organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Methyl­sulfin­yl)benzamide

aCollege of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310035, People's Republic of China
*Correspondence e-mail: winter111852@yahoo.cn

(Received 4 November 2010; accepted 11 November 2010; online 27 November 2010)

In the crystal of the title compound, C8H9NO2S, synthesized by the oxidation of 2-(methyl­sulfan­yl)benzamide using NaOCl with 2,2,6,6-tetra­methyl­piperidyl-1-oxy (TEMPO) as the catalyst, mol­ecules are linked via inter­molecular N—H⋯Oamide hydrogen bonds, forming centrosymmetric amide–amide dimers which are extended into a two-dimensional lamellar framework parallel to (100) through amide–sulfinyl N—H⋯O hydrogen bonds. The benzene ring forms a dihedral angle of 25.6 (2)° with the amide group

Related literature

For general background to sulfoxides, see: Hernández-Torres et al. (2008[Hernández-Torres, G., Urbano, A. & Colobert, F. (2008). Eur. J. Org. Chem. pp. 2035-2038.]); Padmanabhan et al. (2000[Padmanabhan, S., Lavin, R. C. & Durant, G. J. (2000). Tetrahedron Asymmetry, 11, 3455-4357.]); Nieves & Lang (2002[Nieves, A. V. & Lang, A. E. (2002). Neuropharmacology, 25, 111-114.]); Wedel et al. (2008[Wedel, T., Gehring, T., Podlech, J., Kordel, E., Bihlmeier, A. & Klopper, W. (2008). Chem. Eur. J. 14, 4631-4639.]); Melzig et al. (2009[Melzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536-3538.]); Huang et al. (2006[Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2006). Tetrahedron Lett. 47, 5637-5640.], 2010[Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem. 29, 142-153.]). For selective oxidation of sulfides to sulfoxides, see: Huang et al. (2006[Huang, J.-Y., Li, S.-J. & Wang, Y.-G. (2006). Tetrahedron Lett. 47, 5637-5640.]); Karimi et al. (2005[Karimi, B., Maryam, G.-N. & Clark, J. H. (2005). Org. Lett. 7, 625-628.]); Kirihara et al. (2009[Kirihara, M., Yamamoto, J., Noguchi, T. & Hirai, Y. (2009). Tetrahedron Lett. 50, 1180-1183.]); Ruff et al. (2009[Ruff, F., Fábián, A., Farkas, Ö. & Kucsman, Á. (2009). Eur. J. Org. Chem. 13, 2102-2111.]). For related structures, see: Kobayashi et al. (2003[Kobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035-3045.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NO2S

  • Mr = 183.22

  • Monoclinic, P 21 /c

  • a = 11.8497 (5) Å

  • b = 5.0376 (2) Å

  • c = 14.8598 (6) Å

  • β = 104.856 (4)°

  • V = 857.39 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 293 K

  • 0.46 × 0.26 × 0.23 mm

Data collection
  • Oxford Diffraction Gemini Ultra CCD-detector diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England]) Tmin = 0.901, Tmax = 0.926

  • 3438 measured reflections

  • 1564 independent reflections

  • 1354 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.083

  • S = 1.05

  • 1564 reflections

  • 111 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.86 2.08 2.934 (2) 175
N1—H1B⋯O1ii 0.86 2.18 2.991 (2) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Sulfoxides are versatile synthetic intermediates in stereocontrol chemistry (Hernández-Torres et al., 2008). They can be used to prepare chemically and biologically significant molecules, including therapeutic agents such as antiulcer (proton pump inhibitor), antibacterial, antifungal, antiatherosclerotic, antihypertensive, cardiotonic, psychotropic, and vasodilator agents (Padmanabhan et al., 2000; Nieves & Lang, 2002; Wedel et al., 2008; Melzig et al., 2009). The versatility of sulfoxides as organic reagents continually motivate the development of efficient synthesis methods for sulfoxides (Huang et al., 2006; Huang et al., 2010). Although many methods for the synthesis of sulfoxides have been investigated, selective oxidation of sulfides to sulfoxides still remains a challenging task (Karimi et al., 2005; Huang et al., 2006; Kirihara et al., 2009; Ruff et al., 2009). Herein, we report the synthesis and the crystal structure of a sulfoxide, viz. the title compound, C8H9NO2S (I). In the crystal structure (Fig. 1), the phenyl ring forms a dihedral angle of 25.6 (2)° with the amide group, similar to that found in benzamide (26.31°) (Kobayashi et al., 2003). The amide groups in (I) give intermolecular N—H···Oamide hydrogen-bonding interactions (Table 1) forming centrosymmetric amide–amide dimers which are extended into a two-dimensional lamellar framework parallel to (100), through amide N—H···Osulfinyl hydrogen bonds (Fig. 2).

Related literature top

For general background to sulfoxides, see: Hernández-Torres et al. (2008); Padmanabhan et al. (2000); Nieves & Lang (2002); Wedel et al. (2008); Melzig et al. (2009); Huang et al. (2006, 2010). For selective oxidation of sulfides to sulfoxides, see: Huang et al. (2006); Karimi et al. (2005); Kirihara et al. (2009); Ruff et al. (2009). For related structures, see: Kobayashi et al. (2003).

Experimental top

To a stirred solution of 2-(methylthio)benzamide (167 mg, 1.0 mmol) and the catalyst 2,2,6,6-tetramethylpiperidyl-1-oxy (TEMPO) (1.6 mg, 0.01 mmol) in CH2Cl2 (8 ml), Bu4NBr (16.1 mg, 0.05 mmol) and a saturated aqueous NaHCO3 solution (5 ml) containing KBr (11.9 mg, 0.1 mmol) were added. This mixture was cooled to 273 K, a solution of 0.73 M NaOCl (0.91 ml, 1.25 mmol) in saturated aqueous NaHCO3 was added dropwise over a period of 10 min. The mixture was stirred for a further 1 h at 273 K and for 0.5 h at room temperature. After the organic phase was separated, the aqueous phase was extracted with CH2Cl2 (3.5 ml) and the organic solution was washed with aqueous brine, dried over anhydrous Na2SO4 and filtered. The solvent was removed in vacuo and the residue was purified by chromatography on silica gel with ethyl acetate/hexane as an eluant to afford the title compound as a white solid (160 mg, 87%). Colorless crystals were obtained by vapor diffusion of hexane into an ethyl acetate solution of (I) over a period of 7 d.

1H NMR (400 MHz, CD3OD, 295 K) δ (p.p.m.) 8.20–8.18 (1H, m), 7.92–7.89 (1H, m), 7.85–7.81 (1H, m), 7.66–7.62 (1H, m), and 2.89 (3H, s). 13C NMR (400 MHz, CD3OD, 295 K) δ (p.p.m.) 168.9, 147.1, 132.4, 131.0, 130.5, 127.7, 123.4, and 43.7.

Refinement top

H atoms bonded to C or N were placed in geometrically calculated positions and were refined using a riding model, with C–Haromatic = 0.93 Å, C—Hmethyl = 0.96 Å and N—H = 0.86 Å, and with Uiso(H) = 1.2 or 1.5Ueq(C,N).

Structure description top

Sulfoxides are versatile synthetic intermediates in stereocontrol chemistry (Hernández-Torres et al., 2008). They can be used to prepare chemically and biologically significant molecules, including therapeutic agents such as antiulcer (proton pump inhibitor), antibacterial, antifungal, antiatherosclerotic, antihypertensive, cardiotonic, psychotropic, and vasodilator agents (Padmanabhan et al., 2000; Nieves & Lang, 2002; Wedel et al., 2008; Melzig et al., 2009). The versatility of sulfoxides as organic reagents continually motivate the development of efficient synthesis methods for sulfoxides (Huang et al., 2006; Huang et al., 2010). Although many methods for the synthesis of sulfoxides have been investigated, selective oxidation of sulfides to sulfoxides still remains a challenging task (Karimi et al., 2005; Huang et al., 2006; Kirihara et al., 2009; Ruff et al., 2009). Herein, we report the synthesis and the crystal structure of a sulfoxide, viz. the title compound, C8H9NO2S (I). In the crystal structure (Fig. 1), the phenyl ring forms a dihedral angle of 25.6 (2)° with the amide group, similar to that found in benzamide (26.31°) (Kobayashi et al., 2003). The amide groups in (I) give intermolecular N—H···Oamide hydrogen-bonding interactions (Table 1) forming centrosymmetric amide–amide dimers which are extended into a two-dimensional lamellar framework parallel to (100), through amide N—H···Osulfinyl hydrogen bonds (Fig. 2).

For general background to sulfoxides, see: Hernández-Torres et al. (2008); Padmanabhan et al. (2000); Nieves & Lang (2002); Wedel et al. (2008); Melzig et al. (2009); Huang et al. (2006, 2010). For selective oxidation of sulfides to sulfoxides, see: Huang et al. (2006); Karimi et al. (2005); Kirihara et al. (2009); Ruff et al. (2009). For related structures, see: Kobayashi et al. (2003).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the title compound with showing atom numbering and with displacement ellipsoids drawn at the 30% probability level
[Figure 2] Fig. 2. The two-dimensional layered structure of the title compound.
2-(Methylsulfinyl)benzamide top
Crystal data top
C8H9NO2SF(000) = 384
Mr = 183.22Dx = 1.419 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2076 reflections
a = 11.8497 (5) Åθ = 2.8–29.3°
b = 5.0376 (2) ŵ = 0.33 mm1
c = 14.8598 (6) ÅT = 293 K
β = 104.856 (4)°Block, colorless
V = 857.39 (6) Å30.46 × 0.26 × 0.23 mm
Z = 4
Data collection top
Oxford Diffraction Gemini Ultra CCD-detector
diffractometer
1564 independent reflections
Radiation source: fine-focus sealed tube1354 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 10.3592 pixels mm-1θmax = 25.3°, θmin = 2.8°
ω scansh = 1414
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 46
Tmin = 0.901, Tmax = 0.926l = 1417
3438 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.2897P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
1564 reflectionsΔρmax = 0.25 e Å3
111 parametersΔρmin = 0.22 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.042 (3)
Crystal data top
C8H9NO2SV = 857.39 (6) Å3
Mr = 183.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.8497 (5) ŵ = 0.33 mm1
b = 5.0376 (2) ÅT = 293 K
c = 14.8598 (6) Å0.46 × 0.26 × 0.23 mm
β = 104.856 (4)°
Data collection top
Oxford Diffraction Gemini Ultra CCD-detector
diffractometer
1564 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
1354 reflections with I > 2σ(I)
Tmin = 0.901, Tmax = 0.926Rint = 0.019
3438 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.083H-atom parameters constrained
S = 1.05Δρmax = 0.25 e Å3
1564 reflectionsΔρmin = 0.22 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.70440 (4)0.05668 (9)0.75213 (3)0.03131 (18)
O10.78768 (11)0.0190 (3)0.84272 (9)0.0493 (4)
O20.56496 (11)0.2416 (3)0.58587 (9)0.0443 (4)
N10.64197 (13)0.4202 (3)0.47654 (10)0.0415 (4)
H1A0.58430.52810.45880.050*
H1B0.69820.42210.44970.050*
C10.77553 (14)0.0412 (3)0.66326 (12)0.0292 (4)
C20.86744 (15)0.2174 (4)0.68979 (13)0.0400 (5)
H20.88780.28500.75000.048*
C30.92910 (16)0.2930 (4)0.62648 (14)0.0463 (5)
H30.99040.41320.64400.056*
C40.89971 (16)0.1907 (4)0.53778 (14)0.0449 (5)
H40.94090.24280.49520.054*
C50.80940 (16)0.0109 (4)0.51166 (13)0.0393 (5)
H50.79110.05930.45180.047*
C60.74535 (14)0.0670 (3)0.57362 (11)0.0297 (4)
C70.59562 (16)0.1977 (4)0.73172 (14)0.0418 (5)
H7A0.54570.17910.67000.063*
H7C0.55000.18210.77630.063*
H7B0.63280.36850.73790.063*
C80.64414 (14)0.2510 (4)0.54531 (11)0.0326 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0344 (3)0.0335 (3)0.0278 (3)0.00090 (18)0.01129 (18)0.00260 (18)
O10.0443 (8)0.0777 (11)0.0256 (7)0.0052 (7)0.0086 (6)0.0005 (7)
O20.0423 (7)0.0527 (8)0.0439 (8)0.0163 (6)0.0220 (6)0.0167 (7)
N10.0389 (9)0.0496 (10)0.0386 (9)0.0102 (8)0.0147 (7)0.0159 (8)
C10.0279 (8)0.0322 (9)0.0280 (9)0.0001 (7)0.0084 (7)0.0029 (7)
C20.0363 (10)0.0476 (12)0.0350 (10)0.0094 (9)0.0069 (8)0.0010 (9)
C30.0362 (10)0.0525 (13)0.0506 (12)0.0148 (9)0.0118 (9)0.0032 (10)
C40.0399 (10)0.0554 (13)0.0455 (12)0.0041 (10)0.0221 (9)0.0085 (10)
C50.0440 (10)0.0466 (11)0.0310 (10)0.0022 (9)0.0162 (8)0.0005 (8)
C60.0300 (9)0.0317 (9)0.0282 (9)0.0017 (7)0.0088 (7)0.0019 (7)
C70.0428 (10)0.0370 (11)0.0498 (11)0.0030 (9)0.0195 (9)0.0003 (9)
C80.0350 (9)0.0359 (10)0.0269 (9)0.0009 (8)0.0080 (7)0.0009 (8)
Geometric parameters (Å, º) top
S1—O11.5000 (13)C3—C41.374 (3)
S1—C71.7875 (19)C3—H30.9300
S1—C11.8078 (17)C4—C51.380 (3)
O2—C81.239 (2)C4—H40.9300
N1—C81.326 (2)C5—C61.391 (2)
N1—H1A0.8600C5—H50.9300
N1—H1B0.8600C6—C81.488 (2)
C1—C21.382 (3)C7—H7A0.9600
C1—C61.398 (2)C7—H7C0.9600
C2—C31.384 (3)C7—H7B0.9600
C2—H20.9300
O1—S1—C7104.47 (9)C5—C4—H4119.9
O1—S1—C1105.28 (8)C4—C5—C6120.95 (17)
C7—S1—C197.56 (8)C4—C5—H5119.5
C8—N1—H1A120.0C6—C5—H5119.5
C8—N1—H1B120.0C5—C6—C1118.09 (16)
H1A—N1—H1B120.0C5—C6—C8121.68 (15)
C2—C1—C6120.83 (16)C1—C6—C8120.18 (15)
C2—C1—S1116.60 (13)S1—C7—H7A109.5
C6—C1—S1122.44 (13)S1—C7—H7C109.5
C1—C2—C3119.85 (17)H7A—C7—H7C109.5
C1—C2—H2120.1S1—C7—H7B109.5
C3—C2—H2120.1H7A—C7—H7B109.5
C4—C3—C2120.01 (18)H7C—C7—H7B109.5
C4—C3—H3120.0O2—C8—N1122.13 (16)
C2—C3—H3120.0O2—C8—C6119.62 (15)
C3—C4—C5120.24 (17)N1—C8—C6118.24 (15)
C3—C4—H4119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.082.934 (2)175
N1—H1B···O1ii0.862.182.991 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC8H9NO2S
Mr183.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)11.8497 (5), 5.0376 (2), 14.8598 (6)
β (°) 104.856 (4)
V3)857.39 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.46 × 0.26 × 0.23
Data collection
DiffractometerOxford Diffraction Gemini Ultra CCD-detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.901, 0.926
No. of measured, independent and
observed [I > 2σ(I)] reflections
3438, 1564, 1354
Rint0.019
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.083, 1.05
No. of reflections1564
No. of parameters111
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O2i0.862.082.934 (2)175
N1—H1B···O1ii0.862.182.991 (2)157
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the Fund of Zhejiang Gongshang University (No. 10–3).

References

First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHernández-Torres, G., Urbano, A. & Colobert, F. (2008). Eur. J. Org. Chem. pp. 2035–2038.  Google Scholar
First citationHuang, J.-Y., Li, S.-J. & Wang, Y.-G. (2006). Tetrahedron Lett. 47, 5637–5640.  Web of Science CrossRef CAS Google Scholar
First citationHuang, J.-Y., Li, S.-J. & Wang, Y.-G. (2010). J. Carbohydr. Chem. 29, 142–153.  Web of Science CrossRef Google Scholar
First citationKarimi, B., Maryam, G.-N. & Clark, J. H. (2005). Org. Lett. 7, 625–628.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKirihara, M., Yamamoto, J., Noguchi, T. & Hirai, Y. (2009). Tetrahedron Lett. 50, 1180–1183.  Web of Science CrossRef CAS Google Scholar
First citationKobayashi, K., Sato, A., Sakamoto, S. & Yamaguchi, K. (2003). J. Am. Chem. Soc. 125, 3035–3045.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMelzig, L., Rauhut, C. B. & Knochel, P. (2009). Chem. Commun. pp. 3536–3538.  Web of Science CrossRef Google Scholar
First citationNieves, A. V. & Lang, A. E. (2002). Neuropharmacology, 25, 111–114.  CrossRef CAS Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England  Google Scholar
First citationPadmanabhan, S., Lavin, R. C. & Durant, G. J. (2000). Tetrahedron Asymmetry, 11, 3455–4357.  Web of Science CrossRef CAS Google Scholar
First citationRuff, F., Fábián, A., Farkas, Ö. & Kucsman, Á. (2009). Eur. J. Org. Chem. 13, 2102–2111.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWedel, T., Gehring, T., Podlech, J., Kordel, E., Bihlmeier, A. & Klopper, W. (2008). Chem. Eur. J. 14, 4631–4639.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds