—C4 | −0.2 (3) | C19—C20—C21—C12 | −0.5 (3) |
C7—C8—C9—C10 | −179.91 (19) | C19—C20—C21—N1 | −179.7 (2) |
N1—C1—C10—C9 | −177.59 (17) | C12—C11—C22—C27 | −125.2 (2) |
C2—C1—C10—C9 | 1.9 (3) | C10—C11—C22—C27 | 111.1 (2) |
N1—C1—C10—C11 | 8.4 (3) | C12—C11—C22—C23 | 58.9 (2) |
C2—C1—C10—C11 | −172.08 (19) | C10—C11—C22—C23 | −64.9 (2) |
C4—C9—C10—C1 | −2.6 (3) | C27—C22—C23—C24 | −1.8 (3) |
C8—C9—C10—C1 | 177.10 (19) | C11—C22—C23—C24 | 174.26 (17) |
C4—C9—C10—C11 | 171.23 (19) | C22—C23—C24—O1 | 179.2 (2) |
C8—C9—C10—C11 | −9.1 (3) | C22—C23—C24—C25 | 1.3 (3) |
C1—C10—C11—C12 | −23.9 (3) | C28—O1—C24—C23 | 172.2 (2) |
C9—C10—C11—C12 | 162.39 (16) | C28—O1—C24—C25 | −9.8 (2) |
C1—C10—C11—C22 | 99.5 (2) | C23—C24—C25—C26 | 0.3 (3) |
C9—C10—C11—C22 | −74.3 (2) | O1—C24—C25—C26 | −178.0 (2) |
C10—C11—C12—C21 | 21.6 (2) | C23—C24—C25—O2 | 177.98 (18) |
C22—C11—C12—C21 | −100.5 (2) | O1—C24—C25—O2 | −0.3 (2) |
C10—C11—C12—C13 | −162.66 (18) | C28—O2—C25—C26 | −172.4 (2) |
C22—C11—C12—C13 | 75.3 (2) | C28—O2—C25—C24 | 10.1 (2) |
C21—C12—C13—C14 | 177.62 (19) | C24—C25—C26—C27 | −1.3 (3) |
C11—C12—C13—C14 | 1.8 (3) | O2—C25—C26—C27 | −178.6 (2) |
C21—C12—C13—C18 | −1.0 (3) | C23—C22—C27—C26 | 0.7 (3) |
C11—C12—C13—C18 | −176.81 (17) | C11—C22—C27—C26 | −175.17 (18) |
C18—C13—C14—C15 | −0.7 (3) | C25—C26—C27—C22 | 0.8 (3) |
C12—C13—C14—C15 | −179.4 (2) | C24—O1—C28—O2 | 15.9 (2) |
C13—C14—C15—C16 | 0.3 (3) | C25—O2—C28—O1 | −16.0 (2) |
C14—C15—C16—C17 | −0.2 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.31 | 3.108 (2) | 154 |
C5—H5···Cgii | 0.93 | 2.90 | 3.793 (2) | 161 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C28H19NO2 |
Mr | 401.44 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 298 |
a, b, c (Å) | 9.4920 (11), 11.2767 (16), 18.883 (2) |
β (°) | 102.650 (2) |
V (Å3) | 1972.1 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.09 |
Crystal size (mm) | 0.18 × 0.12 × 0.10 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SABABS; Sheldrick, 1996) |
Tmin, Tmax | 0.985, 0.992 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10175, 3484, 1877 |
Rint | 0.059 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.042, 0.054, 1.03 |
No. of reflections | 3484 |
No. of parameters | 280 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.15 |
Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O2i | 0.86 | 2.31 | 3.108 (2) | 153.7 |
C5—H5···Cgii | 0.93 | 2.90 | 3.793 (2) | 161.0 |
Symmetry codes: (i) x−1, y, z; (ii) x−1/2, −y+1/2, z−1/2. |
Acknowledgements
The authors are grateful for financial support from the NSFC (grant Nos. 21072163 and 21002083) and the Graduate Foundation of Jiangsu Province (grant No. CX09S_043Z).
References
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358. CrossRef CAS Web of Science Google Scholar
Ellis, M. J. & Stevens, M. F. G. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3180–3185. Web of Science CrossRef Google Scholar
Khurana, J. M., Maikap, G. C. & Mehta, S. (1990). Synthesis, pp. 731–732. CrossRef Google Scholar
Llama, E. F., Del Campo, C., Capo, M. & Anadon, M. (1989). Eur. J. Med. Chem. 24, 391–396. CrossRef CAS Web of Science Google Scholar
Marder, S., Kaafarani, B., Barlow, S., Kippelen, B., Domercq, B., Zhang, Q. & Kondo, T. (2005). PCT Int. Appl. WO 2005123737. Google Scholar
Ray, J. K., Roy, B. C., Nigam, G. D., Sivakumar, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2083–2085. CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
Rudler, H., Parlier, A., Hamon, L., Herson, P. & Daran, J.-C. (2008). Chem. Commun. pp. 4150–4152. Web of Science CSD CrossRef Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The charge-transport materials can be used in organic electronic devices such as organic light-emitting diodes, lasers, photovoltaic cells, photodetectors, active and passive electronic devices, and memories (Marder et al., 2005). The extended angular fused aza-heterocycles (V-type fused aza-heterocycles) exhibit important photophysics properties, which are widely applied in the charge-transport materials due to their strong skeleton rigidity and large conjugation systems. With large conjugation systems, dibenzacridine derivatives, especially the acridinium ions, possess interesting photophysical properties such as the presence of intramolecular electron-transfer state of a high energy and long lifetime, which have been tested and applied as an efficient photocatalyst in modeling the photosynthetic reactions. Furthermore, dihydroacridine derivatives with an 1,4-DHPs parent nucleus are well known as therapeutic agents (Rudler et al., 2008). Due to their interesting biological activities such as antimalarial and antitumor, they have immense utility in pharmaceutical industry (Ellis et al., 2001). Therefore, this class of compounds has been the focus of much recent research (Llama et al., 1989), and has led to intensive interest in the synthesis of several drugs based on them (Khurana et al., 1990). For these reasons, the synthesis of dihydroacridine with an 1,4-DHPs parent nucleus is strongly desired.
In the title molecule (Fig. 1), the dihydropyrimidine ring system is in a boat conformation. The puckering parameters (Cremer & Pople, 1975) are q2 = 0.240 (2) Å, and φ2 = 174.3 (5)°, Q = 0.248 (2) Å and θ = 75.7 (5) °. Besides, the distances between atoms N1 and C11, and the mean plane C1/C10/C12/C21 (r.m.s. deviation = 0.012 Å) are 0.133 (2) and 0.286 Å, which also confirm the conformation of the pyridine ring. The dihedral angle between the aforementioned weighted plane and phenyl ring of C22—C27 is 85.66 (7)°, which shows that the two units are nearly perpendicular. The two planar bicyclic parts make a dihedral angle of 16.16 (5) with respect to each other, which is smaller than that of the previously reported crystal structure of 14-methyl-7,14-dihydrodibenzo[a,j]acridine (Ray et al., 1995).
The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds and C—H···π interactions (Table 1, Fig.2).