organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

14-(1,3-Benzodioxol-5-yl)-7,14-di­hydro­dibenzo[a,j]acridine

aLianyungang Teachers' College, Lianyungang 222006, People's Republic of China, and bCollege of Chemistry and Chemical Engineering, Xuzhou Normal University, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: jiarunhong@126.com

(Received 9 October 2010; accepted 29 October 2010; online 6 November 2010)

The title compound, C28H19NO2, was synthesized by the reaction of 1,3-benzodioxole-5-carbaldehyde with naphthalen-2-amine catalyzed by thio­salicylic acid in acetic acid. The central dihydropyridine ring adopts a boat conformation. The two planar (r.m.s. deviations = 0.0158 and 0.0552 Å) bicyclic parts make a dihedral angle of 16.16 (5)° with respect to each other. The crystal packing is stabilized by inter­molecular N—H⋯O hydrogen bonds and C—H⋯π inter­actions.

Related literature

For a similar crystal structure, see: Ray et al. (1995[Ray, J. K., Roy, B. C., Nigam, G. D., Sivakumar, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2083-2085.]). For the applications of charge-transport materials, see: Marder et al. (2005[Marder, S., Kaafarani, B., Barlow, S., Kippelen, B., Domercq, B., Zhang, Q. & Kondo, T. (2005). PCT Int. Appl. WO 2005123737.]). For the use of dihydro­acridine derivatives as therapeutic agents, see: Rudler et al. (2008[Rudler, H., Parlier, A., Hamon, L., Herson, P. & Daran, J.-C. (2008). Chem. Commun. pp. 4150-4152.]). For their biological activities, see Ellis & Stevens (2001[Ellis, M. J. & Stevens, M. F. G. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3180-3185.]). For literature on this class of compound, see: Llama et al. (1989[Llama, E. F., Del Campo, C., Capo, M. & Anadon, M. (1989). Eur. J. Med. Chem. 24, 391-396.]). For literature on drug development, see: Khurana et al. (1990[Khurana, J. M., Maikap, G. C. & Mehta, S. (1990). Synthesis, pp. 731-732.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C28H19NO2

  • Mr = 401.44

  • Monoclinic, P 21 /n

  • a = 9.4920 (11) Å

  • b = 11.2767 (16) Å

  • c = 18.883 (2) Å

  • β = 102.650 (2)°

  • V = 1972.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.18 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SABABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.985, Tmax = 0.992

  • 10175 measured reflections

  • 3484 independent reflections

  • 1877 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.054

  • S = 1.03

  • 3484 reflections

  • 280 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C13–C18 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O2i 0.86 2.31 3.108 (2) 154
C5—H5⋯Cgii 0.93 2.90 3.793 (2) 161
Symmetry codes: (i) x-1, y, z; (ii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1999[Bruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The charge-transport materials can be used in organic electronic devices such as organic light-emitting diodes, lasers, photovoltaic cells, photodetectors, active and passive electronic devices, and memories (Marder et al., 2005). The extended angular fused aza-heterocycles (V-type fused aza-heterocycles) exhibit important photophysics properties, which are widely applied in the charge-transport materials due to their strong skeleton rigidity and large conjugation systems. With large conjugation systems, dibenzacridine derivatives, especially the acridinium ions, possess interesting photophysical properties such as the presence of intramolecular electron-transfer state of a high energy and long lifetime, which have been tested and applied as an efficient photocatalyst in modeling the photosynthetic reactions. Furthermore, dihydroacridine derivatives with an 1,4-DHPs parent nucleus are well known as therapeutic agents (Rudler et al., 2008). Due to their interesting biological activities such as antimalarial and antitumor, they have immense utility in pharmaceutical industry (Ellis et al., 2001). Therefore, this class of compounds has been the focus of much recent research (Llama et al., 1989), and has led to intensive interest in the synthesis of several drugs based on them (Khurana et al., 1990). For these reasons, the synthesis of dihydroacridine with an 1,4-DHPs parent nucleus is strongly desired.

In the title molecule (Fig. 1), the dihydropyrimidine ring system is in a boat conformation. The puckering parameters (Cremer & Pople, 1975) are q2 = 0.240 (2) Å, and φ2 = 174.3 (5)°, Q = 0.248 (2) Å and θ = 75.7 (5) °. Besides, the distances between atoms N1 and C11, and the mean plane C1/C10/C12/C21 (r.m.s. deviation = 0.012 Å) are 0.133 (2) and 0.286 Å, which also confirm the conformation of the pyridine ring. The dihedral angle between the aforementioned weighted plane and phenyl ring of C22—C27 is 85.66 (7)°, which shows that the two units are nearly perpendicular. The two planar bicyclic parts make a dihedral angle of 16.16 (5) with respect to each other, which is smaller than that of the previously reported crystal structure of 14-methyl-7,14-dihydrodibenzo[a,j]acridine (Ray et al., 1995).

The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds and C—H···π interactions (Table 1, Fig.2).

Related literature top

For a similar crystal structure, see: Ray et al. (1995). For the applications of charge-transport materials, see: Marder et al. (2005). For the use of dihydroacridine derivatives as therapeutic agents, see: Rudler et al. (2008). For their biological activities, see Ellis & Stevens (2001). For literature on this class of compound, see: Llama et al. (1989). For literature on drug development, see: Khurana et al. (1990). Ok as rewritten? For related literature [on what subject?], see: Cremer & Pople (1975).

Experimental top

The title compound was prepared by the reaction of 1,3-benzodioxole-5-carbaldehyde (1 mmol) and naphthalen-2-amine (2 mmol), with thiosalicylic acid (1 mmol) as catalyst in acetic acid (1.5 ml). Single crystals were obtained by slow evaporation of a 95% aqueous ethanol solution (yield 75%; m.p. >573 K). IR (cm-1): 3406.0, 3020.6, 1587.9, 1530.5, 1484.6, 1246.2, 1033.7, 922.0, 807.1, 746.4. 1H NMR (DMSO-d6): 9.54 (s, 1H, NH), 8.56 (d, J = 8.4 Hz, 2H, ArH), 7.79 (d, J = 8.0 Hz, 2H, ArH), 7.75 (d, J = 8.8 Hz, 2H, ArH), 7.52 (t, J = 7.6 Hz, 2H, ArH), 7.35 (d, J = 8.4 Hz, 2H, ArH), 7.29 (t, J = 7.2 Hz, 2H, ArH), 7.12–7.08 (m, 2H, ArH), 6.64 (d, J = 7.6 Hz, 2H, ArH), 6.63 (s, 1H, CH), 5.77 (s, 2H, CH2)

Refinement top

All H atoms were positioned geometrically and treated as riding, with N—H = 0.86 Å and C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(parent atom).

Structure description top

The charge-transport materials can be used in organic electronic devices such as organic light-emitting diodes, lasers, photovoltaic cells, photodetectors, active and passive electronic devices, and memories (Marder et al., 2005). The extended angular fused aza-heterocycles (V-type fused aza-heterocycles) exhibit important photophysics properties, which are widely applied in the charge-transport materials due to their strong skeleton rigidity and large conjugation systems. With large conjugation systems, dibenzacridine derivatives, especially the acridinium ions, possess interesting photophysical properties such as the presence of intramolecular electron-transfer state of a high energy and long lifetime, which have been tested and applied as an efficient photocatalyst in modeling the photosynthetic reactions. Furthermore, dihydroacridine derivatives with an 1,4-DHPs parent nucleus are well known as therapeutic agents (Rudler et al., 2008). Due to their interesting biological activities such as antimalarial and antitumor, they have immense utility in pharmaceutical industry (Ellis et al., 2001). Therefore, this class of compounds has been the focus of much recent research (Llama et al., 1989), and has led to intensive interest in the synthesis of several drugs based on them (Khurana et al., 1990). For these reasons, the synthesis of dihydroacridine with an 1,4-DHPs parent nucleus is strongly desired.

In the title molecule (Fig. 1), the dihydropyrimidine ring system is in a boat conformation. The puckering parameters (Cremer & Pople, 1975) are q2 = 0.240 (2) Å, and φ2 = 174.3 (5)°, Q = 0.248 (2) Å and θ = 75.7 (5) °. Besides, the distances between atoms N1 and C11, and the mean plane C1/C10/C12/C21 (r.m.s. deviation = 0.012 Å) are 0.133 (2) and 0.286 Å, which also confirm the conformation of the pyridine ring. The dihedral angle between the aforementioned weighted plane and phenyl ring of C22—C27 is 85.66 (7)°, which shows that the two units are nearly perpendicular. The two planar bicyclic parts make a dihedral angle of 16.16 (5) with respect to each other, which is smaller than that of the previously reported crystal structure of 14-methyl-7,14-dihydrodibenzo[a,j]acridine (Ray et al., 1995).

The crystal packing is stabilized by intermolecular N—H···O hydrogen bonds and C—H···π interactions (Table 1, Fig.2).

For a similar crystal structure, see: Ray et al. (1995). For the applications of charge-transport materials, see: Marder et al. (2005). For the use of dihydroacridine derivatives as therapeutic agents, see: Rudler et al. (2008). For their biological activities, see Ellis & Stevens (2001). For literature on this class of compound, see: Llama et al. (1989). For literature on drug development, see: Khurana et al. (1990). Ok as rewritten? For related literature [on what subject?], see: Cremer & Pople (1975).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound viewed along the a axis.
14-(1,3-Benzodioxol-5-yl)-7,14-dihydrodibenzo[a,j]acridine top
Crystal data top
C28H19NO2Dx = 1.352 Mg m3
Mr = 401.44Melting point = 522–524 K
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.4920 (11) ÅCell parameters from 1646 reflections
b = 11.2767 (16) Åθ = 2.7–25.3°
c = 18.883 (2) ŵ = 0.09 mm1
β = 102.650 (2)°T = 298 K
V = 1972.1 (4) Å3Block, yellow
Z = 40.18 × 0.12 × 0.10 mm
F(000) = 840
Data collection top
Bruker SMART CCD area-detector
diffractometer
3484 independent reflections
Radiation source: fine-focus sealed tube1877 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SABABS; Sheldrick, 1996)
h = 1011
Tmin = 0.985, Tmax = 0.992k = 913
10175 measured reflectionsl = 2220
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.054H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.003P)2]
where P = (Fo2 + 2Fc2)/3
3484 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C28H19NO2V = 1972.1 (4) Å3
Mr = 401.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.4920 (11) ŵ = 0.09 mm1
b = 11.2767 (16) ÅT = 298 K
c = 18.883 (2) Å0.18 × 0.12 × 0.10 mm
β = 102.650 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3484 independent reflections
Absorption correction: multi-scan
(SABABS; Sheldrick, 1996)
1877 reflections with I > 2σ(I)
Tmin = 0.985, Tmax = 0.992Rint = 0.059
10175 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.054H-atom parameters constrained
S = 1.03Δρmax = 0.15 e Å3
3484 reflectionsΔρmin = 0.15 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.45989 (16)0.20369 (16)0.04518 (9)0.0462 (5)
H10.41050.15230.06310.055*
O10.99695 (14)0.01008 (13)0.12539 (7)0.0528 (4)
O21.20015 (14)0.07828 (14)0.08905 (8)0.0558 (5)
C10.4820 (2)0.18618 (19)0.02422 (11)0.0381 (6)
C20.3990 (2)0.0986 (2)0.06736 (12)0.0497 (6)
H20.33260.05450.04870.060*
C30.4150 (2)0.0779 (2)0.13573 (13)0.0532 (7)
H30.36100.01860.16340.064*
C40.5134 (2)0.1458 (2)0.16540 (12)0.0447 (6)
C50.5262 (2)0.1275 (2)0.23780 (12)0.0589 (7)
H50.47120.06900.26580.071*
C60.6184 (2)0.1946 (2)0.26691 (12)0.0623 (8)
H60.62640.18170.31450.075*
C70.7013 (2)0.2831 (2)0.22529 (12)0.0576 (7)
H70.76420.32850.24560.069*
C80.6910 (2)0.30386 (19)0.15506 (11)0.0458 (6)
H80.74650.36330.12840.055*
C90.5960 (2)0.23510 (19)0.12254 (11)0.0380 (6)
C100.58159 (19)0.25377 (18)0.04931 (11)0.0335 (5)
C110.68212 (19)0.33592 (18)0.00266 (10)0.0345 (5)
H110.69590.40830.02380.041*
C120.61922 (19)0.37069 (19)0.06732 (10)0.0331 (5)
C130.6730 (2)0.46985 (19)0.11175 (11)0.0374 (6)
C140.7842 (2)0.5444 (2)0.09827 (11)0.0474 (6)
H140.82440.52940.05850.057*
C150.8335 (2)0.6380 (2)0.14276 (12)0.0580 (7)
H150.90640.68590.13260.070*
C160.7766 (3)0.6629 (2)0.20290 (12)0.0602 (7)
H160.81150.72680.23280.072*
C170.6702 (2)0.5938 (2)0.21792 (12)0.0550 (7)
H170.63190.61110.25800.066*
C180.6164 (2)0.4957 (2)0.17369 (11)0.0420 (6)
C190.5078 (2)0.4219 (2)0.19024 (11)0.0506 (7)
H190.46980.43850.23050.061*
C200.4587 (2)0.3275 (2)0.14816 (11)0.0479 (7)
H200.38750.27940.15980.057*
C210.5148 (2)0.3012 (2)0.08644 (11)0.0378 (6)
C220.82907 (19)0.27519 (19)0.02735 (10)0.0333 (5)
C230.8363 (2)0.17159 (19)0.06878 (10)0.0374 (6)
H230.75610.14420.08470.045*
C240.9643 (2)0.11199 (19)0.08518 (10)0.0356 (6)
C251.0846 (2)0.1529 (2)0.06323 (11)0.0385 (6)
C261.0822 (2)0.2545 (2)0.02452 (11)0.0484 (6)
H261.16440.28250.01070.058*
C270.9509 (2)0.31549 (19)0.00623 (10)0.0422 (6)
H270.94560.38490.02080.051*
C281.1380 (2)0.0228 (2)0.11716 (11)0.0524 (7)
H28A1.13180.08920.08390.063*
H28B1.19740.04610.16360.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0464 (12)0.0452 (14)0.0529 (13)0.0096 (10)0.0238 (10)0.0007 (10)
O10.0437 (10)0.0507 (12)0.0685 (11)0.0108 (8)0.0221 (8)0.0212 (9)
O20.0379 (9)0.0599 (13)0.0721 (11)0.0095 (9)0.0178 (8)0.0188 (9)
C10.0336 (13)0.0388 (16)0.0412 (15)0.0018 (12)0.0068 (12)0.0004 (12)
C20.0463 (15)0.0457 (18)0.0574 (17)0.0052 (13)0.0118 (13)0.0005 (14)
C30.0491 (15)0.0473 (18)0.0576 (17)0.0048 (13)0.0004 (13)0.0091 (14)
C40.0413 (14)0.0477 (18)0.0416 (15)0.0067 (13)0.0015 (12)0.0028 (13)
C50.0602 (17)0.064 (2)0.0474 (17)0.0077 (15)0.0002 (13)0.0054 (14)
C60.074 (2)0.076 (2)0.0361 (15)0.0201 (17)0.0112 (14)0.0007 (15)
C70.0629 (17)0.071 (2)0.0428 (16)0.0125 (15)0.0199 (14)0.0116 (14)
C80.0458 (14)0.0505 (17)0.0427 (15)0.0053 (12)0.0132 (12)0.0051 (12)
C90.0332 (13)0.0407 (16)0.0395 (14)0.0097 (12)0.0069 (11)0.0027 (12)
C100.0283 (12)0.0343 (15)0.0375 (14)0.0064 (11)0.0063 (11)0.0024 (11)
C110.0368 (13)0.0321 (15)0.0360 (13)0.0006 (11)0.0111 (10)0.0026 (10)
C120.0317 (13)0.0317 (15)0.0377 (13)0.0037 (11)0.0115 (11)0.0035 (11)
C130.0385 (14)0.0357 (16)0.0381 (14)0.0078 (12)0.0085 (11)0.0034 (11)
C140.0573 (16)0.0391 (17)0.0471 (15)0.0036 (13)0.0142 (13)0.0011 (12)
C150.0632 (17)0.0503 (19)0.0568 (17)0.0076 (14)0.0049 (14)0.0035 (14)
C160.0711 (19)0.047 (2)0.0538 (18)0.0056 (15)0.0063 (15)0.0119 (14)
C170.0616 (17)0.057 (2)0.0444 (16)0.0192 (15)0.0065 (14)0.0062 (14)
C180.0445 (15)0.0429 (17)0.0373 (14)0.0107 (13)0.0062 (12)0.0017 (12)
C190.0493 (15)0.062 (2)0.0454 (16)0.0121 (14)0.0213 (13)0.0013 (13)
C200.0419 (14)0.0581 (19)0.0500 (16)0.0008 (13)0.0237 (12)0.0014 (13)
C210.0354 (13)0.0391 (16)0.0399 (14)0.0010 (12)0.0102 (11)0.0017 (12)
C220.0303 (12)0.0365 (15)0.0350 (13)0.0004 (11)0.0110 (11)0.0012 (11)
C230.0326 (13)0.0418 (16)0.0410 (14)0.0025 (12)0.0152 (11)0.0018 (11)
C240.0356 (13)0.0369 (16)0.0355 (13)0.0006 (12)0.0104 (11)0.0067 (11)
C250.0312 (13)0.0431 (17)0.0413 (14)0.0067 (12)0.0080 (11)0.0047 (12)
C260.0354 (13)0.0579 (19)0.0559 (16)0.0014 (13)0.0182 (12)0.0131 (13)
C270.0367 (13)0.0427 (16)0.0484 (14)0.0020 (12)0.0120 (12)0.0118 (12)
C280.0466 (15)0.0515 (19)0.0596 (17)0.0128 (13)0.0128 (13)0.0121 (13)
Geometric parameters (Å, º) top
N1—C211.382 (2)C12—C211.372 (2)
N1—C11.386 (2)C12—C131.424 (3)
N1—H10.8600C13—C141.416 (2)
O1—C241.375 (2)C13—C181.420 (2)
O1—C281.4297 (19)C14—C151.367 (3)
O2—C251.384 (2)C14—H140.9300
O2—C281.437 (2)C15—C161.389 (3)
C1—C101.377 (2)C15—H150.9300
C1—C21.407 (3)C16—C171.354 (3)
C2—C31.353 (2)C16—H160.9300
C2—H20.9300C17—C181.412 (3)
C3—C41.415 (3)C17—H170.9300
C3—H30.9300C18—C191.412 (3)
C4—C51.414 (3)C19—C201.349 (3)
C4—C91.416 (3)C19—H190.9300
C5—C61.361 (3)C20—C211.415 (2)
C5—H50.9300C20—H200.9300
C6—C71.401 (3)C22—C271.380 (2)
C6—H60.9300C22—C231.399 (2)
C7—C81.371 (2)C23—C241.363 (2)
C7—H70.9300C23—H230.9300
C8—C91.426 (2)C24—C251.377 (2)
C8—H80.9300C25—C261.357 (3)
C9—C101.435 (2)C26—C271.399 (2)
C10—C111.524 (2)C26—H260.9300
C11—C121.523 (2)C27—H270.9300
C11—C221.532 (2)C28—H28A0.9700
C11—H110.9800C28—H28B0.9700
C21—N1—C1121.99 (18)C15—C14—H14119.4
C21—N1—H1119.0C13—C14—H14119.4
C1—N1—H1119.0C14—C15—C16121.1 (2)
C24—O1—C28105.07 (15)C14—C15—H15119.5
C25—O2—C28104.73 (15)C16—C15—H15119.5
C10—C1—N1120.3 (2)C17—C16—C15119.8 (2)
C10—C1—C2122.0 (2)C17—C16—H16120.1
N1—C1—C2117.8 (2)C15—C16—H16120.1
C3—C2—C1120.5 (2)C16—C17—C18121.1 (2)
C3—C2—H2119.7C16—C17—H17119.5
C1—C2—H2119.7C18—C17—H17119.5
C2—C3—C4120.4 (2)C17—C18—C19121.2 (2)
C2—C3—H3119.8C17—C18—C13119.7 (2)
C4—C3—H3119.8C19—C18—C13119.1 (2)
C5—C4—C3120.5 (2)C20—C19—C18120.7 (2)
C5—C4—C9120.2 (2)C20—C19—H19119.7
C3—C4—C9119.3 (2)C18—C19—H19119.7
C6—C5—C4120.5 (2)C19—C20—C21120.4 (2)
C6—C5—H5119.7C19—C20—H20119.8
C4—C5—H5119.7C21—C20—H20119.8
C5—C6—C7120.1 (2)C12—C21—N1120.74 (19)
C5—C6—H6119.9C12—C21—C20121.4 (2)
C7—C6—H6119.9N1—C21—C20117.9 (2)
C8—C7—C6120.9 (2)C27—C22—C23119.66 (18)
C8—C7—H7119.5C27—C22—C11121.97 (18)
C6—C7—H7119.5C23—C22—C11118.25 (17)
C7—C8—C9120.6 (2)C24—C23—C22118.09 (18)
C7—C8—H8119.7C24—C23—H23121.0
C9—C8—H8119.7C22—C23—H23121.0
C4—C9—C8117.6 (2)C23—C24—O1128.30 (19)
C4—C9—C10119.8 (2)C23—C24—C25121.5 (2)
C8—C9—C10122.5 (2)O1—C24—C25110.14 (18)
C1—C10—C9117.90 (19)C26—C25—C24121.9 (2)
C1—C10—C11119.70 (19)C26—C25—O2128.45 (19)
C9—C10—C11122.12 (18)C24—C25—O2109.64 (18)
C12—C11—C10111.88 (16)C25—C26—C27117.18 (18)
C12—C11—C22111.21 (15)C25—C26—H26121.4
C10—C11—C22108.92 (16)C27—C26—H26121.4
C12—C11—H11108.2C22—C27—C26121.64 (19)
C10—C11—H11108.2C22—C27—H27119.2
C22—C11—H11108.2C26—C27—H27119.2
C21—C12—C13118.67 (19)O1—C28—O2107.74 (16)
C21—C12—C11119.76 (19)O1—C28—H28A110.2
C13—C12—C11121.44 (18)O2—C28—H28A110.2
C14—C13—C18117.2 (2)O1—C28—H28B110.2
C14—C13—C12123.07 (19)O2—C28—H28B110.2
C18—C13—C12119.7 (2)H28A—C28—H28B108.5
C15—C14—C13121.1 (2)
C21—N1—C1—C1012.1 (3)C15—C16—C17—C180.5 (3)
C21—N1—C1—C2167.48 (19)C16—C17—C18—C19178.5 (2)
C10—C1—C2—C30.0 (3)C16—C17—C18—C130.9 (3)
N1—C1—C2—C3179.57 (19)C14—C13—C18—C171.0 (3)
C1—C2—C3—C41.3 (3)C12—C13—C18—C17179.7 (2)
C2—C3—C4—C5177.5 (2)C14—C13—C18—C19178.43 (19)
C2—C3—C4—C90.6 (3)C12—C13—C18—C190.3 (3)
C3—C4—C5—C6178.5 (2)C17—C18—C19—C20179.0 (2)
C9—C4—C5—C60.4 (3)C13—C18—C19—C200.4 (3)
C4—C5—C6—C70.2 (4)C18—C19—C20—C210.3 (3)
C5—C6—C7—C80.2 (4)C13—C12—C21—N1179.68 (19)
C6—C7—C8—C90.4 (3)C11—C12—C21—N13.8 (3)
C5—C4—C9—C80.2 (3)C13—C12—C21—C201.1 (3)
C3—C4—C9—C8178.31 (19)C11—C12—C21—C20176.98 (18)
C5—C4—C9—C10179.55 (18)C1—N1—C21—C1214.5 (3)
C3—C4—C9—C101.4 (3)C1—N1—C21—C20164.76 (18)
C7—C8—C9—C40.2 (3)C19—C20—C21—C120.5 (3)
C7—C8—C9—C10179.91 (19)C19—C20—C21—N1179.7 (2)
N1—C1—C10—C9177.59 (17)C12—C11—C22—C27125.2 (2)
C2—C1—C10—C91.9 (3)C10—C11—C22—C27111.1 (2)
N1—C1—C10—C118.4 (3)C12—C11—C22—C2358.9 (2)
C2—C1—C10—C11172.08 (19)C10—C11—C22—C2364.9 (2)
C4—C9—C10—C12.6 (3)C27—C22—C23—C241.8 (3)
C8—C9—C10—C1177.10 (19)C11—C22—C23—C24174.26 (17)
C4—C9—C10—C11171.23 (19)C22—C23—C24—O1179.2 (2)
C8—C9—C10—C119.1 (3)C22—C23—C24—C251.3 (3)
C1—C10—C11—C1223.9 (3)C28—O1—C24—C23172.2 (2)
C9—C10—C11—C12162.39 (16)C28—O1—C24—C259.8 (2)
C1—C10—C11—C2299.5 (2)C23—C24—C25—C260.3 (3)
C9—C10—C11—C2274.3 (2)O1—C24—C25—C26178.0 (2)
C10—C11—C12—C2121.6 (2)C23—C24—C25—O2177.98 (18)
C22—C11—C12—C21100.5 (2)O1—C24—C25—O20.3 (2)
C10—C11—C12—C13162.66 (18)C28—O2—C25—C26172.4 (2)
C22—C11—C12—C1375.3 (2)C28—O2—C25—C2410.1 (2)
C21—C12—C13—C14177.62 (19)C24—C25—C26—C271.3 (3)
C11—C12—C13—C141.8 (3)O2—C25—C26—C27178.6 (2)
C21—C12—C13—C181.0 (3)C23—C22—C27—C260.7 (3)
C11—C12—C13—C18176.81 (17)C11—C22—C27—C26175.17 (18)
C18—C13—C14—C150.7 (3)C25—C26—C27—C220.8 (3)
C12—C13—C14—C15179.4 (2)C24—O1—C28—O215.9 (2)
C13—C14—C15—C160.3 (3)C25—O2—C28—O116.0 (2)
C14—C15—C16—C170.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.313.108 (2)154
C5—H5···Cgii0.932.903.793 (2)161
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC28H19NO2
Mr401.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)9.4920 (11), 11.2767 (16), 18.883 (2)
β (°) 102.650 (2)
V3)1972.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.18 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SABABS; Sheldrick, 1996)
Tmin, Tmax0.985, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
10175, 3484, 1877
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.054, 1.03
No. of reflections3484
No. of parameters280
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.15

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.862.313.108 (2)153.7
C5—H5···Cgii0.932.903.793 (2)161.0
Symmetry codes: (i) x1, y, z; (ii) x1/2, y+1/2, z1/2.
 

Acknowledgements

The authors are grateful for financial support from the NSFC (grant Nos. 21072163 and 21002083) and the Graduate Foundation of Jiangsu Province (grant No. CX09S_043Z).

References

First citationBruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (1999). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEllis, M. J. & Stevens, M. F. G. (2001). J. Chem. Soc. Perkin Trans. 1, pp. 3180–3185.  Web of Science CrossRef Google Scholar
First citationKhurana, J. M., Maikap, G. C. & Mehta, S. (1990). Synthesis, pp. 731–732.  CrossRef Google Scholar
First citationLlama, E. F., Del Campo, C., Capo, M. & Anadon, M. (1989). Eur. J. Med. Chem. 24, 391–396.  CrossRef CAS Web of Science Google Scholar
First citationMarder, S., Kaafarani, B., Barlow, S., Kippelen, B., Domercq, B., Zhang, Q. & Kondo, T. (2005). PCT Int. Appl. WO 2005123737.  Google Scholar
First citationRay, J. K., Roy, B. C., Nigam, G. D., Sivakumar, K. & Fun, H.-K. (1995). Acta Cryst. C51, 2083–2085.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRudler, H., Parlier, A., Hamon, L., Herson, P. & Daran, J.-C. (2008). Chem. Commun. pp. 4150–4152.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds