metal-organic compounds
Bis(2-acetylpyridine-κ2N,O)silver(I) tetrafluoridoborate: a complex with silver in a seesaw coordination geometry
aChemistry Department, University of Canterbury, PO Box 4800, Christchurch, New Zealand
*Correspondence e-mail: peter.steel@canterbury.ac.nz
The reaction of 2-acetylpyridine with silver(I) tetrafluoridoborate leads to the discrete title complex, [Ag(C7H7NO)2]BF4, in the cation of which the Ag atom is coordinated by two 2-acetylpyridine ligands, each of which is N,O-bidentate, albeit with stronger bonding to the N atoms [Ag—N = 2.2018 (15) and 2.2088 (14) Å; Ag—O = 2.5380 (13) and 2.5454 (13) Å]. The four-coordinate Ag atom has a seesaw coordination geometry with a τ4 index of 0.51. The tetrafluoridoborate anion is disordered over two orientations with 0.568 (10):0.432 (10) occupancies.
Related literature
For other silver complexes with the same ligand, see: Bowmaker et al. (2005); Drew et al. (2005); Di Nicola et al. (2010). For examples of our previous work on silver complexes, see: Steel (2005); Fitchett & Steel (2006); O'Keefe & Steel (2007); Steel & Fitchett (2008); Golder et al. (2010). For details of the coordination geometry of four-coordinate silver, see: Young & Hanton (2008). For a definition of the τ4 index, see: Yang et al. (2007). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin, see: Byrn et al. (1993).
Experimental
Crystal data
|
Refinement
|
|
Data collection: SMART (Bruker, 2009); cell SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
https://doi.org/10.1107/S1600536810048014/zs2079sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: https://doi.org/10.1107/S1600536810048014/zs2079Isup2.hkl
The title compound was prepared by diffusion of pentane into a methanol solution of a mixture of 2-acetylpyridine and silver(I) tetrafluoridoborate.
Hydrogen atoms were included in calculated positions as riding atoms, with Uiso(H) = 1.2Ueq(C) for the pyridine H atoms and Uiso(H) = 1.5Ueq(C) for the acetyl H atoms. The occupancies for the disordered F atoms of the BF4 anion were 0.568 (10)/0.432 (10) and were fixed at 0.57/0.43 in the refinement.
For some time we have been involved in the study of silver complexes of chelating and bridging heterocyclic ligands (Steel, 2005; Fitchett & Steel, 2006; O'Keefe & Steel, 2007; Steel & Fitchett, 2008; Golder et al., 2010). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin (Byrn et al., 1993). X-ray crystal structures have been reported for complexes of 2-acetylpyridine with silver(I) perchlorate (Bowmaker et al., 2005; Drew et al., 2005), trifluoroacetate (Bowmaker et al., 2005), trifluoromethanesulfonate (Di Nicola et al., 2010) and nitrate (Bowmaker et al., 2005). The latter has a single 2-acetylpyridine bound to the silver with a chelating nitrate anion, while the others have two chelating 2-acetylpyridine ligands. We now report the structure of its complex with silver(I) tetrafluoridoborate, the title compound [Ag(C7H7NO)2] BF4 (I).
In (I), the τ4 index (Yang et al., 2007) produces a value of 0.51 which means that the geometry around the silver should be described as seesaw.
contains a complex cation comprising a silver(I) atom bound to two bidentate N,O-chelated 2-acetylpyridine ligands [Ag—N, 2.2018 (15), 2.2088 (14) Å; Ag—O, 2.5380 (13), 2.5454 (13) Å], and a tetrafluoridoborate counter-anion (Fig. 1). The tetrafluoridoborate anion is disordered over two orientations with relative F occupancies of 57:43% about a common central B. Since the silver atom makes no other contacts less than 2.72 Å it should be classified as four-coordinate (Young & Hanton, 2008). Calculation of theFor other silver complexes with the same ligand, see: Bowmaker et al. (2005); Drew et al. (2005); Di Nicola et al. (2010). For examples of our previous work on silver complexes, see: Steel (2005); Fitchett & Steel (2006); O'Keefe & Steel (2007); Steel & Fitchett (2008); Golder et al. (2010). For four-coordinate silver geometry, see: Young & Hanton (2008). For a definition of the τ4 index, see: Yang et al. (2007). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin, see: Byrn et al. (1993).
Data collection: SMART (Bruker, 2009); cell
SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title complex, showing displacement ellipsoids at the 50% probability level. |
[Ag(C7H7NO)2]BF4 | Z = 2 |
Mr = 436.95 | F(000) = 432 |
Triclinic, P1 | Dx = 1.836 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.2635 (2) Å | Cell parameters from 8378 reflections |
b = 9.7091 (3) Å | θ = 2.7–27.6° |
c = 11.7390 (4) Å | µ = 1.33 mm−1 |
α = 85.624 (2)° | T = 116 K |
β = 81.452 (2)° | Block, colourless |
γ = 75.054 (2)° | 0.37 × 0.36 × 0.14 mm |
V = 790.34 (4) Å3 |
Bruker SMART CCD area-detector diffractometer | 3661 independent reflections |
Radiation source: fine-focus sealed tube | 3255 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.042 |
φ and ω scans | θmax = 27.6°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | h = −9→9 |
Tmin = 0.805, Tmax = 1.000 | k = −12→12 |
18086 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0251P)2] where P = (Fo2 + 2Fc2)/3 |
3661 reflections | (Δ/σ)max = 0.001 |
247 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
[Ag(C7H7NO)2]BF4 | γ = 75.054 (2)° |
Mr = 436.95 | V = 790.34 (4) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.2635 (2) Å | Mo Kα radiation |
b = 9.7091 (3) Å | µ = 1.33 mm−1 |
c = 11.7390 (4) Å | T = 116 K |
α = 85.624 (2)° | 0.37 × 0.36 × 0.14 mm |
β = 81.452 (2)° |
Bruker SMART CCD area-detector diffractometer | 3661 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2009) | 3255 reflections with I > 2σ(I) |
Tmin = 0.805, Tmax = 1.000 | Rint = 0.042 |
18086 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.051 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.33 e Å−3 |
3661 reflections | Δρmin = −0.47 e Å−3 |
247 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Ag1 | 0.62372 (2) | 0.358455 (15) | 0.216889 (12) | 0.02670 (6) | |
N1 | 0.7431 (2) | 0.40200 (16) | 0.03743 (13) | 0.0200 (3) | |
C2 | 0.8515 (3) | 0.2955 (2) | −0.02733 (17) | 0.0266 (4) | |
H2 | 0.8596 | 0.2001 | 0.0010 | 0.032* | |
C3 | 0.9529 (3) | 0.3180 (3) | −0.13419 (18) | 0.0338 (5) | |
H3 | 1.0279 | 0.2398 | −0.1781 | 0.041* | |
C4 | 0.9425 (3) | 0.4558 (3) | −0.17500 (17) | 0.0350 (5) | |
H4 | 1.0125 | 0.4742 | −0.2471 | 0.042* | |
C5 | 0.8291 (3) | 0.5676 (2) | −0.10994 (16) | 0.0279 (5) | |
H5 | 0.8186 | 0.6635 | −0.1375 | 0.033* | |
C6 | 0.7311 (3) | 0.53789 (19) | −0.00415 (15) | 0.0200 (4) | |
O7 | 0.5413 (2) | 0.62559 (14) | 0.16893 (11) | 0.0279 (3) | |
C7 | 0.6095 (3) | 0.65429 (19) | 0.07221 (16) | 0.0227 (4) | |
C8 | 0.5744 (3) | 0.8064 (2) | 0.0268 (2) | 0.0353 (5) | |
H8A | 0.4863 | 0.8686 | 0.0840 | 0.053* | |
H8B | 0.5175 | 0.8157 | −0.0449 | 0.053* | |
H8C | 0.6966 | 0.8340 | 0.0117 | 0.053* | |
N9 | 0.4948 (2) | 0.26845 (16) | 0.37767 (14) | 0.0238 (4) | |
C10 | 0.3564 (3) | 0.1997 (2) | 0.37892 (17) | 0.0281 (4) | |
H10 | 0.3117 | 0.1917 | 0.3082 | 0.034* | |
C11 | 0.2753 (3) | 0.1397 (2) | 0.47867 (18) | 0.0299 (5) | |
H11 | 0.1757 | 0.0933 | 0.4765 | 0.036* | |
C12 | 0.3420 (3) | 0.1486 (2) | 0.58052 (17) | 0.0299 (5) | |
H12 | 0.2899 | 0.1077 | 0.6500 | 0.036* | |
C13 | 0.4870 (3) | 0.2183 (2) | 0.58072 (16) | 0.0262 (4) | |
H13 | 0.5360 | 0.2250 | 0.6502 | 0.031* | |
C14 | 0.5589 (3) | 0.27780 (19) | 0.47815 (15) | 0.0211 (4) | |
O15 | 0.7480 (2) | 0.43100 (16) | 0.38824 (12) | 0.0414 (4) | |
C15 | 0.7082 (3) | 0.3619 (2) | 0.47483 (16) | 0.0235 (4) | |
C16 | 0.7981 (3) | 0.3629 (2) | 0.58006 (17) | 0.0327 (5) | |
H16A | 0.6993 | 0.4069 | 0.6420 | 0.049* | |
H16B | 0.8956 | 0.4177 | 0.5638 | 0.049* | |
H16C | 0.8587 | 0.2647 | 0.6040 | 0.049* | |
B25 | 0.9904 (3) | 0.9500 (2) | 0.7668 (2) | 0.0297 (5) | |
F26 | 1.1442 (2) | 0.96995 (15) | 0.81393 (12) | 0.0499 (4) | |
F27 | 1.0213 (7) | 0.8050 (5) | 0.7373 (6) | 0.0530 (14) | 0.568 (10) |
F28 | 0.8389 (6) | 0.9732 (7) | 0.8535 (4) | 0.0778 (17) | 0.568 (10) |
F29 | 0.9559 (8) | 1.0366 (5) | 0.6754 (4) | 0.0486 (13) | 0.568 (10) |
F27' | 0.8174 (6) | 1.0520 (7) | 0.7916 (8) | 0.080 (3) | 0.432 (10) |
F28' | 1.0393 (11) | 0.9638 (11) | 0.6459 (4) | 0.059 (2) | 0.432 (10) |
F29' | 0.9705 (11) | 0.8213 (7) | 0.7954 (6) | 0.0507 (17) | 0.432 (10) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.03524 (10) | 0.02888 (9) | 0.01804 (8) | −0.01335 (7) | −0.00432 (6) | 0.00624 (6) |
N1 | 0.0188 (8) | 0.0235 (8) | 0.0192 (8) | −0.0063 (7) | −0.0057 (6) | −0.0002 (6) |
C2 | 0.0221 (11) | 0.0319 (11) | 0.0285 (10) | −0.0069 (9) | −0.0088 (8) | −0.0063 (8) |
C3 | 0.0235 (11) | 0.0533 (15) | 0.0262 (11) | −0.0086 (10) | −0.0028 (8) | −0.0161 (10) |
C4 | 0.0231 (11) | 0.0685 (16) | 0.0166 (10) | −0.0177 (11) | −0.0005 (8) | −0.0047 (10) |
C5 | 0.0226 (11) | 0.0441 (13) | 0.0214 (10) | −0.0163 (9) | −0.0076 (8) | 0.0088 (9) |
C6 | 0.0176 (10) | 0.0269 (10) | 0.0183 (9) | −0.0094 (8) | −0.0073 (7) | 0.0039 (7) |
O7 | 0.0334 (8) | 0.0262 (7) | 0.0217 (7) | −0.0048 (6) | −0.0011 (6) | −0.0005 (6) |
C7 | 0.0180 (10) | 0.0233 (10) | 0.0286 (10) | −0.0070 (8) | −0.0081 (8) | 0.0038 (8) |
C8 | 0.0332 (13) | 0.0251 (11) | 0.0470 (14) | −0.0087 (9) | −0.0058 (10) | 0.0083 (9) |
N9 | 0.0267 (9) | 0.0215 (8) | 0.0229 (8) | −0.0064 (7) | −0.0042 (7) | 0.0035 (6) |
C10 | 0.0287 (12) | 0.0309 (11) | 0.0270 (10) | −0.0101 (9) | −0.0074 (8) | 0.0015 (8) |
C11 | 0.0241 (11) | 0.0300 (11) | 0.0353 (12) | −0.0102 (9) | 0.0027 (9) | −0.0001 (9) |
C12 | 0.0320 (12) | 0.0300 (11) | 0.0261 (11) | −0.0109 (9) | 0.0063 (8) | −0.0005 (8) |
C13 | 0.0306 (12) | 0.0272 (10) | 0.0198 (10) | −0.0072 (9) | 0.0008 (8) | −0.0031 (8) |
C14 | 0.0235 (10) | 0.0177 (9) | 0.0198 (9) | −0.0026 (7) | −0.0008 (7) | 0.0001 (7) |
O15 | 0.0635 (11) | 0.0464 (10) | 0.0277 (8) | −0.0383 (9) | −0.0109 (7) | 0.0100 (7) |
C15 | 0.0271 (11) | 0.0206 (9) | 0.0219 (10) | −0.0050 (8) | −0.0008 (8) | −0.0030 (7) |
C16 | 0.0323 (12) | 0.0444 (13) | 0.0245 (11) | −0.0153 (10) | −0.0037 (9) | −0.0002 (9) |
B25 | 0.0255 (13) | 0.0262 (12) | 0.0366 (13) | −0.0086 (10) | −0.0009 (10) | 0.0049 (10) |
F26 | 0.0574 (10) | 0.0577 (9) | 0.0475 (9) | −0.0335 (8) | −0.0209 (7) | 0.0115 (7) |
F27 | 0.040 (2) | 0.0249 (14) | 0.099 (4) | −0.0053 (14) | −0.028 (2) | −0.003 (2) |
F28 | 0.047 (2) | 0.097 (4) | 0.071 (3) | −0.009 (2) | 0.0300 (17) | 0.005 (2) |
F29 | 0.060 (3) | 0.043 (2) | 0.051 (2) | −0.026 (2) | −0.022 (2) | 0.0213 (17) |
F27' | 0.043 (3) | 0.065 (4) | 0.118 (7) | 0.018 (2) | −0.011 (3) | −0.027 (4) |
F28' | 0.065 (4) | 0.098 (6) | 0.031 (2) | −0.053 (4) | −0.006 (2) | 0.015 (3) |
F29' | 0.063 (4) | 0.034 (3) | 0.067 (4) | −0.030 (3) | −0.022 (3) | 0.022 (3) |
Ag1—N1 | 2.2088 (14) | C10—C11 | 1.388 (3) |
Ag1—N9 | 2.2018 (15) | C10—H10 | 0.9500 |
Ag1—O7 | 2.5454 (13) | C11—C12 | 1.372 (3) |
Ag1—O15 | 2.5380 (15) | C11—H11 | 0.9500 |
N1—C2 | 1.338 (2) | C12—C13 | 1.391 (3) |
N1—C6 | 1.357 (2) | C12—H12 | 0.9500 |
C2—C3 | 1.389 (3) | C13—C14 | 1.385 (2) |
C2—H2 | 0.9500 | C13—H13 | 0.9500 |
C3—C4 | 1.373 (3) | C14—C15 | 1.510 (3) |
C3—H3 | 0.9500 | O15—C15 | 1.215 (2) |
C4—C5 | 1.385 (3) | C15—C16 | 1.482 (3) |
C4—H4 | 0.9500 | C16—H16A | 0.9800 |
C5—C6 | 1.386 (2) | C16—H16B | 0.9800 |
C5—H5 | 0.9500 | C16—H16C | 0.9800 |
C6—C7 | 1.505 (3) | B25—F29' | 1.307 (6) |
O7—C7 | 1.212 (2) | B25—F29 | 1.324 (4) |
C7—C8 | 1.502 (2) | B25—F28 | 1.368 (4) |
C8—H8A | 0.9800 | B25—F26 | 1.380 (3) |
C8—H8B | 0.9800 | B25—F27' | 1.393 (5) |
C8—H8C | 0.9800 | B25—F28' | 1.415 (5) |
N9—C10 | 1.340 (2) | B25—F27 | 1.428 (5) |
N9—C14 | 1.348 (2) | ||
N9—Ag1—N1 | 165.92 (6) | N9—C10—C11 | 123.05 (19) |
N9—Ag1—O15 | 70.09 (5) | N9—C10—H10 | 118.5 |
N1—Ag1—O15 | 122.03 (5) | C11—C10—H10 | 118.5 |
N9—Ag1—O7 | 121.62 (5) | C12—C11—C10 | 118.66 (19) |
N1—Ag1—O7 | 69.62 (5) | C12—C11—H11 | 120.7 |
O15—Ag1—O7 | 83.23 (5) | C10—C11—H11 | 120.7 |
C2—N1—C6 | 118.14 (16) | C11—C12—C13 | 119.11 (17) |
C2—N1—Ag1 | 120.49 (12) | C11—C12—H12 | 120.4 |
C6—N1—Ag1 | 120.74 (13) | C13—C12—H12 | 120.4 |
N1—C2—C3 | 122.97 (19) | C14—C13—C12 | 119.07 (19) |
N1—C2—H2 | 118.5 | C14—C13—H13 | 120.5 |
C3—C2—H2 | 118.5 | C12—C13—H13 | 120.5 |
C4—C3—C2 | 118.6 (2) | N9—C14—C13 | 122.03 (17) |
C4—C3—H3 | 120.7 | N9—C14—C15 | 116.76 (15) |
C2—C3—H3 | 120.7 | C13—C14—C15 | 121.16 (18) |
C3—C4—C5 | 119.31 (18) | C15—O15—Ag1 | 110.96 (13) |
C3—C4—H4 | 120.3 | O15—C15—C16 | 121.06 (18) |
C5—C4—H4 | 120.3 | O15—C15—C14 | 120.05 (18) |
C4—C5—C6 | 119.22 (19) | C16—C15—C14 | 118.84 (15) |
C4—C5—H5 | 120.4 | C15—C16—H16A | 109.5 |
C6—C5—H5 | 120.4 | C15—C16—H16B | 109.5 |
N1—C6—C5 | 121.73 (18) | H16A—C16—H16B | 109.5 |
N1—C6—C7 | 116.32 (15) | C15—C16—H16C | 109.5 |
C5—C6—C7 | 121.93 (17) | H16A—C16—H16C | 109.5 |
C7—O7—Ag1 | 112.42 (12) | H16B—C16—H16C | 109.5 |
O7—C7—C8 | 120.55 (19) | F29—B25—F28 | 112.6 (3) |
O7—C7—C6 | 120.42 (16) | F29'—B25—F26 | 109.0 (3) |
C8—C7—C6 | 119.04 (17) | F29—B25—F26 | 111.2 (2) |
C7—C8—H8A | 109.5 | F28—B25—F26 | 105.6 (3) |
C7—C8—H8B | 109.5 | F29'—B25—F27' | 111.3 (4) |
H8A—C8—H8B | 109.5 | F26—B25—F27' | 115.8 (3) |
C7—C8—H8C | 109.5 | F29'—B25—F28' | 109.9 (4) |
H8A—C8—H8C | 109.5 | F26—B25—F28' | 105.7 (3) |
H8B—C8—H8C | 109.5 | F27'—B25—F28' | 104.8 (3) |
C10—N9—C14 | 118.07 (16) | F29—B25—F27 | 110.4 (3) |
C10—N9—Ag1 | 121.89 (13) | F28—B25—F27 | 105.7 (3) |
C14—N9—Ag1 | 120.00 (12) | F26—B25—F27 | 111.2 (3) |
Experimental details
Crystal data | |
Chemical formula | [Ag(C7H7NO)2]BF4 |
Mr | 436.95 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 116 |
a, b, c (Å) | 7.2635 (2), 9.7091 (3), 11.7390 (4) |
α, β, γ (°) | 85.624 (2), 81.452 (2), 75.054 (2) |
V (Å3) | 790.34 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.33 |
Crystal size (mm) | 0.37 × 0.36 × 0.14 |
Data collection | |
Diffractometer | Bruker SMART CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2009) |
Tmin, Tmax | 0.805, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 18086, 3661, 3255 |
Rint | 0.042 |
(sin θ/λ)max (Å−1) | 0.651 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.051, 1.01 |
No. of reflections | 3661 |
No. of parameters | 247 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.47 |
Computer programs: SMART (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
N9—Ag1—N1 | 165.92 (6) | N9—Ag1—O7 | 121.62 (5) |
N9—Ag1—O15 | 70.09 (5) | N1—Ag1—O7 | 69.62 (5) |
N1—Ag1—O15 | 122.03 (5) | O15—Ag1—O7 | 83.23 (5) |
Acknowledgements
We thank the Chemistry Department, University of Canterbury, New Zealand, for funding.
References
Bowmaker, G. A., Effendy, Nitiatmodjo, M., Skelton, B. W. & White, A. H. (2005). Inorg. Chim. Acta, 358, 4327–4341. Web of Science CSD CrossRef CAS Google Scholar
Bruker (2009). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Byrn, M. P., Curtis, C. J., Hsiou, Y., Khan, S. I., Sawin, P. A., Tendick, S. K., Terzis, A. & Strouse, C. E. (1993). J. Am. Chem. Soc. 115, 9480–9497. CSD CrossRef CAS Web of Science Google Scholar
Di Nicola, C., Effendy, Marchetti, F., Nervi, C., Pettinari, C., Robinson, W. T., Sobolev, A. N. & White, A. H. (2010). Dalton Trans. pp. 908–922. Web of Science CSD CrossRef Google Scholar
Drew, M. G. B., Naskar, J. P., Chowdhury, S. & Datta, D. (2005). Eur. J. Inorg. Chem. pp. 4834–4839. Web of Science CSD CrossRef Google Scholar
Fitchett, C. M. & Steel, P. J. (2006). Dalton Trans. pp. 4886–4888. Web of Science CSD CrossRef Google Scholar
Golder, R. K., Fitchett, C. M., Wikaira, J. L. & Steel, P. J. (2010). Acta Cryst. E66, m1324. Web of Science CSD CrossRef IUCr Journals Google Scholar
O'Keefe, B. J. & Steel, P. J. (2007) CrystEngComm, 9, 222–227. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Steel, P. J. (2005). Acc. Chem. Res. 38, 243–250. Web of Science CrossRef PubMed CAS Google Scholar
Steel, P. J. & Fitchett, C. M. (2008). Coord. Chem. Rev. 205, 990–1006. Web of Science CrossRef Google Scholar
Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. Web of Science CSD CrossRef PubMed CAS Google Scholar
Young, A. G. & Hanton, L. R. (2008). Coord. Chem. Rev. 252, 1346–1386. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
For some time we have been involved in the study of silver complexes of chelating and bridging heterocyclic ligands (Steel, 2005; Fitchett & Steel, 2006; O'Keefe & Steel, 2007; Steel & Fitchett, 2008; Golder et al., 2010). 2-acetylpyridine coordinates to a variety of transition metals, usually as an N,O-chelating ligand, although it has been reported to act as an O-monodentate donor to a zinc porphyrin (Byrn et al., 1993). X-ray crystal structures have been reported for complexes of 2-acetylpyridine with silver(I) perchlorate (Bowmaker et al., 2005; Drew et al., 2005), trifluoroacetate (Bowmaker et al., 2005), trifluoromethanesulfonate (Di Nicola et al., 2010) and nitrate (Bowmaker et al., 2005). The latter has a single 2-acetylpyridine bound to the silver with a chelating nitrate anion, while the others have two chelating 2-acetylpyridine ligands. We now report the structure of its complex with silver(I) tetrafluoridoborate, the title compound [Ag(C7H7NO)2] BF4 (I).
In (I), the asymmetric unit contains a complex cation comprising a silver(I) atom bound to two bidentate N,O-chelated 2-acetylpyridine ligands [Ag—N, 2.2018 (15), 2.2088 (14) Å; Ag—O, 2.5380 (13), 2.5454 (13) Å], and a tetrafluoridoborate counter-anion (Fig. 1). The tetrafluoridoborate anion is disordered over two orientations with relative F occupancies of 57:43% about a common central B. Since the silver atom makes no other contacts less than 2.72 Å it should be classified as four-coordinate (Young & Hanton, 2008). Calculation of the τ4 index (Yang et al., 2007) produces a value of 0.51 which means that the geometry around the silver should be described as seesaw.