metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Z)-3-(4-Bromo­anilino)-1-ferrocenylbut-2-en-1-one

aLaboratorio de Química Inorgánica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, bLaboratorio de Cristalografía, Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile, cUniversidad Andres Bello, Departamento de Ciencias Químicas, Santiago, Chile, and dLaboratorio de Organometálica, Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
*Correspondence e-mail: mfuentealba@gmail.com

(Received 10 November 2010; accepted 16 November 2010; online 24 November 2010)

In the title compound, [Fe(C5H5)(C15H13BrNO)], formed from the reaction of ferrocenoylacetone and 4-bromo­aniline, the mol­ecular structure is stabilized by an intra­molecular N—H⋯O hydrogen bond between the amine and carbonyl groups.

Related literature

For related structures, see: Fuentealba et al. (2008[Fuentealba, M., Trujillo, A., Hamon, J.-R., Carrillo, D. & Manzur, C. (2008). J. Mol. Struct. 881, 76-82.]); Shi et al. (2004[Shi, Y.-C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541-1546.], 2005[Shi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363-371.], 2008[Shi, Y.-C., Cheng, H. & Zhang, S.-H. (2008). Polyhedron, 27, 3331-3336.]). For the use of ferrocenes containing enamino­nes in the formation of transition metal complexes for olefin polymerization catalysts, see: Ye et al. (2008[Ye, W.-P., Zhan, J., Pan, L., Hu, N.-H. & Li, Y.-S. (2008). Organometallics, 27, 3642-3653.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe(C5H5)(C15H13BrNO)]

  • Mr = 424.11

  • Monoclinic, P 21 /c

  • a = 16.808 (2) Å

  • b = 9.2589 (13) Å

  • c = 11.1133 (15) Å

  • β = 93.748 (2)°

  • V = 1725.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.684, Tmax = 0.909

  • 18029 measured reflections

  • 3891 independent reflections

  • 2709 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.102

  • S = 1.04

  • 3891 reflections

  • 222 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1 0.74 (3) 1.98 (3) 2.612 (4) 143 (3)

Data collection: SMART-NT (Bruker, 2001[Bruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-NT (Bruker, 2000[Bruker (2000). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Ferrocenes containing enaminones have attracted interest because they can be used as good chelating ligands for transition metals (Shi et al., 2004, 2005, 2008). On the other hand, anions generated from these molecules offer alternatives to conventional ligands (cyclopentadienyl anions) in the formation of transition metal complexes for olefin polymerization catalysts (Ye et al., 2008).

The title compound, [Fe(C5H5)(C15H13BrNO)], (I), is a Schiff base molecule resulting from the reaction of ferrocenoylacetone and 4-bromoaniline. It crystallizes in the monoclinic space group P21/c and its asymmetric unit contains only one title molecule (Fig. 1).

The distances between the cyclopentadienyl ring centroids and the Fe atom are 1.644 Å and 1.634 Å, respectively. The cyclopentadienyl rings of the ferrocenyl group are parallel with a dihedral angle of 1.9 (3)° between the corresponding least-squares planes. These metrical parameters are typical of the η5···Fe···η5 coordination of the ferrocenyl moiety. The O1—C11—C12—C13—N1 skeleton is coplanar (rms deviation = 0.005 Å). The CO, CC and CN bond lengths are intermediate between their corresponding double and single bonds indicating that the π-system is partially delocalized in the framework. Likewise, the skeleton is nearly coplanar with the C5H4 ring with an angle of 6.9 (2)° between the mean planes. On the other hand, the angle between the least-squares planes of O1—C11—C12—C13—N1 and the bromophenyl ring C16/C20 is 33.8 (1)° out of the plane showing the lack of conjugation between both systems.

The molecular structure of the enaminone-containing compound is also stabilized by an intramolecular N-H···O hydrogen bond between the amine and the carbonyl groups (Table 1). This feature has been previously described by Fuentealba et al. (2008).

Related literature top

For related structures, see: Fuentealba et al. (2008); Shi et al. (2004, 2005, 2008). For the use of ferrocenes containing enaminones in the formation of transition metal complexes for olefin polymerization catalysts, see: Ye et al. (2008).

Experimental top

A solution of ferrocenoylacetone (0.2 g, 0.74 mmol), p-bromoaniline (0.13 g, 0.74 mmol) and a catalytic trace amount of p-TsOH in 30 ml of toluene was refluxed with a Dean-Stark apparatus to remove water for 12 h. The solvent was evaporated under vacuum, and the crude reaction mixture was submitted to column chromatography (silica gel 60, hexane:diethyl ether = 1:1 v/v). The title compound crystallizes from the solvent mixture to give red crystals (60%), mp. 168.9–171.0 °C.

IR (KBr) cm-1: 3079 (NH), 1606 (C=O), 1570 (C=C).

1H-NMR (399.95 MHz, CDCl3, 300 K): δ 12.66 (s, 1H, NH); 7.45 (d, 2H, J = 8 Hz; C6H4); 7.03 (d, 2H, J = 8 Hz; C6H4); 6.45 (s, 1H, CH); 4.78 (s, 2H, 2(H2, H5) of C5H4 ring); 4.44 (s, 2H, 2 (H3, H4) of C5H4 ring); 4.21 (s, 5H, C5H5); 2.12 (s, 3H, CH3).

13C-NMR (399.95 MHz, CDCl3, 300 K): δ 20.39; 68.47; 69.93; 70.17; 71.14; 96.99; 118.00; 125.55; 132.11; 138.22; 158.39; 192.47.

Refinement top

The NH hydrogen atom was located in a difference Fourier map and geometrically refined with Uiso(H) = 1.2Ueq(N). The other H atoms positions were calculated after each cycle of refinement using a riding model with C—H distances in the range 0.95—0.98 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Ferrocenes containing enaminones have attracted interest because they can be used as good chelating ligands for transition metals (Shi et al., 2004, 2005, 2008). On the other hand, anions generated from these molecules offer alternatives to conventional ligands (cyclopentadienyl anions) in the formation of transition metal complexes for olefin polymerization catalysts (Ye et al., 2008).

The title compound, [Fe(C5H5)(C15H13BrNO)], (I), is a Schiff base molecule resulting from the reaction of ferrocenoylacetone and 4-bromoaniline. It crystallizes in the monoclinic space group P21/c and its asymmetric unit contains only one title molecule (Fig. 1).

The distances between the cyclopentadienyl ring centroids and the Fe atom are 1.644 Å and 1.634 Å, respectively. The cyclopentadienyl rings of the ferrocenyl group are parallel with a dihedral angle of 1.9 (3)° between the corresponding least-squares planes. These metrical parameters are typical of the η5···Fe···η5 coordination of the ferrocenyl moiety. The O1—C11—C12—C13—N1 skeleton is coplanar (rms deviation = 0.005 Å). The CO, CC and CN bond lengths are intermediate between their corresponding double and single bonds indicating that the π-system is partially delocalized in the framework. Likewise, the skeleton is nearly coplanar with the C5H4 ring with an angle of 6.9 (2)° between the mean planes. On the other hand, the angle between the least-squares planes of O1—C11—C12—C13—N1 and the bromophenyl ring C16/C20 is 33.8 (1)° out of the plane showing the lack of conjugation between both systems.

The molecular structure of the enaminone-containing compound is also stabilized by an intramolecular N-H···O hydrogen bond between the amine and the carbonyl groups (Table 1). This feature has been previously described by Fuentealba et al. (2008).

For related structures, see: Fuentealba et al. (2008); Shi et al. (2004, 2005, 2008). For the use of ferrocenes containing enaminones in the formation of transition metal complexes for olefin polymerization catalysts, see: Ye et al. (2008).

Computing details top

Data collection: SMART-NT (Bruker, 2001); cell refinement: SAINT-NT (Bruker, 2000); data reduction: SAINT-NT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are presented at 30% probability level. H atoms are shown as a small spheres of arbitrary radius.
(Z)-3-(4-Bromoanilino)-1-ferrocenylbut-2-en-1-one top
Crystal data top
[Fe(C5H5)(C15H13BrNO)]F(000) = 856
Mr = 424.11Dx = 1.632 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3891 reflections
a = 16.808 (2) Åθ = 2.4–27.9°
b = 9.2589 (13) ŵ = 3.20 mm1
c = 11.1133 (15) ÅT = 298 K
β = 93.748 (2)°Plate, red
V = 1725.8 (4) Å30.30 × 0.20 × 0.03 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3891 independent reflections
Radiation source: fine-focus sealed tube2709 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
phi and ω scansθmax = 27.9°, θmin = 2.4°
Absorption correction: multi-scan
(SABABS; Bruker, 2000)
h = 2120
Tmin = 0.684, Tmax = 0.909k = 1212
18029 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.053P]
where P = (Fo2 + 2Fc2)/3
3891 reflections(Δ/σ)max = 0.001
222 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
[Fe(C5H5)(C15H13BrNO)]V = 1725.8 (4) Å3
Mr = 424.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.808 (2) ŵ = 3.20 mm1
b = 9.2589 (13) ÅT = 298 K
c = 11.1133 (15) Å0.30 × 0.20 × 0.03 mm
β = 93.748 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3891 independent reflections
Absorption correction: multi-scan
(SABABS; Bruker, 2000)
2709 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.909Rint = 0.039
18029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.102H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.69 e Å3
3891 reflectionsΔρmin = 0.24 e Å3
222 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Fe10.87876 (2)0.44531 (5)0.71956 (4)0.04981 (15)
N10.70801 (17)0.9570 (3)0.6282 (3)0.0521 (7)
O10.82783 (14)0.7961 (2)0.57247 (18)0.0644 (6)
Br10.44949 (2)1.32430 (4)0.37244 (3)0.06775 (15)
C10.7855 (2)0.3481 (4)0.7956 (5)0.0849 (12)
H10.76770.36640.87650.102*
C20.8421 (2)0.2434 (4)0.7644 (5)0.0922 (14)
H20.87100.17750.82080.111*
C30.8512 (3)0.2511 (5)0.6407 (5)0.0971 (14)
H30.88670.19140.59500.117*
C40.7998 (3)0.3613 (5)0.5930 (5)0.0985 (15)
H40.79330.39080.50830.118*
C50.7592 (2)0.4203 (4)0.6888 (5)0.0853 (12)
H50.71970.49830.68220.102*
C60.92063 (18)0.6004 (3)0.8360 (3)0.0509 (7)
H60.89770.62810.91150.061*
C70.98002 (19)0.4947 (4)0.8225 (3)0.0562 (8)
H71.00440.43460.88750.067*
C80.99673 (19)0.4862 (4)0.7004 (3)0.0601 (8)
H81.03490.42050.66590.072*
C90.9482 (2)0.5886 (3)0.6363 (3)0.0594 (8)
H90.94700.60640.54930.071*
C100.89992 (18)0.6594 (3)0.7192 (2)0.0473 (7)
C110.83605 (17)0.7636 (3)0.6819 (2)0.0479 (7)
C120.78603 (18)0.8204 (3)0.7693 (2)0.0478 (7)
H120.79660.79320.84930.057*
C130.72388 (18)0.9119 (3)0.7432 (3)0.0476 (7)
C140.6714 (2)0.9600 (4)0.8393 (3)0.0660 (9)
H14A0.68180.90180.91010.099*
H14B0.61650.94960.81090.099*
H14C0.68211.05940.85860.099*
C150.64716 (17)1.0437 (3)0.5741 (3)0.0462 (7)
C160.61831 (19)1.0096 (3)0.4571 (3)0.0526 (7)
H160.63790.92870.41930.063*
C170.5611 (2)1.0941 (3)0.3965 (3)0.0547 (8)
H170.54281.07090.31810.066*
C180.53144 (17)1.2125 (3)0.4526 (3)0.0489 (7)
C190.55883 (19)1.2483 (3)0.5681 (3)0.0582 (8)
H190.53821.32850.60570.070*
C200.6166 (2)1.1656 (3)0.6280 (3)0.0591 (8)
H200.63561.19150.70550.071*
H1N0.7336 (16)0.923 (3)0.585 (2)0.027 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe10.0471 (3)0.0521 (3)0.0496 (3)0.00341 (19)0.00152 (19)0.00255 (19)
N10.0476 (16)0.0602 (17)0.0490 (15)0.0069 (13)0.0072 (13)0.0016 (13)
O10.0722 (15)0.0786 (15)0.0436 (12)0.0215 (12)0.0128 (10)0.0156 (10)
Br10.0698 (3)0.0619 (2)0.0704 (3)0.00955 (16)0.00483 (18)0.01312 (16)
C10.060 (2)0.073 (3)0.123 (4)0.004 (2)0.016 (2)0.011 (2)
C20.070 (3)0.056 (2)0.148 (4)0.008 (2)0.009 (3)0.018 (3)
C30.078 (3)0.073 (3)0.137 (4)0.002 (2)0.017 (3)0.043 (3)
C40.086 (3)0.094 (3)0.109 (4)0.001 (3)0.037 (3)0.032 (3)
C50.048 (2)0.069 (2)0.136 (4)0.0001 (18)0.019 (2)0.006 (3)
C60.0528 (18)0.0598 (19)0.0396 (15)0.0030 (14)0.0014 (13)0.0050 (13)
C70.0540 (19)0.0648 (19)0.0488 (17)0.0059 (16)0.0052 (14)0.0010 (15)
C80.0494 (19)0.067 (2)0.065 (2)0.0123 (16)0.0116 (15)0.0027 (16)
C90.062 (2)0.069 (2)0.0486 (18)0.0074 (17)0.0140 (15)0.0071 (15)
C100.0490 (17)0.0487 (17)0.0448 (16)0.0016 (13)0.0069 (13)0.0013 (12)
C110.0520 (17)0.0495 (17)0.0425 (16)0.0025 (14)0.0056 (13)0.0051 (13)
C120.0528 (18)0.0530 (17)0.0375 (15)0.0023 (14)0.0026 (13)0.0025 (12)
C130.0447 (17)0.0530 (17)0.0449 (16)0.0050 (14)0.0019 (12)0.0032 (13)
C140.062 (2)0.086 (3)0.0504 (18)0.0137 (18)0.0083 (16)0.0009 (16)
C150.0434 (16)0.0484 (17)0.0470 (16)0.0050 (13)0.0042 (13)0.0041 (13)
C160.064 (2)0.0504 (17)0.0443 (16)0.0076 (15)0.0092 (14)0.0006 (13)
C170.070 (2)0.0575 (19)0.0373 (15)0.0004 (16)0.0050 (14)0.0023 (13)
C180.0474 (17)0.0437 (16)0.0556 (18)0.0036 (13)0.0024 (14)0.0087 (13)
C190.065 (2)0.0463 (17)0.062 (2)0.0037 (15)0.0035 (16)0.0114 (15)
C200.063 (2)0.0502 (18)0.0613 (19)0.0022 (16)0.0139 (16)0.0097 (15)
Geometric parameters (Å, º) top
Fe1—C102.014 (3)C6—C101.430 (4)
Fe1—C42.024 (4)C6—H60.9800
Fe1—C62.028 (3)C7—C81.405 (4)
Fe1—C92.029 (3)C7—H70.9800
Fe1—C52.030 (4)C8—C91.413 (4)
Fe1—C12.038 (4)C8—H80.9800
Fe1—C72.040 (3)C9—C101.426 (4)
Fe1—C32.040 (4)C9—H90.9800
Fe1—C22.041 (4)C10—C111.482 (4)
Fe1—C82.043 (3)C11—C121.426 (4)
N1—C131.355 (4)C12—C131.361 (4)
N1—C151.404 (4)C12—H120.9300
N1—H1N0.74 (3)C13—C141.497 (4)
O1—C111.252 (3)C14—H14A0.9600
Br1—C181.898 (3)C14—H14B0.9600
C1—C51.408 (6)C14—H14C0.9600
C1—C21.418 (6)C15—C201.392 (4)
C1—H10.9800C15—C161.394 (4)
C2—C31.395 (6)C16—C171.380 (4)
C2—H20.9800C16—H160.9300
C3—C41.416 (6)C17—C181.371 (4)
C3—H30.9800C17—H170.9300
C4—C51.412 (6)C18—C191.375 (4)
C4—H40.9800C19—C201.374 (4)
C5—H50.9800C19—H190.9300
C6—C71.413 (4)C20—H200.9300
C10—Fe1—C4119.00 (16)Fe1—C4—H4126.0
C10—Fe1—C641.43 (12)C1—C5—C4108.1 (4)
C4—Fe1—C6154.10 (16)C1—C5—Fe170.1 (2)
C10—Fe1—C941.31 (12)C4—C5—Fe169.4 (2)
C4—Fe1—C9107.74 (19)C1—C5—H5125.9
C6—Fe1—C969.03 (12)C4—C5—H5125.9
C10—Fe1—C5106.56 (14)Fe1—C5—H5125.9
C4—Fe1—C540.76 (18)C7—C6—C10107.4 (3)
C6—Fe1—C5119.11 (16)C7—C6—Fe170.11 (18)
C9—Fe1—C5126.17 (16)C10—C6—Fe168.73 (16)
C10—Fe1—C1125.17 (14)C7—C6—H6126.3
C4—Fe1—C168.4 (2)C10—C6—H6126.3
C6—Fe1—C1106.98 (16)Fe1—C6—H6126.3
C9—Fe1—C1163.40 (15)C8—C7—C6109.2 (3)
C5—Fe1—C140.51 (17)C8—C7—Fe170.00 (18)
C10—Fe1—C768.85 (13)C6—C7—Fe169.25 (17)
C4—Fe1—C7163.89 (17)C8—C7—H7125.4
C6—Fe1—C740.64 (12)C6—C7—H7125.4
C9—Fe1—C768.01 (13)Fe1—C7—H7125.4
C5—Fe1—C7154.25 (17)C7—C8—C9107.7 (3)
C1—Fe1—C7120.16 (17)C7—C8—Fe169.73 (18)
C10—Fe1—C3154.39 (19)C9—C8—Fe169.17 (19)
C4—Fe1—C340.77 (17)C7—C8—H8126.2
C6—Fe1—C3163.30 (18)C9—C8—H8126.2
C9—Fe1—C3120.10 (19)Fe1—C8—H8126.2
C5—Fe1—C368.43 (17)C8—C9—C10108.4 (3)
C1—Fe1—C368.3 (2)C8—C9—Fe170.23 (19)
C7—Fe1—C3126.63 (16)C10—C9—Fe168.76 (17)
C10—Fe1—C2163.44 (18)C8—C9—H9125.8
C4—Fe1—C267.9 (2)C10—C9—H9125.8
C6—Fe1—C2126.21 (18)Fe1—C9—H9125.8
C9—Fe1—C2154.43 (17)C9—C10—C6107.2 (3)
C5—Fe1—C268.00 (16)C9—C10—C11123.4 (3)
C1—Fe1—C240.68 (16)C6—C10—C11129.1 (3)
C7—Fe1—C2108.82 (16)C9—C10—Fe169.93 (17)
C3—Fe1—C239.98 (18)C6—C10—Fe169.84 (17)
C10—Fe1—C869.19 (13)C11—C10—Fe1121.1 (2)
C4—Fe1—C8126.54 (18)O1—C11—C12122.7 (3)
C6—Fe1—C868.69 (13)O1—C11—C10117.4 (3)
C9—Fe1—C840.61 (12)C12—C11—C10119.9 (2)
C5—Fe1—C8163.86 (18)C13—C12—C11124.3 (3)
C1—Fe1—C8154.51 (16)C13—C12—H12117.9
C7—Fe1—C840.27 (12)C11—C12—H12117.9
C3—Fe1—C8108.27 (17)N1—C13—C12119.6 (3)
C2—Fe1—C8120.36 (15)N1—C13—C14119.5 (3)
C13—N1—C15132.3 (3)C12—C13—C14120.9 (3)
C13—N1—H1N113 (2)C13—C14—H14A109.5
C15—N1—H1N114 (2)C13—C14—H14B109.5
C5—C1—C2107.3 (4)H14A—C14—H14B109.5
C5—C1—Fe169.4 (2)C13—C14—H14C109.5
C2—C1—Fe169.7 (2)H14A—C14—H14C109.5
C5—C1—H1126.3H14B—C14—H14C109.5
C2—C1—H1126.3C20—C15—C16118.0 (3)
Fe1—C1—H1126.3C20—C15—N1123.9 (3)
C3—C2—C1108.9 (4)C16—C15—N1118.0 (3)
C3—C2—Fe170.0 (2)C17—C16—C15121.0 (3)
C1—C2—Fe169.6 (2)C17—C16—H16119.5
C3—C2—H2125.5C15—C16—H16119.5
C1—C2—H2125.5C18—C17—C16119.6 (3)
Fe1—C2—H2125.5C18—C17—H17120.2
C2—C3—C4107.6 (4)C16—C17—H17120.2
C2—C3—Fe170.0 (2)C17—C18—C19120.5 (3)
C4—C3—Fe169.0 (2)C17—C18—Br1119.8 (2)
C2—C3—H3126.2C19—C18—Br1119.7 (2)
C4—C3—H3126.2C20—C19—C18120.0 (3)
Fe1—C3—H3126.2C20—C19—H19120.0
C5—C4—C3108.1 (4)C18—C19—H19120.0
C5—C4—Fe169.8 (2)C19—C20—C15120.8 (3)
C3—C4—Fe170.2 (2)C19—C20—H20119.6
C5—C4—H4126.0C15—C20—H20119.6
C3—C4—H4126.0
C10—Fe1—C1—C573.3 (3)C10—Fe1—C7—C882.4 (2)
C4—Fe1—C1—C537.8 (3)C4—Fe1—C7—C839.9 (7)
C6—Fe1—C1—C5115.2 (3)C6—Fe1—C7—C8120.8 (3)
C9—Fe1—C1—C541.8 (7)C9—Fe1—C7—C837.81 (19)
C7—Fe1—C1—C5157.5 (2)C5—Fe1—C7—C8166.7 (3)
C3—Fe1—C1—C581.8 (3)C1—Fe1—C7—C8158.3 (2)
C2—Fe1—C1—C5118.5 (4)C3—Fe1—C7—C874.1 (3)
C8—Fe1—C1—C5168.8 (3)C2—Fe1—C7—C8115.1 (2)
C10—Fe1—C1—C2168.3 (3)C10—Fe1—C7—C638.41 (18)
C4—Fe1—C1—C280.7 (3)C4—Fe1—C7—C6160.7 (6)
C6—Fe1—C1—C2126.3 (3)C9—Fe1—C7—C683.0 (2)
C9—Fe1—C1—C2160.3 (5)C5—Fe1—C7—C645.9 (4)
C5—Fe1—C1—C2118.5 (4)C1—Fe1—C7—C680.9 (2)
C7—Fe1—C1—C284.1 (3)C3—Fe1—C7—C6165.1 (3)
C3—Fe1—C1—C236.7 (3)C2—Fe1—C7—C6124.1 (2)
C8—Fe1—C1—C250.3 (5)C8—Fe1—C7—C6120.8 (3)
C5—C1—C2—C30.4 (5)C6—C7—C8—C90.7 (4)
Fe1—C1—C2—C359.1 (3)Fe1—C7—C8—C959.0 (2)
C5—C1—C2—Fe159.5 (3)C6—C7—C8—Fe158.3 (2)
C10—Fe1—C2—C3156.0 (5)C10—Fe1—C8—C781.5 (2)
C4—Fe1—C2—C338.1 (3)C4—Fe1—C8—C7167.2 (2)
C6—Fe1—C2—C3167.0 (2)C6—Fe1—C8—C736.91 (19)
C9—Fe1—C2—C346.9 (5)C9—Fe1—C8—C7119.1 (3)
C5—Fe1—C2—C382.2 (3)C5—Fe1—C8—C7159.0 (5)
C1—Fe1—C2—C3120.2 (4)C1—Fe1—C8—C747.9 (4)
C7—Fe1—C2—C3125.1 (3)C3—Fe1—C8—C7125.6 (3)
C8—Fe1—C2—C382.4 (3)C2—Fe1—C8—C783.5 (3)
C10—Fe1—C2—C135.7 (7)C10—Fe1—C8—C937.69 (18)
C4—Fe1—C2—C182.2 (3)C4—Fe1—C8—C973.6 (3)
C6—Fe1—C2—C172.8 (3)C6—Fe1—C8—C982.2 (2)
C9—Fe1—C2—C1167.1 (3)C5—Fe1—C8—C939.8 (6)
C5—Fe1—C2—C138.0 (3)C1—Fe1—C8—C9167.1 (3)
C7—Fe1—C2—C1114.7 (3)C7—Fe1—C8—C9119.1 (3)
C3—Fe1—C2—C1120.2 (4)C3—Fe1—C8—C9115.2 (2)
C8—Fe1—C2—C1157.4 (3)C2—Fe1—C8—C9157.4 (2)
C1—C2—C3—C40.1 (5)C7—C8—C9—C101.0 (4)
Fe1—C2—C3—C459.0 (3)Fe1—C8—C9—C1058.3 (2)
C1—C2—C3—Fe158.8 (3)C7—C8—C9—Fe159.3 (2)
C10—Fe1—C3—C2164.4 (3)C10—Fe1—C9—C8120.0 (3)
C4—Fe1—C3—C2119.0 (4)C4—Fe1—C9—C8126.0 (2)
C6—Fe1—C3—C239.1 (7)C6—Fe1—C9—C881.3 (2)
C9—Fe1—C3—C2158.6 (2)C5—Fe1—C9—C8167.3 (2)
C5—Fe1—C3—C281.1 (3)C1—Fe1—C9—C8160.3 (5)
C1—Fe1—C3—C237.3 (3)C7—Fe1—C9—C837.50 (19)
C7—Fe1—C3—C274.9 (3)C3—Fe1—C9—C883.1 (2)
C8—Fe1—C3—C2115.8 (3)C2—Fe1—C9—C850.3 (4)
C10—Fe1—C3—C445.4 (5)C4—Fe1—C9—C10114.0 (2)
C6—Fe1—C3—C4158.1 (5)C6—Fe1—C9—C1038.71 (18)
C9—Fe1—C3—C482.4 (3)C5—Fe1—C9—C1072.7 (3)
C5—Fe1—C3—C437.9 (3)C1—Fe1—C9—C1040.3 (6)
C1—Fe1—C3—C481.7 (3)C7—Fe1—C9—C1082.53 (19)
C7—Fe1—C3—C4166.2 (3)C3—Fe1—C9—C10156.8 (2)
C2—Fe1—C3—C4119.0 (4)C2—Fe1—C9—C10170.4 (4)
C8—Fe1—C3—C4125.3 (3)C8—Fe1—C9—C10120.0 (3)
C2—C3—C4—C50.2 (5)C8—C9—C10—C61.0 (4)
Fe1—C3—C4—C559.8 (3)Fe1—C9—C10—C660.2 (2)
C2—C3—C4—Fe159.6 (3)C8—C9—C10—C11173.9 (3)
C10—Fe1—C4—C581.7 (3)Fe1—C9—C10—C11114.7 (3)
C6—Fe1—C4—C546.9 (6)C8—C9—C10—Fe159.2 (2)
C9—Fe1—C4—C5125.3 (3)C7—C6—C10—C90.6 (4)
C1—Fe1—C4—C537.5 (3)Fe1—C6—C10—C960.2 (2)
C7—Fe1—C4—C5162.7 (5)C7—C6—C10—C11173.9 (3)
C3—Fe1—C4—C5118.9 (4)Fe1—C6—C10—C11114.2 (3)
C2—Fe1—C4—C581.5 (3)C7—C6—C10—Fe159.7 (2)
C8—Fe1—C4—C5166.3 (2)C4—Fe1—C10—C984.1 (3)
C10—Fe1—C4—C3159.4 (3)C6—Fe1—C10—C9118.0 (3)
C6—Fe1—C4—C3165.8 (4)C5—Fe1—C10—C9126.5 (2)
C9—Fe1—C4—C3115.8 (3)C1—Fe1—C10—C9166.9 (2)
C5—Fe1—C4—C3118.9 (4)C7—Fe1—C10—C980.3 (2)
C1—Fe1—C4—C381.4 (3)C3—Fe1—C10—C952.0 (4)
C7—Fe1—C4—C343.8 (8)C2—Fe1—C10—C9165.3 (5)
C2—Fe1—C4—C337.4 (3)C8—Fe1—C10—C937.07 (18)
C8—Fe1—C4—C374.8 (4)C4—Fe1—C10—C6157.9 (2)
C2—C1—C5—C40.5 (4)C9—Fe1—C10—C6118.0 (3)
Fe1—C1—C5—C459.2 (3)C5—Fe1—C10—C6115.5 (2)
C2—C1—C5—Fe159.7 (3)C1—Fe1—C10—C675.0 (2)
C3—C4—C5—C10.5 (5)C7—Fe1—C10—C637.71 (18)
Fe1—C4—C5—C159.6 (3)C3—Fe1—C10—C6170.0 (3)
C3—C4—C5—Fe160.1 (3)C2—Fe1—C10—C647.3 (6)
C10—Fe1—C5—C1125.2 (2)C8—Fe1—C10—C680.97 (19)
C4—Fe1—C5—C1119.3 (4)C4—Fe1—C10—C1133.6 (3)
C6—Fe1—C5—C182.1 (3)C6—Fe1—C10—C11124.3 (3)
C9—Fe1—C5—C1166.4 (2)C9—Fe1—C10—C11117.7 (3)
C7—Fe1—C5—C149.7 (4)C5—Fe1—C10—C118.8 (3)
C3—Fe1—C5—C181.4 (3)C1—Fe1—C10—C1149.3 (3)
C2—Fe1—C5—C138.2 (3)C7—Fe1—C10—C11162.0 (3)
C8—Fe1—C5—C1162.6 (5)C3—Fe1—C10—C1165.7 (4)
C10—Fe1—C5—C4115.4 (3)C2—Fe1—C10—C1177.0 (6)
C6—Fe1—C5—C4158.6 (3)C8—Fe1—C10—C11154.7 (3)
C9—Fe1—C5—C474.3 (3)C9—C10—C11—O14.2 (5)
C1—Fe1—C5—C4119.3 (4)C6—C10—C11—O1177.8 (3)
C7—Fe1—C5—C4169.0 (3)Fe1—C10—C11—O189.5 (3)
C3—Fe1—C5—C437.9 (3)C9—C10—C11—C12174.7 (3)
C2—Fe1—C5—C481.1 (3)C6—C10—C11—C121.1 (5)
C8—Fe1—C5—C443.3 (6)Fe1—C10—C11—C1289.4 (3)
C10—Fe1—C6—C7118.9 (3)O1—C11—C12—C131.6 (5)
C4—Fe1—C6—C7167.8 (4)C10—C11—C12—C13177.2 (3)
C9—Fe1—C6—C780.3 (2)C15—N1—C13—C12176.6 (3)
C5—Fe1—C6—C7159.1 (2)C15—N1—C13—C141.7 (5)
C1—Fe1—C6—C7116.8 (2)C11—C12—C13—N11.8 (5)
C3—Fe1—C6—C746.0 (7)C11—C12—C13—C14176.5 (3)
C2—Fe1—C6—C776.2 (2)C13—N1—C15—C2039.0 (5)
C8—Fe1—C6—C736.58 (19)C13—N1—C15—C16144.2 (3)
C4—Fe1—C6—C1049.0 (5)C20—C15—C16—C170.1 (5)
C9—Fe1—C6—C1038.60 (18)N1—C15—C16—C17177.1 (3)
C5—Fe1—C6—C1082.1 (2)C15—C16—C17—C180.8 (5)
C1—Fe1—C6—C10124.3 (2)C16—C17—C18—C190.7 (5)
C7—Fe1—C6—C10118.9 (3)C16—C17—C18—Br1177.3 (2)
C3—Fe1—C6—C10164.9 (6)C17—C18—C19—C200.3 (5)
C2—Fe1—C6—C10165.0 (2)Br1—C18—C19—C20178.3 (2)
C8—Fe1—C6—C1082.28 (19)C18—C19—C20—C151.2 (5)
C10—C6—C7—C80.1 (4)C16—C15—C20—C191.0 (5)
Fe1—C6—C7—C858.7 (2)N1—C15—C20—C19177.8 (3)
C10—C6—C7—Fe158.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.74 (3)1.98 (3)2.612 (4)143 (3)

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H13BrNO)]
Mr424.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)16.808 (2), 9.2589 (13), 11.1133 (15)
β (°) 93.748 (2)
V3)1725.8 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.20
Crystal size (mm)0.30 × 0.20 × 0.03
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SABABS; Bruker, 2000)
Tmin, Tmax0.684, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
18029, 3891, 2709
Rint0.039
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.102, 1.04
No. of reflections3891
No. of parameters222
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.69, 0.24

Computer programs: SMART-NT (Bruker, 2001), SAINT-NT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O10.74 (3)1.98 (3)2.612 (4)143 (3)
 

Acknowledgements

The authors gratefully acknowledge generous financial support from FONDECYT (1090310) and post-doc MECESUP UCH-0601-PUCV.

References

First citationBruker (2000). SAINT-NT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SMART-NT. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFuentealba, M., Trujillo, A., Hamon, J.-R., Carrillo, D. & Manzur, C. (2008). J. Mol. Struct. 881, 76–82.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShi, Y.-C., Cheng, H. & Zhang, S.-H. (2008). Polyhedron, 27, 3331–3336.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationShi, Y.-C., Yang, H.-M., Song, H.-B. & Liu, Y.-H. (2004). Polyhedron, 23, 1541–1546.  Web of Science CSD CrossRef CAS Google Scholar
First citationYe, W.-P., Zhan, J., Pan, L., Hu, N.-H. & Li, Y.-S. (2008). Organometallics, 27, 3642–3653.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds