organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di­bromo-7,7′-dimeth­­oxy-1,1′-spiro­biindane

aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China
*Correspondence e-mail: dyh@mail.cnu.edu.cn

(Received 27 October 2010; accepted 10 November 2010; online 17 November 2010)

In the title compound, C19H18Br2O2, the dihedral angle between the two benzene rings of the spiro­biindane molecule is 70.44 (8)°. In the crystal, mol­ecules are inter­connected along the c axis by C—H⋯O hydrogen bonds and ππ stacking [centroid–centroid distance = 3.893 (2) Å] inter­actions, forming an infinite chain structure. The chains are further inter­connected through another set of C—H⋯O hydrogen bonds, forming layers approximately parallel to the bc plane.

Related literature

For studies on spiranes, see: Srivastava et al. (1992[Srivastava, N., Mital, A. & Kumar, A. (1992). J. Chem. Soc. Chem. Commun. pp. 493-494.]); Chan et al. (1997[Chan, A. S. C., Hu, W., Pai, C.-C., Lau, C.-P., Jiang, Y., Mi, A., Yan, M., Sun, J., Lou, R. & Deng, J. (1997). J. Am. Chem. Soc. 119, 9570-9571.]); Ding et al. (2009[Ding, K., Han, Z. & Wang, Z. (2009). Chem. Asian J. 4, 32-41.]). For 1,1′-spiro­biindane and its analogs, see: Brewster & Prudence (1973[Brewster, J. H. & Prudence, R. T. (1973). J. Am. Chem. Soc. 95, 1217-1229.]); Birman et al. (1999[Birman, V. B., Rheingold, A. L. & Lam, K. C. (1999). Tetrahedron Asymmetry, 10, 125-131.]).

[Scheme 1]

Experimental

Crystal data
  • C19H18Br2O2

  • Mr = 438.15

  • Triclinic, [P \overline 1]

  • a = 8.3487 (3) Å

  • b = 10.4831 (3) Å

  • c = 11.6293 (4) Å

  • α = 112.047 (2)°

  • β = 105.559 (2)°

  • γ = 94.280 (2)°

  • V = 891.11 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.56 mm−1

  • T = 296 K

  • 0.40 × 0.16 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.263, Tmax = 0.659

  • 9917 measured reflections

  • 3090 independent reflections

  • 2470 reflections with I > 2σ(I)

  • Rint = 0.016

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.081

  • S = 1.05

  • 3090 reflections

  • 208 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C18i—H18Ai⋯O1 0.96 2.56 3.416 (6) 149
C19ii—H19Aii⋯O2 0.96 2.52 3.365 (2) 147
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) -x+1, -y, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2007[Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Spiranes are typical molecules with axial chirality. Spirane derivatives have been mainly employed in ligand design and asymmetric synthesis (Srivastava et al.,1992; Chan et al.,1997; Ding et al., 2009). Among them, 1,1'-spirobiindane and its analogs have also attracted much attention for their featuring C2-symmetric chiral property (Birman et al. , 1999; Brewster et al., 1973). In the present context, we report the structure of a known compound 4,4'-dibromo-7,7'-dimethoxy-1,1'-spirobiindane, a derivative of 1,1'-spirobiindane.

In the crystal structure of the title compound, C19H18Br2O2, the dihedral angle between the two phenyl rings of the spirobiindane moieties is 70.44 (8)° (Fig. 1). The molecules are arranged along the c axis and linked through C-H···O hydrogen bonds (C18ii-H18Aii(methyl)···O1 with D···A = 3.416 (2) Å, H···A = 2.56, and D-H···A 148.5°) and π(benzene)···π(benzene) stacking interactions (Cg···Cgi = 3.893 (2) Å) forming an infinite chain structure [Fig. 2, symmetry codes: (i) -x+1, -y+1, -z+1 (ii) -x+1, -y+1, -z+2]. The formed chains are further interconnected by an other set of C-H···O hydrogen bonds [C19i-H19Ai···O2 with D···A = 3.365 (2) Å, H···A = 2.52, and D-H···A 146.9°: (i) -x+1, -y, -z+1] to form layers approximately parallel to the bc plane, as shown in Fig. 3.

Related literature top

For studies on spiranes, see: Srivastava et al. (1992); Chan et al. (1997); Ding et al. (2009). For 1,1'-spirobiindane and its analogs, see: Brewster et al. (1973); Birman et al. (1999).

Experimental top

The title compound was prepared following the literature procedure (Birman et al. , 1999). The 1,5-bis-(2-bromo-5-methoxyphenyl)-3-pentanone was stirred with polyphosphoric acid at 105°C to obtain the title compound as the main product. The crude compound was purified by column chromatography on silica gel (hexane/EtOAc = 9:1 v.v), yield 65%. The orange crystals of the title compound having an average 0.40 × 0.16 × 0.10 mm dimension were obtained by slow evaporation from its solution of hexane.

Refinement top

The H atoms were placed in idealized positions and allowed to ride on the relevant carbon atoms, with C-H = 0.93 and 0.97 Å for aryl and methylene H atoms, respectively, and Uiso(H) = 1.2Ueq(C).

Structure description top

Spiranes are typical molecules with axial chirality. Spirane derivatives have been mainly employed in ligand design and asymmetric synthesis (Srivastava et al.,1992; Chan et al.,1997; Ding et al., 2009). Among them, 1,1'-spirobiindane and its analogs have also attracted much attention for their featuring C2-symmetric chiral property (Birman et al. , 1999; Brewster et al., 1973). In the present context, we report the structure of a known compound 4,4'-dibromo-7,7'-dimethoxy-1,1'-spirobiindane, a derivative of 1,1'-spirobiindane.

In the crystal structure of the title compound, C19H18Br2O2, the dihedral angle between the two phenyl rings of the spirobiindane moieties is 70.44 (8)° (Fig. 1). The molecules are arranged along the c axis and linked through C-H···O hydrogen bonds (C18ii-H18Aii(methyl)···O1 with D···A = 3.416 (2) Å, H···A = 2.56, and D-H···A 148.5°) and π(benzene)···π(benzene) stacking interactions (Cg···Cgi = 3.893 (2) Å) forming an infinite chain structure [Fig. 2, symmetry codes: (i) -x+1, -y+1, -z+1 (ii) -x+1, -y+1, -z+2]. The formed chains are further interconnected by an other set of C-H···O hydrogen bonds [C19i-H19Ai···O2 with D···A = 3.365 (2) Å, H···A = 2.52, and D-H···A 146.9°: (i) -x+1, -y, -z+1] to form layers approximately parallel to the bc plane, as shown in Fig. 3.

For studies on spiranes, see: Srivastava et al. (1992); Chan et al. (1997); Ding et al. (2009). For 1,1'-spirobiindane and its analogs, see: Brewster et al. (1973); Birman et al. (1999).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The atom-numbering scheme of the title compound. Displacement ellipsoids are shown at 30% probability level. All hydrogen atoms are omitted for clarity.
[Figure 2] Fig. 2. Crystal packing showing the C-H···O and ππ interactions along the c direction forming infinite chains (symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2).
[Figure 3] Fig. 3. Crystal packing showing the C-H···O hydrogen bonds bridging the infinite chains (symmetry code: (i) -x+1, -y, -z+1).
4,4'-Dibromo-7,7'-dimethoxy-1,1'-spirobiindane top
Crystal data top
C19H18Br2O2Z = 2
Mr = 438.15F(000) = 436
Triclinic, P1Dx = 1.633 Mg m3
a = 8.3487 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.4831 (3) ÅCell parameters from 9917 reflections
c = 11.6293 (4) Åθ = 2.2–25.0°
α = 112.047 (2)°µ = 4.56 mm1
β = 105.559 (2)°T = 296 K
γ = 94.280 (2)°Block, orange
V = 891.11 (5) Å30.40 × 0.16 × 0.10 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3090 independent reflections
Radiation source: fine-focus sealed tube2470 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 99
Tmin = 0.263, Tmax = 0.659k = 1212
9917 measured reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0381P)2 + 0.4917P]
where P = (Fo2 + 2Fc2)/3
3090 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C19H18Br2O2γ = 94.280 (2)°
Mr = 438.15V = 891.11 (5) Å3
Triclinic, P1Z = 2
a = 8.3487 (3) ÅMo Kα radiation
b = 10.4831 (3) ŵ = 4.56 mm1
c = 11.6293 (4) ÅT = 296 K
α = 112.047 (2)°0.40 × 0.16 × 0.10 mm
β = 105.559 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3090 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
2470 reflections with I > 2σ(I)
Tmin = 0.263, Tmax = 0.659Rint = 0.016
9917 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.05Δρmax = 0.51 e Å3
3090 reflectionsΔρmin = 0.41 e Å3
208 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.10416 (5)0.01254 (4)0.77083 (5)0.08981 (17)
Br20.47345 (5)0.80256 (3)0.72566 (4)0.07264 (15)
O10.5993 (3)0.3495 (2)0.9166 (2)0.0653 (6)
O20.4765 (2)0.18707 (19)0.5868 (2)0.0529 (5)
C10.9460 (4)0.1024 (3)0.8190 (3)0.0584 (8)
C20.8577 (4)0.0773 (3)0.8944 (3)0.0627 (9)
H2A0.87670.00610.92270.075*
C30.7404 (4)0.1577 (3)0.9285 (3)0.0578 (8)
H3A0.68110.14060.98020.069*
C40.7105 (4)0.2636 (3)0.8863 (3)0.0502 (7)
C50.7982 (3)0.2868 (3)0.8074 (3)0.0442 (6)
C60.9173 (3)0.2067 (3)0.7741 (3)0.0503 (7)
C70.9965 (4)0.2507 (4)0.6906 (4)0.0648 (9)
H7A1.00080.17000.61600.078*
H7B1.11030.30530.74030.078*
C80.8773 (4)0.3406 (4)0.6466 (3)0.0584 (8)
H8A0.79450.28430.56140.070*
H8B0.94140.41790.64100.070*
C90.7877 (3)0.3968 (3)0.7517 (3)0.0453 (6)
C100.8785 (4)0.5453 (3)0.8581 (3)0.0596 (8)
H10A0.86760.55600.94200.072*
H10B0.99810.56100.86710.072*
C110.7909 (4)0.6495 (3)0.8117 (3)0.0605 (8)
H11A0.78490.73080.88510.073*
H11B0.84980.68040.76250.073*
C120.6173 (4)0.5641 (3)0.7261 (3)0.0446 (6)
C130.4707 (4)0.6077 (3)0.6789 (3)0.0477 (7)
C140.3237 (4)0.5120 (3)0.6013 (3)0.0533 (7)
H14A0.22570.54230.57070.064*
C150.3202 (4)0.3699 (3)0.5681 (3)0.0498 (7)
H15A0.22000.30520.51500.060*
C160.4663 (3)0.3244 (3)0.6142 (3)0.0420 (6)
C170.6141 (3)0.4225 (3)0.6941 (2)0.0394 (6)
C180.5014 (7)0.3249 (5)0.9914 (6)0.1131 (17)
H18A0.42970.39281.00650.170*
H18B0.57550.33301.07380.170*
H18C0.43260.23220.94440.170*
C190.3276 (4)0.0840 (3)0.5120 (4)0.0867 (13)
H19A0.35320.00690.50010.130*
H19B0.28330.08710.42810.130*
H19C0.24490.10170.55680.130*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0726 (3)0.0841 (3)0.1278 (4)0.0397 (2)0.0242 (2)0.0606 (3)
Br20.0993 (3)0.0474 (2)0.0780 (3)0.02663 (18)0.0233 (2)0.03427 (17)
O10.0935 (16)0.0611 (13)0.0655 (14)0.0282 (12)0.0445 (13)0.0362 (12)
O20.0505 (11)0.0347 (10)0.0600 (13)0.0049 (9)0.0086 (10)0.0121 (9)
C10.0479 (16)0.0516 (17)0.069 (2)0.0128 (14)0.0002 (16)0.0302 (16)
C20.064 (2)0.0506 (18)0.069 (2)0.0021 (16)0.0034 (17)0.0378 (17)
C30.070 (2)0.0525 (17)0.0519 (18)0.0023 (16)0.0104 (16)0.0307 (15)
C40.0597 (17)0.0444 (15)0.0418 (16)0.0028 (14)0.0080 (14)0.0199 (13)
C50.0469 (15)0.0413 (14)0.0388 (15)0.0037 (12)0.0019 (12)0.0195 (12)
C60.0423 (15)0.0500 (16)0.0544 (18)0.0049 (13)0.0030 (13)0.0261 (14)
C70.0532 (18)0.074 (2)0.082 (2)0.0226 (16)0.0233 (17)0.0453 (19)
C80.0534 (17)0.071 (2)0.069 (2)0.0182 (16)0.0219 (16)0.0454 (18)
C90.0450 (15)0.0450 (15)0.0470 (16)0.0048 (12)0.0066 (13)0.0264 (13)
C100.0592 (18)0.0503 (17)0.060 (2)0.0016 (15)0.0029 (15)0.0294 (15)
C110.067 (2)0.0455 (16)0.061 (2)0.0013 (15)0.0026 (17)0.0274 (15)
C120.0552 (16)0.0408 (14)0.0401 (15)0.0061 (13)0.0114 (13)0.0223 (12)
C130.0643 (18)0.0431 (15)0.0461 (16)0.0183 (14)0.0188 (15)0.0273 (13)
C140.0542 (17)0.0606 (19)0.0566 (18)0.0230 (16)0.0177 (15)0.0341 (16)
C150.0428 (15)0.0515 (17)0.0507 (17)0.0052 (13)0.0079 (13)0.0219 (14)
C160.0488 (15)0.0396 (14)0.0392 (15)0.0096 (12)0.0152 (13)0.0171 (12)
C170.0459 (14)0.0409 (14)0.0343 (14)0.0087 (12)0.0114 (12)0.0195 (12)
C180.155 (4)0.104 (3)0.152 (5)0.057 (3)0.111 (4)0.080 (3)
C190.060 (2)0.0456 (19)0.131 (4)0.0056 (17)0.026 (2)0.015 (2)
Geometric parameters (Å, º) top
Br1—C11.907 (3)C9—C171.515 (4)
Br2—C131.903 (3)C9—C101.551 (4)
O1—C41.364 (4)C10—C111.539 (4)
O1—C181.417 (4)C10—H10A0.9700
O2—C161.367 (3)C10—H10B0.9700
O2—C191.408 (4)C11—C121.502 (4)
C1—C21.368 (5)C11—H11A0.9700
C1—C61.389 (4)C11—H11B0.9700
C2—C31.381 (5)C12—C171.384 (4)
C2—H2A0.9300C12—C131.386 (4)
C3—C41.386 (4)C13—C141.367 (4)
C3—H3A0.9300C14—C151.387 (4)
C4—C51.392 (4)C14—H14A0.9300
C5—C61.390 (4)C15—C161.390 (4)
C5—C91.517 (3)C15—H15A0.9300
C6—C71.493 (4)C16—C171.386 (4)
C7—C81.538 (4)C18—H18A0.9600
C7—H7A0.9700C18—H18B0.9600
C7—H7B0.9700C18—H18C0.9600
C8—C91.554 (4)C19—H19A0.9600
C8—H8A0.9700C19—H19B0.9600
C8—H8B0.9700C19—H19C0.9600
C4—O1—C18117.9 (3)C9—C10—H10A110.5
C16—O2—C19118.4 (2)C11—C10—H10B110.5
C2—C1—C6120.7 (3)C9—C10—H10B110.5
C2—C1—Br1119.1 (2)H10A—C10—H10B108.7
C6—C1—Br1120.1 (3)C12—C11—C10102.8 (2)
C1—C2—C3120.1 (3)C12—C11—H11A111.2
C1—C2—H2A120.0C10—C11—H11A111.2
C3—C2—H2A120.0C12—C11—H11B111.2
C2—C3—C4120.4 (3)C10—C11—H11B111.2
C2—C3—H3A119.8H11A—C11—H11B109.1
C4—C3—H3A119.8C17—C12—C13119.5 (3)
O1—C4—C3124.6 (3)C17—C12—C11110.9 (2)
O1—C4—C5116.1 (2)C13—C12—C11129.6 (3)
C3—C4—C5119.3 (3)C14—C13—C12120.5 (2)
C6—C5—C4120.2 (2)C14—C13—Br2119.9 (2)
C6—C5—C9111.3 (2)C12—C13—Br2119.6 (2)
C4—C5—C9128.4 (3)C13—C14—C15120.3 (3)
C1—C6—C5119.2 (3)C13—C14—H14A119.9
C1—C6—C7129.8 (3)C15—C14—H14A119.9
C5—C6—C7111.0 (2)C14—C15—C16120.0 (3)
C6—C7—C8103.2 (2)C14—C15—H15A120.0
C6—C7—H7A111.1C16—C15—H15A120.0
C8—C7—H7A111.1O2—C16—C17116.2 (2)
C6—C7—H7B111.1O2—C16—C15124.6 (2)
C8—C7—H7B111.1C17—C16—C15119.2 (2)
H7A—C7—H7B109.1C12—C17—C16120.6 (2)
C7—C8—C9106.4 (2)C12—C17—C9111.2 (2)
C7—C8—H8A110.5C16—C17—C9128.2 (2)
C9—C8—H8A110.5O1—C18—H18A109.5
C7—C8—H8B110.5O1—C18—H18B109.5
C9—C8—H8B110.5H18A—C18—H18B109.5
H8A—C8—H8B108.6O1—C18—H18C109.5
C17—C9—C5118.2 (2)H18A—C18—H18C109.5
C17—C9—C10101.5 (2)H18B—C18—H18C109.5
C5—C9—C10111.8 (2)O2—C19—H19A109.5
C17—C9—C8111.6 (2)O2—C19—H19B109.5
C5—C9—C8101.4 (2)H19A—C19—H19B109.5
C10—C9—C8112.7 (2)O2—C19—H19C109.5
C11—C10—C9106.1 (2)H19A—C19—H19C109.5
C11—C10—H10A110.5H19B—C19—H19C109.5
C6—C1—C2—C31.1 (5)C17—C9—C10—C1126.4 (3)
Br1—C1—C2—C3178.9 (2)C5—C9—C10—C11153.3 (3)
C1—C2—C3—C40.4 (5)C8—C9—C10—C1193.2 (3)
C18—O1—C4—C33.1 (5)C9—C10—C11—C1225.7 (3)
C18—O1—C4—C5176.9 (4)C10—C11—C12—C1715.2 (3)
C2—C3—C4—O1179.0 (3)C10—C11—C12—C13164.8 (3)
C2—C3—C4—C51.0 (4)C17—C12—C13—C140.0 (4)
O1—C4—C5—C6178.4 (3)C11—C12—C13—C14180.0 (3)
C3—C4—C5—C61.5 (4)C17—C12—C13—Br2178.7 (2)
O1—C4—C5—C90.8 (4)C11—C12—C13—Br21.3 (4)
C3—C4—C5—C9179.2 (3)C12—C13—C14—C150.5 (4)
C2—C1—C6—C50.5 (5)Br2—C13—C14—C15179.2 (2)
Br1—C1—C6—C5178.3 (2)C13—C14—C15—C160.3 (4)
C2—C1—C6—C7179.3 (3)C19—O2—C16—C17176.6 (3)
Br1—C1—C6—C71.5 (5)C19—O2—C16—C153.3 (4)
C4—C5—C6—C10.8 (4)C14—C15—C16—O2179.7 (3)
C9—C5—C6—C1178.8 (2)C14—C15—C16—C170.5 (4)
C4—C5—C6—C7179.4 (3)C13—C12—C17—C160.8 (4)
C9—C5—C6—C71.4 (3)C11—C12—C17—C16179.2 (3)
C1—C6—C7—C8165.1 (3)C13—C12—C17—C9178.2 (2)
C5—C6—C7—C814.7 (4)C11—C12—C17—C91.8 (3)
C6—C7—C8—C924.5 (3)O2—C16—C17—C12179.1 (2)
C6—C5—C9—C17138.9 (3)C15—C16—C17—C121.0 (4)
C4—C5—C9—C1743.4 (4)O2—C16—C17—C92.1 (4)
C6—C5—C9—C10103.8 (3)C15—C16—C17—C9178.0 (3)
C4—C5—C9—C1074.0 (4)C5—C9—C17—C12140.4 (3)
C6—C5—C9—C816.5 (3)C10—C9—C17—C1217.7 (3)
C4—C5—C9—C8165.7 (3)C8—C9—C17—C12102.6 (3)
C7—C8—C9—C17151.6 (3)C5—C9—C17—C1642.4 (4)
C7—C8—C9—C524.9 (3)C10—C9—C17—C16165.1 (3)
C7—C8—C9—C1094.8 (3)C8—C9—C17—C1674.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18i—H18Ai···O10.962.563.416 (6)149
C19ii—H19Aii···O20.962.523.365 (2)147
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formulaC19H18Br2O2
Mr438.15
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.3487 (3), 10.4831 (3), 11.6293 (4)
α, β, γ (°)112.047 (2), 105.559 (2), 94.280 (2)
V3)891.11 (5)
Z2
Radiation typeMo Kα
µ (mm1)4.56
Crystal size (mm)0.40 × 0.16 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2007)
Tmin, Tmax0.263, 0.659
No. of measured, independent and
observed [I > 2σ(I)] reflections
9917, 3090, 2470
Rint0.016
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.081, 1.05
No. of reflections3090
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.41

Computer programs: APEX2 (Bruker, 2007), APEX2 and SAINT (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18i—H18Ai···O10.962.563.416 (6)148.5
C19ii—H19Aii···O20.962.523.365 (2)146.9
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+1.
 

Acknowledgements

The authors are grateful for financial support from the Technology Program, Beijing Municipal Education Commission (Ref. No. 09530410099).

References

First citationBirman, V. B., Rheingold, A. L. & Lam, K. C. (1999). Tetrahedron Asymmetry, 10, 125–131.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrewster, J. H. & Prudence, R. T. (1973). J. Am. Chem. Soc. 95, 1217–1229.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChan, A. S. C., Hu, W., Pai, C.-C., Lau, C.-P., Jiang, Y., Mi, A., Yan, M., Sun, J., Lou, R. & Deng, J. (1997). J. Am. Chem. Soc. 119, 9570-9571.  CrossRef CAS Web of Science Google Scholar
First citationDing, K., Han, Z. & Wang, Z. (2009). Chem. Asian J. 4, 32–41.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSrivastava, N., Mital, A. & Kumar, A. (1992). J. Chem. Soc. Chem. Commun. pp. 493–494.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds