metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{μ-6,6′-Dimeth­­oxy-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methyl­­idyne)]diphenolato}trinitratocopper(II)lutetium(III)

aSchool of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli_2000@163.com

(Received 10 October 2010; accepted 19 November 2010; online 27 November 2010)

In the title dinuclear CuII–LuIII salen-type complex, [CuLu(C22H24N2O4)(NO3)3], with the ligand 6,6′-dimeth­oxy-2,2′-[cyclo­hexane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate, the irregular nine-coordinate LuIII coordination sphere comprises four O atoms from the ligand and five O atoms from three nitrate groups, two bidentate and one monodentate [Lu—O = 2.230 (3)–2.621 (4) Å]. The slightly distorted square-planar four-coordinate CuII atom comprises two imine N atoms [Cu—N = 1.903 (4) and 1.912 (4) Å] and two phenolate O atoms from the ligand mol­ecule [Cu—O = 1.897 (3) and 1.906 (3) Å]. All atoms of the cyclo­hexane ring of the ligand mol­ecule are disordered over two sets of sites with equal occupancy.

Related literature

For the synthesis of the ligand, see: Aslantaş et al. (2007[Aslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644-o645.]); Mohamed et al. (2003[Mohamed, E. M., Muralidharan, S., Panchanatheswaran, K., Ramesh, R., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, o367-o369.]). For similar copper–lanthanide complexes of this salen-like ligand, see: Bao et al. (2010[Bao, Y., Li, G.-M., Yang, F., Yan, P.-F. & Chen, P. (2010). Acta Cryst. E66, m1379.]); Koner et al. (2005[Koner, R., Lee, G. H., Wang, Y., Wei, H. H. & Mohanta, S. (2005). Eur. J. Inorg. Chem. pp. 1500-1505.]); Sui et al. (2006[Sui, Y., Xiao, Y.-A., Fang, X.-N., Zeng, X.-R. & Li, M.-H. (2006). Acta Cryst. E62, m3205-m3207.]); Costes et al. (2008[Costes, J. P., Donnadieu, B., Gheorghe, R. & Tuchagues, J. P. (2008). Eur. J. Inorg. Chem. pp. 5235-5244.]); Sun et al. (2009[Sun, W.-B., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m780-m781.]).

[Scheme 1]

Experimental

Crystal data
  • [CuLu(C22H24N2O4)(NO3)3]

  • Mr = 804.98

  • Monoclinic, P 21 /n

  • a = 11.497 (4) Å

  • b = 15.056 (5) Å

  • c = 15.749 (5) Å

  • β = 102.777 (15)°

  • V = 2658.5 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.57 mm−1

  • T = 293 K

  • 0.21 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.443, Tmax = 0.489

  • 19857 measured reflections

  • 4653 independent reflections

  • 4112 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.067

  • S = 1.08

  • 4653 reflections

  • 435 parameters

  • 441 restraints

  • H-atom parameters constrained

  • Δρmax = 1.37 e Å−3

  • Δρmin = −1.18 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA]); cell refinement: SAINT-Plus (Bruker, 2003[Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

In a continuation of the studies of salen-type lanthanide complexes (Mohamed et al. 2003, Aslantaş et al. 2007, Sun et al. 2009), we present here the crystal structure of the CuII–LuIII mixed-metal complex prepared using the ligand N,N'-bis(2-oxo-3-methoxybenzylidene)-1,2-diaminocyclohexane (H2L), [CuLu(C22H24N2O4)(NO3)3], the title compound (I) (Fig. 1). The irregular LuO9 coordination sphere of (I) comprises two phenolate and two methoxy O donors from the imine-phenolate ligand molecule and five O-donors from the three nitrate anions, two bidentate and one monodentate. The Lu—Cu distance is 3.2336 (10) Å, but is not nitrate-bridged as found in analogous lanthanide complexes (Koner et al., 2005; Sui et al., 2006; Costes et al. 2008; Bao et al. 2010). Notably, the coordinated methanol molecule found in the CuII–EuIII complex (Bao et al., 2010) is absent in the structure of (I), which is consistent with the familiar lanthanide contraction concept. The Lu—O bond distance range in (I) is 2.230 (3)–2.621 (4) Å. The CuII ion is tetra-coordinated by two imine N atoms and two bridging phenolate O atoms from the ligand molecule and is slightly distorted square-planar[Cu—N, 1.903 (4), 1.912 (4) Å; Cu—O, 1.897 (3), 1.906 (3) Å]. All atoms of the cyclohexane ring of the ligand molecule are 50% disordered.

Related literature top

For the synthesis of the ligand, see: Aslantaş et al. (2007); Mohamed et al. (2003). For similar copper–lanthanide complexes of this salen-like ligand, see: Bao et al. (2010); Koner et al. (2005); Sui et al. (2006); Costes et al. (2008); Sun et al. (2009).

Experimental top

To a 2:3 MeOH/MeCN solution (35 ml) of [(H2L)Lu(NO3)3] (0.2415 g, 0.3 mmol) was added an aqueous solution (10 ml) of Cu(OAc)2 . H2O (0.0597 g, 0.3 mmol) at ambient temperature. The color of the solution changed to red immediately and after stirring for 5 h, the solution was filtered to remove suspended particles. Red single crystals of the title compound suitable for single crystal X-ray determination were obtained by slow diffusion of diethylether into the filtrate over a period of one week. Elemental analysis: Calc. for C22H24N5O13CuLu: C, 32.82; H, 3.01; N, 8.70%, Found: C, 32.80; H, 3.09; N, 8.74%.

Refinement top

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic C), C—H = 0.97 Å (methylene C), and with Uiso(H) = 1.2Ueq(C) or C—H = 0.96 Å (methyl C) and with Uiso(H) = 1.5Ueq(C). The C8—C13 atoms of the cyclohexane ring were refined as disordered over two sites with equivalent occupancy [site occupancy factor 0.50 (1)].

Structure description top

In a continuation of the studies of salen-type lanthanide complexes (Mohamed et al. 2003, Aslantaş et al. 2007, Sun et al. 2009), we present here the crystal structure of the CuII–LuIII mixed-metal complex prepared using the ligand N,N'-bis(2-oxo-3-methoxybenzylidene)-1,2-diaminocyclohexane (H2L), [CuLu(C22H24N2O4)(NO3)3], the title compound (I) (Fig. 1). The irregular LuO9 coordination sphere of (I) comprises two phenolate and two methoxy O donors from the imine-phenolate ligand molecule and five O-donors from the three nitrate anions, two bidentate and one monodentate. The Lu—Cu distance is 3.2336 (10) Å, but is not nitrate-bridged as found in analogous lanthanide complexes (Koner et al., 2005; Sui et al., 2006; Costes et al. 2008; Bao et al. 2010). Notably, the coordinated methanol molecule found in the CuII–EuIII complex (Bao et al., 2010) is absent in the structure of (I), which is consistent with the familiar lanthanide contraction concept. The Lu—O bond distance range in (I) is 2.230 (3)–2.621 (4) Å. The CuII ion is tetra-coordinated by two imine N atoms and two bridging phenolate O atoms from the ligand molecule and is slightly distorted square-planar[Cu—N, 1.903 (4), 1.912 (4) Å; Cu—O, 1.897 (3), 1.906 (3) Å]. All atoms of the cyclohexane ring of the ligand molecule are 50% disordered.

For the synthesis of the ligand, see: Aslantaş et al. (2007); Mohamed et al. (2003). For similar copper–lanthanide complexes of this salen-like ligand, see: Bao et al. (2010); Koner et al. (2005); Sui et al. (2006); Costes et al. (2008); Sun et al. (2009).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2003); data reduction: SAINT-Plus (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
N,N'-bis(2-oxo-3-methoxybenzylidene)-1,2-diaminocyclohexane tri(nitrato)copper(II)-lutetium(III) {µ-6,6'-Dimethoxy-2,2'-[cyclohexane-1,2- diylbis(nitrilomethylidyne)]diphenolato}trinitratocopper(II)lutetium(III) top
Crystal data top
[CuLu(C22H24N2O4)(NO3)3]F(000) = 1580
Mr = 804.98Dx = 2.011 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4112 reflections
a = 11.497 (4) Åθ = 3.0–25.0°
b = 15.056 (5) ŵ = 4.57 mm1
c = 15.749 (5) ÅT = 293 K
β = 102.777 (15)°Block, red
V = 2658.5 (15) Å30.21 × 0.20 × 0.18 mm
Z = 4
Data collection top
Bruker SMART1000 CCD
diffractometer
4653 independent reflections
Radiation source: fine-focus sealed tube4112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1313
Tmin = 0.443, Tmax = 0.489k = 1717
19857 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0114P)2 + 9.3555P]
where P = (Fo2 + 2Fc2)/3
4653 reflections(Δ/σ)max = 0.004
435 parametersΔρmax = 1.37 e Å3
441 restraintsΔρmin = 1.18 e Å3
Crystal data top
[CuLu(C22H24N2O4)(NO3)3]V = 2658.5 (15) Å3
Mr = 804.98Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.497 (4) ŵ = 4.57 mm1
b = 15.056 (5) ÅT = 293 K
c = 15.749 (5) Å0.21 × 0.20 × 0.18 mm
β = 102.777 (15)°
Data collection top
Bruker SMART1000 CCD
diffractometer
4653 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
4112 reflections with I > 2σ(I)
Tmin = 0.443, Tmax = 0.489Rint = 0.028
19857 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.034441 restraints
wR(F2) = 0.067H-atom parameters constrained
S = 1.08Δρmax = 1.37 e Å3
4653 reflectionsΔρmin = 1.18 e Å3
435 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1707 (5)0.4007 (3)0.3948 (3)0.0521 (13)
C20.2248 (6)0.3315 (4)0.4453 (4)0.0705 (18)
H10.24650.28010.41990.085*
C30.2464 (7)0.3401 (5)0.5356 (4)0.086 (2)
H20.28090.29330.57090.103*
C40.2176 (6)0.4163 (4)0.5725 (4)0.0738 (19)
H30.23320.42070.63290.089*
C50.1650 (5)0.4885 (4)0.5221 (3)0.0548 (14)
C60.1385 (5)0.4784 (3)0.4308 (3)0.0503 (13)
C70.1453 (6)0.5704 (4)0.5642 (3)0.0690 (19)
H40.15820.56960.62460.083*
C8'0.0550 (15)0.7291 (9)0.5641 (8)0.062 (3)0.50
H8'A0.03200.73350.54580.074*0.50
C9'0.106 (2)0.7362 (15)0.6651 (14)0.082 (5)0.50
H9'A0.05980.69720.69430.098*0.50
H9'B0.18740.71540.67840.098*0.50
C10'0.1024 (16)0.8222 (10)0.6984 (9)0.076 (4)0.50
H10A0.13330.82270.76090.091*0.50
H10B0.02140.84490.68590.091*0.50
C11'0.1827 (19)0.8792 (15)0.6517 (12)0.110 (6)0.50
H11A0.19320.93810.67730.132*0.50
H11B0.26060.85180.65870.132*0.50
C12'0.125 (2)0.8857 (15)0.5580 (13)0.119 (8)0.50
H12A0.04280.90470.55120.143*0.50
H12B0.16630.92920.53000.143*0.50
C13'0.1288 (14)0.8034 (9)0.5195 (8)0.055 (3)0.50
H13A0.21190.78440.52650.066*0.50
C80.1362 (15)0.7261 (8)0.5719 (7)0.060 (3)0.50
H8A0.21590.74080.56340.072*0.50
C100.1822 (16)0.8067 (11)0.7051 (10)0.087 (4)0.50
H10C0.26680.81610.70950.104*0.50
H10D0.16950.80570.76390.104*0.50
C110.1112 (16)0.8930 (9)0.6553 (7)0.071 (4)0.50
H11C0.03630.89960.67340.110*0.50
H11D0.15840.94590.67350.110*0.50
C130.0601 (13)0.8020 (9)0.5240 (7)0.050 (3)0.50
H13B0.02160.78970.52950.060*0.50
C90.1550 (14)0.7263 (15)0.6706 (15)0.052 (4)0.50
H9A0.08290.70540.68650.098*0.50
H9B0.21880.68530.69490.098*0.50
C120.0855 (14)0.8866 (11)0.5565 (9)0.048 (4)0.50
H12C0.01850.92500.53240.140*0.50
H12D0.15420.90880.53670.140*0.50
C140.0372 (6)0.8460 (4)0.3697 (4)0.0646 (16)
H150.03730.90420.38950.077*
C150.0098 (5)0.8322 (3)0.2756 (3)0.0524 (13)
C160.0094 (6)0.9073 (4)0.2211 (4)0.0676 (17)
H160.00690.96360.24590.081*
C170.0318 (6)0.8992 (4)0.1326 (4)0.0731 (18)
H170.04240.94990.09800.088*
C180.0387 (6)0.8158 (4)0.0941 (4)0.0623 (16)
H180.05500.81050.03380.075*
C190.0214 (5)0.7422 (3)0.1453 (3)0.0490 (13)
C200.0046 (5)0.7484 (3)0.2367 (3)0.0463 (12)
C210.0363 (6)0.6406 (4)0.0246 (3)0.0743 (18)
H190.10610.67000.00790.112*
H200.04170.57810.01210.112*
H210.03330.66440.00860.112*
C220.1785 (6)0.3256 (4)0.2598 (4)0.0677 (17)
H220.26350.31880.27620.101*
H240.15460.33400.19790.101*
H230.14080.27330.27600.101*
N10.1120 (5)0.6435 (3)0.5264 (3)0.0609 (13)
N20.0608 (5)0.7850 (3)0.4269 (3)0.0619 (13)
N30.1133 (5)0.4477 (3)0.1669 (3)0.0669 (14)
N40.2518 (5)0.5615 (4)0.1211 (3)0.0666 (14)
N50.3397 (5)0.6211 (4)0.3520 (3)0.0667 (13)
O10.1432 (4)0.4020 (2)0.3038 (2)0.0547 (10)
O20.0835 (3)0.5399 (2)0.37526 (19)0.0505 (9)
O30.0256 (3)0.6720 (2)0.2799 (2)0.0530 (9)
O40.0275 (4)0.6544 (2)0.1169 (2)0.0568 (10)
O50.1043 (4)0.4957 (3)0.2343 (2)0.0648 (11)
O60.2009 (5)0.4029 (4)0.1380 (3)0.1028 (18)
O70.0232 (4)0.4515 (3)0.1322 (2)0.0685 (11)
O80.2100 (4)0.4884 (3)0.1397 (3)0.0728 (12)
O90.3266 (5)0.5648 (4)0.0781 (4)0.1055 (18)
O100.2120 (4)0.6300 (3)0.1509 (3)0.0768 (13)
O110.2908 (4)0.5540 (3)0.3091 (3)0.0786 (13)
O120.4475 (5)0.6276 (4)0.3708 (4)0.113 (2)
O130.2791 (5)0.6785 (3)0.3775 (4)0.1015 (17)
Lu10.09403 (2)0.546272 (14)0.234051 (13)0.04774 (8)
Cu10.07394 (6)0.66185 (4)0.40327 (4)0.04949 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.069 (4)0.046 (3)0.039 (3)0.002 (3)0.006 (3)0.003 (2)
C20.094 (5)0.051 (3)0.060 (4)0.011 (3)0.005 (3)0.008 (3)
C30.123 (6)0.063 (4)0.059 (4)0.017 (4)0.008 (4)0.018 (3)
C40.101 (5)0.073 (4)0.037 (3)0.001 (4)0.006 (3)0.015 (3)
C50.075 (4)0.054 (3)0.032 (3)0.011 (3)0.006 (3)0.001 (2)
C60.069 (4)0.041 (3)0.039 (3)0.008 (3)0.008 (3)0.003 (2)
C70.116 (5)0.059 (4)0.029 (3)0.027 (4)0.008 (3)0.001 (2)
C8'0.089 (7)0.056 (6)0.045 (5)0.013 (6)0.026 (6)0.014 (5)
C9'0.146 (15)0.071 (10)0.034 (7)0.027 (12)0.031 (11)0.010 (7)
C10'0.101 (8)0.080 (7)0.049 (6)0.004 (7)0.023 (6)0.021 (5)
C11'0.123 (9)0.103 (9)0.091 (8)0.027 (8)0.002 (7)0.010 (7)
C12'0.162 (16)0.103 (12)0.078 (11)0.066 (12)0.005 (11)0.003 (10)
C13'0.077 (7)0.056 (6)0.041 (5)0.016 (6)0.033 (6)0.007 (4)
C80.092 (7)0.054 (6)0.035 (5)0.006 (6)0.018 (6)0.008 (4)
C100.085 (7)0.100 (8)0.070 (7)0.005 (7)0.006 (6)0.009 (6)
C110.115 (11)0.049 (7)0.040 (6)0.027 (7)0.002 (7)0.032 (5)
C130.061 (7)0.061 (7)0.031 (5)0.007 (7)0.015 (6)0.025 (5)
C90.061 (7)0.060 (7)0.036 (6)0.019 (6)0.010 (6)0.007 (5)
C120.055 (8)0.048 (7)0.047 (7)0.015 (6)0.023 (6)0.015 (5)
C140.098 (5)0.039 (3)0.054 (3)0.010 (3)0.013 (3)0.013 (3)
C150.063 (3)0.046 (3)0.048 (3)0.006 (3)0.012 (3)0.003 (2)
C160.093 (5)0.041 (3)0.068 (4)0.010 (3)0.017 (4)0.001 (3)
C170.101 (5)0.052 (4)0.063 (4)0.015 (3)0.011 (4)0.021 (3)
C180.079 (4)0.064 (4)0.043 (3)0.008 (3)0.010 (3)0.011 (3)
C190.061 (3)0.049 (3)0.035 (3)0.005 (3)0.008 (2)0.001 (2)
C200.057 (3)0.045 (3)0.037 (3)0.006 (2)0.010 (2)0.001 (2)
C210.108 (5)0.080 (4)0.033 (3)0.001 (4)0.014 (3)0.009 (3)
C220.095 (5)0.045 (3)0.068 (4)0.008 (3)0.031 (4)0.007 (3)
N10.102 (4)0.050 (3)0.030 (2)0.016 (3)0.014 (2)0.0092 (19)
N20.104 (4)0.043 (3)0.038 (2)0.004 (3)0.012 (2)0.011 (2)
N30.091 (4)0.059 (3)0.046 (3)0.006 (3)0.005 (3)0.000 (2)
N40.081 (4)0.068 (4)0.050 (3)0.007 (3)0.015 (3)0.002 (2)
N50.073 (4)0.067 (4)0.059 (3)0.001 (3)0.012 (3)0.006 (3)
O10.085 (3)0.0361 (19)0.0419 (19)0.0078 (18)0.0121 (19)0.0029 (15)
O20.083 (3)0.0391 (19)0.0280 (16)0.0039 (18)0.0084 (17)0.0006 (14)
O30.086 (3)0.041 (2)0.0275 (17)0.0070 (18)0.0029 (17)0.0018 (14)
O40.088 (3)0.052 (2)0.0285 (17)0.000 (2)0.0088 (18)0.0028 (15)
O50.089 (3)0.067 (3)0.040 (2)0.012 (2)0.017 (2)0.0094 (18)
O60.111 (4)0.110 (4)0.079 (3)0.047 (3)0.002 (3)0.023 (3)
O70.092 (3)0.069 (3)0.045 (2)0.010 (2)0.016 (2)0.0190 (19)
O80.107 (4)0.056 (3)0.063 (3)0.018 (2)0.035 (2)0.021 (2)
O90.106 (4)0.124 (5)0.106 (4)0.016 (3)0.065 (4)0.002 (3)
O100.104 (4)0.051 (3)0.080 (3)0.002 (2)0.030 (3)0.009 (2)
O110.081 (3)0.090 (3)0.060 (3)0.016 (3)0.007 (2)0.021 (2)
O120.068 (3)0.127 (5)0.138 (5)0.010 (3)0.008 (3)0.038 (4)
O130.094 (4)0.065 (3)0.153 (5)0.002 (3)0.044 (4)0.002 (3)
Lu10.07542 (17)0.03816 (12)0.02938 (11)0.00198 (11)0.01104 (10)0.00581 (9)
Cu10.0809 (5)0.0396 (3)0.0265 (3)0.0002 (3)0.0087 (3)0.0068 (2)
Geometric parameters (Å, º) top
C1—C21.374 (7)C12—H12D0.9700
C1—C61.386 (7)C14—N21.273 (7)
C1—O11.397 (6)C14—C151.460 (7)
C2—C31.395 (9)C14—H150.9300
C2—H10.9300C15—C201.398 (7)
C3—C41.360 (9)C15—C161.407 (8)
C3—H20.9300C16—C171.366 (8)
C4—C51.401 (8)C16—H160.9300
C4—H30.9300C17—C181.389 (8)
C5—C61.412 (7)C17—H170.9300
C5—C71.440 (8)C18—C191.360 (7)
C6—O21.333 (6)C18—H180.9300
C7—N11.268 (7)C19—O41.392 (6)
C7—H40.9300C19—C201.408 (6)
C8'—C9'1.57 (3)C20—O31.330 (6)
C8'—N11.617 (15)C21—O41.449 (6)
C8'—C13'1.651 (19)C21—H190.9600
C8'—H8'A0.9800C21—H200.9600
C9'—C10'1.40 (3)C21—H210.9600
C9'—H9'A0.9700C22—O11.446 (6)
C9'—H9'B0.9700C22—H220.9600
C10'—C11'1.56 (3)C22—H240.9600
C10'—H10A0.9700C22—H230.9600
C10'—H10B0.9700N1—Cu11.912 (4)
C11'—C12'1.482 (17)N2—Cu11.903 (4)
C11'—H11A0.9700N3—O61.214 (6)
C11'—H11B0.9700N3—O51.269 (6)
C12'—C13'1.385 (17)N3—O71.275 (6)
C12'—H12A0.9700N3—Lu12.809 (6)
C12'—H12B0.9700N4—O91.208 (7)
C13'—N21.520 (14)N4—O101.260 (6)
C13'—H13A0.9800N4—O81.262 (6)
C8—N11.431 (13)N4—Lu12.817 (6)
C8—C91.52 (3)N5—O121.213 (7)
C8—C131.532 (18)N5—O131.232 (7)
C8—H8A0.9800N5—O111.275 (6)
C10—C91.33 (3)O1—Lu12.443 (3)
C10—C111.64 (2)O2—Cu11.897 (3)
C10—H10C0.9700O2—Lu12.256 (3)
C10—H10D0.9700O3—Cu11.906 (3)
C11—C121.522 (14)O3—Lu12.230 (3)
C11—H11C0.9700O4—Lu12.621 (4)
C11—H11D0.9700O5—Lu12.405 (4)
C13—C121.380 (18)O7—Lu12.339 (4)
C13—N21.552 (11)O8—Lu12.371 (4)
C13—H13B0.9800O10—Lu12.435 (4)
C9—H9A0.9700O11—Lu12.312 (4)
C9—H9B0.9700Lu1—Cu13.2336 (10)
C12—H12C0.9700
C2—C1—C6122.1 (5)H22—C22—H24109.5
C2—C1—O1125.1 (5)O1—C22—H23109.5
C6—C1—O1112.8 (4)H22—C22—H23109.5
C1—C2—C3118.4 (6)H24—C22—H23109.5
C1—C2—H1120.8C7—N1—C8121.0 (6)
C3—C2—H1120.8C7—N1—C8'128.6 (6)
C4—C3—C2120.6 (6)C7—N1—Cu1125.3 (4)
C4—C3—H2119.7C8—N1—Cu1110.9 (6)
C2—C3—H2119.7C8'—N1—Cu1103.7 (5)
C3—C4—C5121.9 (5)C14—N2—C13'122.1 (7)
C3—C4—H3119.1C14—N2—C13122.1 (6)
C5—C4—H3119.1C14—N2—Cu1125.3 (4)
C4—C5—C6117.5 (5)C13'—N2—Cu1108.6 (6)
C4—C5—C7119.7 (5)C13—N2—Cu1111.8 (6)
C6—C5—C7122.7 (5)O6—N3—O5122.5 (6)
O2—C6—C1116.7 (4)O6—N3—O7123.3 (5)
O2—C6—C5123.9 (5)O5—N3—O7114.1 (5)
C1—C6—C5119.4 (5)O6—N3—Lu1178.1 (5)
N1—C7—C5126.1 (5)O5—N3—Lu158.6 (3)
N1—C7—H4117.0O7—N3—Lu155.6 (3)
C5—C7—H4117.0O9—N4—O10122.6 (6)
C9'—C8'—N1109.6 (13)O9—N4—O8121.4 (6)
C9'—C8'—C13'105.9 (13)O10—N4—O8116.0 (5)
N1—C8'—C13'95.5 (9)O9—N4—Lu1174.5 (5)
C9'—C8'—H8'A114.6O10—N4—Lu159.6 (3)
N1—C8'—H8'A114.6O8—N4—Lu156.7 (3)
C13'—C8'—H8'A114.6O12—N5—O13119.0 (6)
C10'—C9'—C8'114.0 (17)O12—N5—O11120.0 (6)
C10'—C9'—H9'A108.7O13—N5—O11120.9 (6)
C8'—C9'—H9'A108.7C1—O1—C22117.1 (4)
C10'—C9'—H9'B108.7C1—O1—Lu1116.8 (3)
C8'—C9'—H9'B108.7C22—O1—Lu1123.6 (3)
H9'A—C9'—H9'B107.6C6—O2—Cu1124.3 (3)
C9'—C10'—C11'105.4 (15)C6—O2—Lu1123.7 (3)
C9'—C10'—H10A110.7Cu1—O2—Lu1101.94 (14)
C11'—C10'—H10A110.7C20—O3—Cu1124.7 (3)
C9'—C10'—H10B110.7C20—O3—Lu1127.3 (3)
C11'—C10'—H10B110.7Cu1—O3—Lu1102.56 (14)
H10A—C10'—H10B108.8C19—O4—C21116.5 (4)
C12'—C11'—C10'108.9 (17)C19—O4—Lu1112.4 (3)
C12'—C11'—H11A109.9C21—O4—Lu1121.6 (3)
C10'—C11'—H11A109.9N3—O5—Lu194.7 (4)
C12'—C11'—H11B109.9N3—O7—Lu197.7 (3)
C10'—C11'—H11B109.9N4—O8—Lu196.9 (3)
H11A—C11'—H11B108.3N4—O10—Lu193.9 (3)
C13'—C12'—C11'109.0 (18)N5—O11—Lu1125.2 (4)
C13'—C12'—H12A109.9O3—Lu1—O267.51 (12)
C11'—C12'—H12A109.9O3—Lu1—O1199.63 (15)
C13'—C12'—H12B109.9O2—Lu1—O1176.01 (15)
C11'—C12'—H12B109.9O3—Lu1—O7123.28 (15)
H12A—C12'—H12B108.3O2—Lu1—O7120.13 (14)
C12'—C13'—N2121.6 (13)O11—Lu1—O7137.01 (16)
C12'—C13'—C8'110.6 (15)O3—Lu1—O8143.33 (14)
N2—C13'—C8'94.6 (10)O2—Lu1—O8139.68 (15)
C12'—C13'—H13A109.6O11—Lu1—O873.50 (16)
N2—C13'—H13A109.6O7—Lu1—O870.42 (16)
C8'—C13'—H13A109.6O3—Lu1—O582.32 (14)
N1—C8—C9118.7 (13)O2—Lu1—O574.19 (13)
N1—C8—C13112.1 (10)O11—Lu1—O5146.74 (15)
C9—C8—C13115.9 (11)O7—Lu1—O553.48 (14)
N1—C8—H8A102.3O8—Lu1—O5123.33 (14)
C9—C8—H8A102.3O3—Lu1—O1090.71 (15)
C13—C8—H8A102.3O2—Lu1—O10135.22 (14)
C9—C10—C11118.5 (14)O11—Lu1—O1069.53 (16)
C9—C10—H10C107.7O7—Lu1—O10104.60 (16)
C11—C10—H10C107.7O8—Lu1—O1052.84 (15)
C9—C10—H10D107.7O5—Lu1—O10143.69 (14)
C11—C10—H10D107.7O3—Lu1—O1132.25 (12)
H10C—C10—H10D107.1O2—Lu1—O164.96 (11)
C12—C11—C10113.7 (10)O11—Lu1—O173.27 (15)
C12—C11—H11C108.8O7—Lu1—O178.86 (14)
C10—C11—H11C108.8O8—Lu1—O181.29 (14)
C12—C11—H11D108.8O5—Lu1—O180.95 (14)
C10—C11—H11D108.8O10—Lu1—O1126.96 (15)
H11C—C11—H11D107.7O3—Lu1—O461.91 (11)
C12—C13—C8117.1 (11)O2—Lu1—O4125.73 (12)
C12—C13—N2118.1 (12)O11—Lu1—O4129.63 (15)
C8—C13—N2103.6 (8)O7—Lu1—O476.06 (13)
C12—C13—H13B105.7O8—Lu1—O494.21 (14)
C8—C13—H13B105.7O5—Lu1—O480.77 (13)
N2—C13—H13B105.7O10—Lu1—O464.75 (14)
C10—C9—C8112.6 (18)O1—Lu1—O4154.56 (12)
C10—C9—H9A109.1O3—Lu1—N3103.87 (15)
C8—C9—H9A109.1O2—Lu1—N397.06 (14)
C10—C9—H9B109.1O11—Lu1—N3150.70 (16)
C8—C9—H9B109.1O7—Lu1—N326.73 (14)
H9A—C9—H9B107.8O8—Lu1—N396.78 (16)
C13—C12—C11114.5 (14)O5—Lu1—N326.76 (14)
C13—C12—H12C108.6O10—Lu1—N3126.75 (15)
C11—C12—H12C108.6O1—Lu1—N378.00 (14)
C13—C12—H12D108.6O4—Lu1—N377.69 (13)
C11—C12—H12D108.6O3—Lu1—N4117.21 (15)
H12C—C12—H12D107.6O2—Lu1—N4143.95 (14)
N2—C14—C15125.5 (5)O11—Lu1—N467.95 (15)
N2—C14—H15117.3O7—Lu1—N488.31 (16)
C15—C14—H15117.3O8—Lu1—N426.40 (14)
C20—C15—C16118.2 (5)O5—Lu1—N4140.35 (13)
C20—C15—C14123.5 (5)O10—Lu1—N426.51 (14)
C16—C15—C14118.3 (5)O1—Lu1—N4103.84 (15)
C17—C16—C15121.3 (5)O4—Lu1—N479.76 (14)
C17—C16—H16119.3N3—Lu1—N4114.62 (15)
C15—C16—H16119.3O3—Lu1—Cu135.12 (8)
C16—C17—C18120.4 (5)O2—Lu1—Cu135.02 (8)
C16—C17—H17119.8O11—Lu1—Cu178.00 (11)
C18—C17—H17119.8O7—Lu1—Cu1139.31 (12)
C19—C18—C17119.4 (5)O8—Lu1—Cu1150.09 (11)
C19—C18—H18120.3O5—Lu1—Cu185.91 (9)
C17—C18—H18120.3O10—Lu1—Cu1108.32 (11)
C18—C19—O4126.4 (5)O1—Lu1—Cu199.18 (8)
C18—C19—C20121.5 (5)O4—Lu1—Cu197.00 (8)
O4—C19—C20112.2 (4)N3—Lu1—Cu1112.67 (12)
O3—C20—C15124.8 (4)N4—Lu1—Cu1130.54 (11)
O3—C20—C19115.9 (4)O2—Cu1—N2177.78 (17)
C15—C20—C19119.2 (5)O2—Cu1—O381.92 (14)
O4—C21—H19109.5N2—Cu1—O395.94 (17)
O4—C21—H20109.5O2—Cu1—N194.81 (17)
H19—C21—H20109.5N2—Cu1—N187.29 (19)
O4—C21—H21109.5O3—Cu1—N1174.90 (19)
H19—C21—H21109.5O2—Cu1—Lu143.04 (9)
H20—C21—H21109.5N2—Cu1—Lu1135.12 (14)
O1—C22—H22109.5O3—Cu1—Lu142.32 (10)
O1—C22—H24109.5N1—Cu1—Lu1135.74 (15)

Experimental details

Crystal data
Chemical formula[CuLu(C22H24N2O4)(NO3)3]
Mr804.98
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)11.497 (4), 15.056 (5), 15.749 (5)
β (°) 102.777 (15)
V3)2658.5 (15)
Z4
Radiation typeMo Kα
µ (mm1)4.57
Crystal size (mm)0.21 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART1000 CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.443, 0.489
No. of measured, independent and
observed [I > 2σ(I)] reflections
19857, 4653, 4112
Rint0.028
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.067, 1.08
No. of reflections4653
No. of parameters435
No. of restraints441
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.37, 1.18

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported financially by the National Natural Science Foundation of China (Nos. 20872030 and 20972043), Heilongjiang Province (Nos. 2009RFXXG201, GC09A402 and 2010 t d03) and Heilongjiang University.

References

First citationAslantaş, M., Tümer, M., Şahin, E. & Tümer, F. (2007). Acta Cryst. E63, o644–o645.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBao, Y., Li, G.-M., Yang, F., Yan, P.-F. & Chen, P. (2010). Acta Cryst. E66, m1379.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SMART. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationBruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA  Google Scholar
First citationCostes, J. P., Donnadieu, B., Gheorghe, R. & Tuchagues, J. P. (2008). Eur. J. Inorg. Chem. pp. 5235–5244.  Web of Science CSD CrossRef Google Scholar
First citationKoner, R., Lee, G. H., Wang, Y., Wei, H. H. & Mohanta, S. (2005). Eur. J. Inorg. Chem. pp. 1500–1505.  Web of Science CSD CrossRef Google Scholar
First citationMohamed, E. M., Muralidharan, S., Panchanatheswaran, K., Ramesh, R., Low, J. N. & Glidewell, C. (2003). Acta Cryst. C59, o367–o369.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSui, Y., Xiao, Y.-A., Fang, X.-N., Zeng, X.-R. & Li, M.-H. (2006). Acta Cryst. E62, m3205–m3207.  CSD CrossRef IUCr Journals Google Scholar
First citationSun, W.-B., Yan, P.-F., Li, G.-M. & Hou, G.-F. (2009). Acta Cryst. E65, m780–m781.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds