metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-acetylpyridine-κ2N,O)silver(I) tetra­fluoridoborate: a complex with silver in a seesaw coordination geometry

aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand
*Correspondence e-mail: peter.steel@canterbury.ac.nz

(Received 11 November 2010; accepted 18 November 2010; online 24 November 2010)

The reaction of 2-acetylpyridine with silver(I) tetra­fluorido­borate leads to the discrete title complex, [Ag(C7H7NO)2]BF4, in the cation of which the Ag atom is coordinated by two 2-acetylpyridine ligands, each of which is N,O-bidentate, albeit with stronger bonding to the N atoms [Ag—N = 2.2018 (15) and 2.2088 (14) Å; Ag—O = 2.5380 (13) and 2.5454 (13) Å]. The four-coordinate Ag atom has a seesaw coordination geometry with a τ4 index of 0.51. The tetra­fluoridoborate anion is disordered over two orientations with 0.568 (10):0.432 (10) occupancies.

Related literature

For other silver complexes with the same ligand, see: Bowmaker et al. (2005[Bowmaker, G. A., Effendy, Nitiatmodjo, M., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4327-4341.]); Drew et al. (2005[Drew, M. G. B., Naskar, J. P., Chowdhury, S. & Datta, D. (2005). Eur. J. Inorg. Chem. pp. 4834-4839.]); Di Nicola et al. (2010[Di Nicola, C., Effendy, Marchetti, F., Nervi, C., Pettinari, C., Robinson, W. T., Sobolev, A. N. & White, A. H. (2010). Dalton Trans. pp. 908-922.]). For examples of our previous work on silver complexes, see: Steel (2005[Steel, P. J. (2005). Acc. Chem. Res. 38, 243-250.]); Fitchett & Steel (2006[Fitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886-4888.]); O'Keefe & Steel (2007)[O'Keefe, B. J. & Steel, P. J. (2007) CrystEngComm, 9, 222-227.]; Steel & Fitchett (2008[Steel, P. J. & Fitchett, C. M. (2008). Coord. Chem. Rev. 205, 990-1006.]); Golder et al. (2010[Golder, R. K., Fitchett, C. M., Wikaira, J. L. & Steel, P. J. (2010). Acta Cryst. E66, m1324.]). For details of the coordination geometry of four-coordinate silver, see: Young & Hanton (2008[Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346-1386.]). For a definition of the τ4 index, see: Yang et al. (2007[Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955-964.]). 2-acetylpyridine coordin­ates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin, see: Byrn et al. (1993[Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480-9497.]).

[Scheme 1]

Experimental

Crystal data
  • [Ag(C7H7NO)2]BF4

  • Mr = 436.95

  • Triclinic, [P \overline 1]

  • a = 7.2635 (2) Å

  • b = 9.7091 (3) Å

  • c = 11.7390 (4) Å

  • α = 85.624 (2)°

  • β = 81.452 (2)°

  • γ = 75.054 (2)°

  • V = 790.34 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.33 mm−1

  • T = 116 K

  • 0.37 × 0.36 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.805, Tmax = 1.000

  • 18086 measured reflections

  • 3661 independent reflections

  • 3255 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.051

  • S = 1.01

  • 3661 reflections

  • 247 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Selected bond angles (°)

N9—Ag1—N1 165.92 (6)
N9—Ag1—O15 70.09 (5)
N1—Ag1—O15 122.03 (5)
N9—Ag1—O7 121.62 (5)
N1—Ag1—O7 69.62 (5)
O15—Ag1—O7 83.23 (5)

Data collection: SMART (Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For some time we have been involved in the study of silver complexes of chelating and bridging heterocyclic ligands (Steel, 2005; Fitchett & Steel, 2006; O'Keefe & Steel, 2007; Steel & Fitchett, 2008; Golder et al., 2010). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin (Byrn et al., 1993). X-ray crystal structures have been reported for complexes of 2-acetylpyridine with silver(I) perchlorate (Bowmaker et al., 2005; Drew et al., 2005), trifluoroacetate (Bowmaker et al., 2005), trifluoromethanesulfonate (Di Nicola et al., 2010) and nitrate (Bowmaker et al., 2005). The latter has a single 2-acetylpyridine bound to the silver with a chelating nitrate anion, while the others have two chelating 2-acetylpyridine ligands. We now report the structure of its complex with silver(I) tetrafluoridoborate, the title compound [Ag(C7H7NO)2] BF4 (I).

In (I), the asymmetric unit contains a complex cation comprising a silver(I) atom bound to two bidentate N,O-chelated 2-acetylpyridine ligands [Ag—N, 2.2018 (15), 2.2088 (14) Å; Ag—O, 2.5380 (13), 2.5454 (13) Å], and a tetrafluoridoborate counter-anion (Fig. 1). The tetrafluoridoborate anion is disordered over two orientations with relative F occupancies of 57:43% about a common central B. Since the silver atom makes no other contacts less than 2.72 Å it should be classified as four-coordinate (Young & Hanton, 2008). Calculation of the τ4 index (Yang et al., 2007) produces a value of 0.51 which means that the geometry around the silver should be described as seesaw.

Related literature top

For other silver complexes with the same ligand, see: Bowmaker et al. (2005); Drew et al. (2005); Di Nicola et al. (2010). For examples of our previous work on silver complexes, see: Steel (2005); Fitchett & Steel (2006); O'Keefe & Steel (2007); Steel & Fitchett (2008); Golder et al. (2010). For four-coordinate silver geometry, see: Young & Hanton (2008). For a definition of the τ4 index, see: Yang et al. (2007). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin, see: Byrn et al. (1993).

Experimental top

The title compound was prepared by diffusion of pentane into a methanol solution of a mixture of 2-acetylpyridine and silver(I) tetrafluoridoborate.

Refinement top

Hydrogen atoms were included in calculated positions as riding atoms, with Uiso(H) = 1.2Ueq(C) for the pyridine H atoms and Uiso(H) = 1.5Ueq(C) for the acetyl H atoms. The occupancies for the disordered F atoms of the BF4 anion were 0.568 (10)/0.432 (10) and were fixed at 0.57/0.43 in the refinement.

Structure description top

For some time we have been involved in the study of silver complexes of chelating and bridging heterocyclic ligands (Steel, 2005; Fitchett & Steel, 2006; O'Keefe & Steel, 2007; Steel & Fitchett, 2008; Golder et al., 2010). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin (Byrn et al., 1993). X-ray crystal structures have been reported for complexes of 2-acetylpyridine with silver(I) perchlorate (Bowmaker et al., 2005; Drew et al., 2005), trifluoroacetate (Bowmaker et al., 2005), trifluoromethanesulfonate (Di Nicola et al., 2010) and nitrate (Bowmaker et al., 2005). The latter has a single 2-acetylpyridine bound to the silver with a chelating nitrate anion, while the others have two chelating 2-acetylpyridine ligands. We now report the structure of its complex with silver(I) tetrafluoridoborate, the title compound [Ag(C7H7NO)2] BF4 (I).

In (I), the asymmetric unit contains a complex cation comprising a silver(I) atom bound to two bidentate N,O-chelated 2-acetylpyridine ligands [Ag—N, 2.2018 (15), 2.2088 (14) Å; Ag—O, 2.5380 (13), 2.5454 (13) Å], and a tetrafluoridoborate counter-anion (Fig. 1). The tetrafluoridoborate anion is disordered over two orientations with relative F occupancies of 57:43% about a common central B. Since the silver atom makes no other contacts less than 2.72 Å it should be classified as four-coordinate (Young & Hanton, 2008). Calculation of the τ4 index (Yang et al., 2007) produces a value of 0.51 which means that the geometry around the silver should be described as seesaw.

For other silver complexes with the same ligand, see: Bowmaker et al. (2005); Drew et al. (2005); Di Nicola et al. (2010). For examples of our previous work on silver complexes, see: Steel (2005); Fitchett & Steel (2006); O'Keefe & Steel (2007); Steel & Fitchett (2008); Golder et al. (2010). For four-coordinate silver geometry, see: Young & Hanton (2008). For a definition of the τ4 index, see: Yang et al. (2007). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin, see: Byrn et al. (1993).

Computing details top

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level.
Bis(2-acetylpyridine-κ2N,O)silver(I) tetrafluoridoborate top
Crystal data top
[Ag(C7H7NO)2]BF4Z = 2
Mr = 436.95F(000) = 432
Triclinic, P1Dx = 1.836 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2635 (2) ÅCell parameters from 8378 reflections
b = 9.7091 (3) Åθ = 2.7–27.6°
c = 11.7390 (4) ŵ = 1.33 mm1
α = 85.624 (2)°T = 116 K
β = 81.452 (2)°Block, colourless
γ = 75.054 (2)°0.37 × 0.36 × 0.14 mm
V = 790.34 (4) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
3661 independent reflections
Radiation source: fine-focus sealed tube3255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
φ and ω scansθmax = 27.6°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 99
Tmin = 0.805, Tmax = 1.000k = 1212
18086 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.051H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0251P)2]
where P = (Fo2 + 2Fc2)/3
3661 reflections(Δ/σ)max = 0.001
247 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Ag(C7H7NO)2]BF4γ = 75.054 (2)°
Mr = 436.95V = 790.34 (4) Å3
Triclinic, P1Z = 2
a = 7.2635 (2) ÅMo Kα radiation
b = 9.7091 (3) ŵ = 1.33 mm1
c = 11.7390 (4) ÅT = 116 K
α = 85.624 (2)°0.37 × 0.36 × 0.14 mm
β = 81.452 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3661 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3255 reflections with I > 2σ(I)
Tmin = 0.805, Tmax = 1.000Rint = 0.042
18086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.051H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
3661 reflectionsΔρmin = 0.47 e Å3
247 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ag10.62372 (2)0.358455 (15)0.216889 (12)0.02670 (6)
N10.7431 (2)0.40200 (16)0.03743 (13)0.0200 (3)
C20.8515 (3)0.2955 (2)0.02733 (17)0.0266 (4)
H20.85960.20010.00100.032*
C30.9529 (3)0.3180 (3)0.13419 (18)0.0338 (5)
H31.02790.23980.17810.041*
C40.9425 (3)0.4558 (3)0.17500 (17)0.0350 (5)
H41.01250.47420.24710.042*
C50.8291 (3)0.5676 (2)0.10994 (16)0.0279 (5)
H50.81860.66350.13750.033*
C60.7311 (3)0.53789 (19)0.00415 (15)0.0200 (4)
O70.5413 (2)0.62559 (14)0.16893 (11)0.0279 (3)
C70.6095 (3)0.65429 (19)0.07221 (16)0.0227 (4)
C80.5744 (3)0.8064 (2)0.0268 (2)0.0353 (5)
H8A0.48630.86860.08400.053*
H8B0.51750.81570.04490.053*
H8C0.69660.83400.01170.053*
N90.4948 (2)0.26845 (16)0.37767 (14)0.0238 (4)
C100.3564 (3)0.1997 (2)0.37892 (17)0.0281 (4)
H100.31170.19170.30820.034*
C110.2753 (3)0.1397 (2)0.47867 (18)0.0299 (5)
H110.17570.09330.47650.036*
C120.3420 (3)0.1486 (2)0.58052 (17)0.0299 (5)
H120.28990.10770.65000.036*
C130.4870 (3)0.2183 (2)0.58072 (16)0.0262 (4)
H130.53600.22500.65020.031*
C140.5589 (3)0.27780 (19)0.47815 (15)0.0211 (4)
O150.7480 (2)0.43100 (16)0.38824 (12)0.0414 (4)
C150.7082 (3)0.3619 (2)0.47483 (16)0.0235 (4)
C160.7981 (3)0.3629 (2)0.58006 (17)0.0327 (5)
H16A0.69930.40690.64200.049*
H16B0.89560.41770.56380.049*
H16C0.85870.26470.60400.049*
B250.9904 (3)0.9500 (2)0.7668 (2)0.0297 (5)
F261.1442 (2)0.96995 (15)0.81393 (12)0.0499 (4)
F271.0213 (7)0.8050 (5)0.7373 (6)0.0530 (14)0.568 (10)
F280.8389 (6)0.9732 (7)0.8535 (4)0.0778 (17)0.568 (10)
F290.9559 (8)1.0366 (5)0.6754 (4)0.0486 (13)0.568 (10)
F27'0.8174 (6)1.0520 (7)0.7916 (8)0.080 (3)0.432 (10)
F28'1.0393 (11)0.9638 (11)0.6459 (4)0.059 (2)0.432 (10)
F29'0.9705 (11)0.8213 (7)0.7954 (6)0.0507 (17)0.432 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.03524 (10)0.02888 (9)0.01804 (8)0.01335 (7)0.00432 (6)0.00624 (6)
N10.0188 (8)0.0235 (8)0.0192 (8)0.0063 (7)0.0057 (6)0.0002 (6)
C20.0221 (11)0.0319 (11)0.0285 (10)0.0069 (9)0.0088 (8)0.0063 (8)
C30.0235 (11)0.0533 (15)0.0262 (11)0.0086 (10)0.0028 (8)0.0161 (10)
C40.0231 (11)0.0685 (16)0.0166 (10)0.0177 (11)0.0005 (8)0.0047 (10)
C50.0226 (11)0.0441 (13)0.0214 (10)0.0163 (9)0.0076 (8)0.0088 (9)
C60.0176 (10)0.0269 (10)0.0183 (9)0.0094 (8)0.0073 (7)0.0039 (7)
O70.0334 (8)0.0262 (7)0.0217 (7)0.0048 (6)0.0011 (6)0.0005 (6)
C70.0180 (10)0.0233 (10)0.0286 (10)0.0070 (8)0.0081 (8)0.0038 (8)
C80.0332 (13)0.0251 (11)0.0470 (14)0.0087 (9)0.0058 (10)0.0083 (9)
N90.0267 (9)0.0215 (8)0.0229 (8)0.0064 (7)0.0042 (7)0.0035 (6)
C100.0287 (12)0.0309 (11)0.0270 (10)0.0101 (9)0.0074 (8)0.0015 (8)
C110.0241 (11)0.0300 (11)0.0353 (12)0.0102 (9)0.0027 (9)0.0001 (9)
C120.0320 (12)0.0300 (11)0.0261 (11)0.0109 (9)0.0063 (8)0.0005 (8)
C130.0306 (12)0.0272 (10)0.0198 (10)0.0072 (9)0.0008 (8)0.0031 (8)
C140.0235 (10)0.0177 (9)0.0198 (9)0.0026 (7)0.0008 (7)0.0001 (7)
O150.0635 (11)0.0464 (10)0.0277 (8)0.0383 (9)0.0109 (7)0.0100 (7)
C150.0271 (11)0.0206 (9)0.0219 (10)0.0050 (8)0.0008 (8)0.0030 (7)
C160.0323 (12)0.0444 (13)0.0245 (11)0.0153 (10)0.0037 (9)0.0002 (9)
B250.0255 (13)0.0262 (12)0.0366 (13)0.0086 (10)0.0009 (10)0.0049 (10)
F260.0574 (10)0.0577 (9)0.0475 (9)0.0335 (8)0.0209 (7)0.0115 (7)
F270.040 (2)0.0249 (14)0.099 (4)0.0053 (14)0.028 (2)0.003 (2)
F280.047 (2)0.097 (4)0.071 (3)0.009 (2)0.0300 (17)0.005 (2)
F290.060 (3)0.043 (2)0.051 (2)0.026 (2)0.022 (2)0.0213 (17)
F27'0.043 (3)0.065 (4)0.118 (7)0.018 (2)0.011 (3)0.027 (4)
F28'0.065 (4)0.098 (6)0.031 (2)0.053 (4)0.006 (2)0.015 (3)
F29'0.063 (4)0.034 (3)0.067 (4)0.030 (3)0.022 (3)0.022 (3)
Geometric parameters (Å, º) top
Ag1—N12.2088 (14)C10—C111.388 (3)
Ag1—N92.2018 (15)C10—H100.9500
Ag1—O72.5454 (13)C11—C121.372 (3)
Ag1—O152.5380 (15)C11—H110.9500
N1—C21.338 (2)C12—C131.391 (3)
N1—C61.357 (2)C12—H120.9500
C2—C31.389 (3)C13—C141.385 (2)
C2—H20.9500C13—H130.9500
C3—C41.373 (3)C14—C151.510 (3)
C3—H30.9500O15—C151.215 (2)
C4—C51.385 (3)C15—C161.482 (3)
C4—H40.9500C16—H16A0.9800
C5—C61.386 (2)C16—H16B0.9800
C5—H50.9500C16—H16C0.9800
C6—C71.505 (3)B25—F29'1.307 (6)
O7—C71.212 (2)B25—F291.324 (4)
C7—C81.502 (2)B25—F281.368 (4)
C8—H8A0.9800B25—F261.380 (3)
C8—H8B0.9800B25—F27'1.393 (5)
C8—H8C0.9800B25—F28'1.415 (5)
N9—C101.340 (2)B25—F271.428 (5)
N9—C141.348 (2)
N9—Ag1—N1165.92 (6)N9—C10—C11123.05 (19)
N9—Ag1—O1570.09 (5)N9—C10—H10118.5
N1—Ag1—O15122.03 (5)C11—C10—H10118.5
N9—Ag1—O7121.62 (5)C12—C11—C10118.66 (19)
N1—Ag1—O769.62 (5)C12—C11—H11120.7
O15—Ag1—O783.23 (5)C10—C11—H11120.7
C2—N1—C6118.14 (16)C11—C12—C13119.11 (17)
C2—N1—Ag1120.49 (12)C11—C12—H12120.4
C6—N1—Ag1120.74 (13)C13—C12—H12120.4
N1—C2—C3122.97 (19)C14—C13—C12119.07 (19)
N1—C2—H2118.5C14—C13—H13120.5
C3—C2—H2118.5C12—C13—H13120.5
C4—C3—C2118.6 (2)N9—C14—C13122.03 (17)
C4—C3—H3120.7N9—C14—C15116.76 (15)
C2—C3—H3120.7C13—C14—C15121.16 (18)
C3—C4—C5119.31 (18)C15—O15—Ag1110.96 (13)
C3—C4—H4120.3O15—C15—C16121.06 (18)
C5—C4—H4120.3O15—C15—C14120.05 (18)
C4—C5—C6119.22 (19)C16—C15—C14118.84 (15)
C4—C5—H5120.4C15—C16—H16A109.5
C6—C5—H5120.4C15—C16—H16B109.5
N1—C6—C5121.73 (18)H16A—C16—H16B109.5
N1—C6—C7116.32 (15)C15—C16—H16C109.5
C5—C6—C7121.93 (17)H16A—C16—H16C109.5
C7—O7—Ag1112.42 (12)H16B—C16—H16C109.5
O7—C7—C8120.55 (19)F29—B25—F28112.6 (3)
O7—C7—C6120.42 (16)F29'—B25—F26109.0 (3)
C8—C7—C6119.04 (17)F29—B25—F26111.2 (2)
C7—C8—H8A109.5F28—B25—F26105.6 (3)
C7—C8—H8B109.5F29'—B25—F27'111.3 (4)
H8A—C8—H8B109.5F26—B25—F27'115.8 (3)
C7—C8—H8C109.5F29'—B25—F28'109.9 (4)
H8A—C8—H8C109.5F26—B25—F28'105.7 (3)
H8B—C8—H8C109.5F27'—B25—F28'104.8 (3)
C10—N9—C14118.07 (16)F29—B25—F27110.4 (3)
C10—N9—Ag1121.89 (13)F28—B25—F27105.7 (3)
C14—N9—Ag1120.00 (12)F26—B25—F27111.2 (3)

Experimental details

Crystal data
Chemical formula[Ag(C7H7NO)2]BF4
Mr436.95
Crystal system, space groupTriclinic, P1
Temperature (K)116
a, b, c (Å)7.2635 (2), 9.7091 (3), 11.7390 (4)
α, β, γ (°)85.624 (2), 81.452 (2), 75.054 (2)
V3)790.34 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.33
Crystal size (mm)0.37 × 0.36 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.805, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
18086, 3661, 3255
Rint0.042
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.051, 1.01
No. of reflections3661
No. of parameters247
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.47

Computer programs: SMART (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond angles (º) top
N9—Ag1—N1165.92 (6)N9—Ag1—O7121.62 (5)
N9—Ag1—O1570.09 (5)N1—Ag1—O769.62 (5)
N1—Ag1—O15122.03 (5)O15—Ag1—O783.23 (5)
 

Acknowledgements

We thank the Chemistry Department, University of Canterbury, New Zealand, for funding.

References

First citationBowmaker, G. A., Effendy, Nitiatmodjo, M., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4327–4341.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationByrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497.  CSD CrossRef CAS Web of Science Google Scholar
First citationDi Nicola, C., Effendy, Marchetti, F., Nervi, C., Pettinari, C., Robinson, W. T., Sobolev, A. N. & White, A. H. (2010). Dalton Trans. pp. 908–922.  Web of Science CSD CrossRef Google Scholar
First citationDrew, M. G. B., Naskar, J. P., Chowdhury, S. & Datta, D. (2005). Eur. J. Inorg. Chem. pp. 4834–4839.  Web of Science CSD CrossRef Google Scholar
First citationFitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886–4888.  Web of Science CSD CrossRef Google Scholar
First citationGolder, R. K., Fitchett, C. M., Wikaira, J. L. & Steel, P. J. (2010). Acta Cryst. E66, m1324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationO'Keefe, B. J. & Steel, P. J. (2007) CrystEngComm, 9, 222–227.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteel, P. J. (2005). Acc. Chem. Res. 38, 243–250.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSteel, P. J. & Fitchett, C. M. (2008). Coord. Chem. Rev. 205, 990–1006.  Web of Science CrossRef Google Scholar
First citationYang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYoung, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346–1386.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds