organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Di­chloro­benzaldehyde 4-methyl­thio­semicarbazone

aDepartment of Chemistry, Dezhou University, Dezhou 253023, People's Republic of China
*Correspondence e-mail: rongchunli01@126.com

(Received 28 November 2010; accepted 29 November 2010; online 4 December 2010)

The mol­ecule of the title compound, C9H9Cl2N3S, has an E configuration about the C=N bond. In the crystal, mol­ecules are linked through inter­molecular N—H⋯S hydrogen bonds, forming zigzag chains along the a axis.

Related literature

For background to Schiff bases derived from thio­semicarbazone and its derivatives, see: Casas et al. (2001[Casas, J. S., Castineiras, A., Lobana, T. S., Sanchez, A., Sordo, J. & Garcia-Tasende, M. S. (2001). J. Chem. Crystallogr. 31, 329-332.]); Beraldo et al. (2001[Beraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct. 559, 99-106.]); Jouad et al. (2002[Jouad, E. M., Allain, M., Khan, M. A. & Bouet, G. M. (2002). J. Mol. Struct. 604, 205-209.]); Swearingen et al. (2002[Swearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem. 27, 724-731.]). For a similar structure reported recently by the author, see: Li (2010[Li, R. (2010). Acta Cryst. E66, o3324.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For similar structures, see: Selvanayagam et al. (2002[Selvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. E58, o1336-o1338.]); Karakurt et al. (2003[Karakurt, T., Dinçer, M., Yılmaz, I. & Çukurovalı, A. (2003). Acta Cryst. E59, o1997-o1999.]); Bernhardt et al. (2003[Bernhardt, P. V., Caldwell, L. M., Lovejoy, D. B. & Richardson, D. R. (2003). Acta Cryst. C59, o629-o633.]); Sampath et al. (2003[Sampath, N., Malathy Sony, S. M., Ponnuswamy, M. N. & Nethaji, M. (2003). Acta Cryst. C59, o346-o348.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9Cl2N3S

  • Mr = 262.15

  • Monoclinic, C 2/c

  • a = 13.444 (3) Å

  • b = 9.3299 (19) Å

  • c = 18.499 (4) Å

  • β = 92.160 (2)°

  • V = 2318.7 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.71 mm−1

  • T = 298 K

  • 0.18 × 0.17 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.]) Tmin = 0.883, Tmax = 0.913

  • 7167 measured reflections

  • 2518 independent reflections

  • 1956 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.092

  • S = 1.05

  • 2518 reflections

  • 143 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯S1i 0.90 (1) 2.54 (1) 3.4169 (18) 167 (2)
N3—H3⋯S1ii 0.89 (1) 2.77 (2) 3.491 (2) 139 (2)
Symmetry codes: (i) [-x, y, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Thiosemicarbazone and its derivatives are important materials for the preparation of Schiff bases (Casas et al., 2001; Beraldo et al., 2001; Jouad et al., 2002; Swearingen et al., 2002). As a continuation of the work on the structures of such compounds (Li, 2010), in this paper, the title new Schiff base compound derived from the condensation of 2,4-dichlorobenzaldehyde with 4-methylthiosemicarbazone is reported.

The molecule of the title compound, Fig. 1, possesses an E configuration about the C7N1 bond. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Selvanayagam et al., 2002; Karakurt et al., 2003; Bernhardt et al., 2003; Sampath et al., 2003).

In the crystal, molecules are linked through intermolecular N—H···S hydrogen bonds (Table 1), to form zigzag chains along the a axis (Fig. 2).

Related literature top

For background to Schiff bases derived from thiosemicarbazone and its derivatives, see: Casas et al. (2001); Beraldo et al. (2001); Jouad et al. (2002); Swearingen et al. (2002). For a structure reported recently by the author, see: Li (2010). For bond-length data, see: Allen et al. (1987). For similar structures, see: Selvanayagam et al. (2002); Karakurt et al. (2003); Bernhardt et al. (2003); Sampath et al. (2003).

Experimental top

The title compound was prepared by the Schiff base condensation of equimolar quantities of 2,4-dichlorobenzaldehyde (0.174 g, 1 mmol) with 4-methylthiosemicarbazone (0.105 g, 1 mmol) in methanol. The excess methanol was removed by distillation. Colourless block shaped single crystals were obatined by slow evaporation of an ethanol solution of the product in air.

Refinement top

The amino H atoms were located in a difference map and refined with N—H distance restrained to 0.90 (1) Å. The remaining H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(C9).

Structure description top

Thiosemicarbazone and its derivatives are important materials for the preparation of Schiff bases (Casas et al., 2001; Beraldo et al., 2001; Jouad et al., 2002; Swearingen et al., 2002). As a continuation of the work on the structures of such compounds (Li, 2010), in this paper, the title new Schiff base compound derived from the condensation of 2,4-dichlorobenzaldehyde with 4-methylthiosemicarbazone is reported.

The molecule of the title compound, Fig. 1, possesses an E configuration about the C7N1 bond. The bond lengths have normal values (Allen et al., 1987), and are comparable to those observed in similar compounds (Selvanayagam et al., 2002; Karakurt et al., 2003; Bernhardt et al., 2003; Sampath et al., 2003).

In the crystal, molecules are linked through intermolecular N—H···S hydrogen bonds (Table 1), to form zigzag chains along the a axis (Fig. 2).

For background to Schiff bases derived from thiosemicarbazone and its derivatives, see: Casas et al. (2001); Beraldo et al. (2001); Jouad et al. (2002); Swearingen et al. (2002). For a structure reported recently by the author, see: Li (2010). For bond-length data, see: Allen et al. (1987). For similar structures, see: Selvanayagam et al. (2002); Karakurt et al. (2003); Bernhardt et al. (2003); Sampath et al. (2003).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the b axis.
2,4-Dichlorobenzaldehyde 4-methylthiosemicarbazone top
Crystal data top
C9H9Cl2N3SF(000) = 1072
Mr = 262.15Dx = 1.502 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2253 reflections
a = 13.444 (3) Åθ = 2.6–27.3°
b = 9.3299 (19) ŵ = 0.71 mm1
c = 18.499 (4) ÅT = 298 K
β = 92.160 (2)°Block, colourless
V = 2318.7 (8) Å30.18 × 0.17 × 0.13 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2518 independent reflections
Radiation source: fine-focus sealed tube1956 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 1617
Tmin = 0.883, Tmax = 0.913k = 1111
7167 measured reflectionsl = 1223
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0407P)2 + 0.9729P]
where P = (Fo2 + 2Fc2)/3
2518 reflections(Δ/σ)max < 0.001
143 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.35 e Å3
Crystal data top
C9H9Cl2N3SV = 2318.7 (8) Å3
Mr = 262.15Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.444 (3) ŵ = 0.71 mm1
b = 9.3299 (19) ÅT = 298 K
c = 18.499 (4) Å0.18 × 0.17 × 0.13 mm
β = 92.160 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2518 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1956 reflections with I > 2σ(I)
Tmin = 0.883, Tmax = 0.913Rint = 0.029
7167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.23 e Å3
2518 reflectionsΔρmin = 0.35 e Å3
143 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.06826 (4)0.82058 (6)1.03663 (3)0.05201 (18)
Cl20.14697 (5)0.37973 (7)1.13869 (4)0.0674 (2)
N10.13058 (12)0.83265 (18)0.85768 (9)0.0383 (4)
N20.10483 (12)0.93140 (19)0.80525 (9)0.0410 (4)
N30.24558 (13)0.8704 (2)0.74802 (10)0.0433 (4)
S10.12967 (4)1.06871 (6)0.68333 (3)0.04588 (17)
C10.09166 (13)0.7175 (2)0.96685 (10)0.0317 (4)
C20.03225 (14)0.7064 (2)1.02693 (10)0.0344 (4)
C30.04938 (16)0.6053 (2)1.08024 (11)0.0409 (5)
H3A0.00890.60041.11980.049*
C40.12731 (16)0.5122 (2)1.07367 (11)0.0422 (5)
C50.18905 (16)0.5198 (2)1.01613 (12)0.0452 (5)
H50.24210.45661.01270.054*
C60.17114 (14)0.6221 (2)0.96390 (11)0.0396 (5)
H60.21340.62800.92530.047*
C70.07061 (14)0.8209 (2)0.90939 (10)0.0349 (4)
H70.01390.87790.91030.042*
C80.16428 (14)0.9497 (2)0.74839 (11)0.0360 (5)
C90.32200 (18)0.8847 (3)0.69507 (14)0.0600 (7)
H9A0.29270.87220.64730.090*
H9B0.37230.81310.70390.090*
H9C0.35150.97820.69900.090*
H20.0484 (12)0.982 (2)0.8085 (14)0.080*
H30.258 (2)0.810 (2)0.7848 (10)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0503 (3)0.0534 (3)0.0537 (4)0.0147 (3)0.0206 (3)0.0003 (3)
Cl20.0850 (5)0.0555 (4)0.0599 (4)0.0016 (3)0.0195 (3)0.0188 (3)
N10.0368 (9)0.0442 (9)0.0341 (9)0.0010 (7)0.0054 (7)0.0026 (8)
N20.0372 (10)0.0511 (10)0.0355 (10)0.0040 (8)0.0097 (8)0.0096 (8)
N30.0419 (10)0.0483 (10)0.0407 (11)0.0016 (8)0.0141 (8)0.0049 (8)
S10.0463 (3)0.0495 (3)0.0421 (3)0.0076 (3)0.0037 (2)0.0102 (2)
C10.0299 (10)0.0328 (10)0.0325 (10)0.0020 (8)0.0020 (8)0.0036 (8)
C20.0329 (10)0.0361 (10)0.0346 (11)0.0016 (8)0.0043 (8)0.0048 (8)
C30.0474 (12)0.0436 (12)0.0319 (11)0.0050 (10)0.0047 (9)0.0011 (9)
C40.0453 (13)0.0393 (11)0.0412 (12)0.0031 (10)0.0107 (10)0.0048 (9)
C50.0357 (12)0.0435 (12)0.0560 (14)0.0076 (9)0.0039 (10)0.0027 (11)
C60.0335 (11)0.0433 (11)0.0422 (12)0.0017 (9)0.0051 (9)0.0029 (9)
C70.0325 (11)0.0382 (10)0.0343 (11)0.0002 (8)0.0067 (8)0.0038 (9)
C80.0357 (11)0.0378 (11)0.0348 (11)0.0091 (9)0.0032 (8)0.0022 (8)
C90.0550 (15)0.0684 (16)0.0587 (16)0.0019 (13)0.0281 (12)0.0064 (13)
Geometric parameters (Å, º) top
Cl1—C21.735 (2)C1—C71.455 (3)
Cl2—C41.738 (2)C2—C31.378 (3)
N1—C71.279 (2)C3—C41.370 (3)
N1—N21.373 (2)C3—H3A0.9300
N2—C81.356 (2)C4—C51.376 (3)
N2—H20.898 (10)C5—C61.373 (3)
N3—C81.320 (3)C5—H50.9300
N3—C91.452 (3)C6—H60.9300
N3—H30.893 (10)C7—H70.9300
S1—C81.690 (2)C9—H9A0.9600
C1—C61.393 (3)C9—H9B0.9600
C1—C21.397 (3)C9—H9C0.9600
C7—N1—N2115.91 (17)C6—C5—C4119.05 (19)
C8—N2—N1119.51 (17)C6—C5—H5120.5
C8—N2—H2120.7 (17)C4—C5—H5120.5
N1—N2—H2119.8 (17)C5—C6—C1122.07 (19)
C8—N3—C9123.97 (19)C5—C6—H6119.0
C8—N3—H3118.4 (18)C1—C6—H6119.0
C9—N3—H3117.3 (18)N1—C7—C1119.52 (18)
C6—C1—C2116.50 (18)N1—C7—H7120.2
C6—C1—C7121.54 (17)C1—C7—H7120.2
C2—C1—C7121.95 (17)N3—C8—N2116.47 (18)
C3—C2—C1122.36 (18)N3—C8—S1124.78 (15)
C3—C2—Cl1117.13 (15)N2—C8—S1118.75 (15)
C1—C2—Cl1120.50 (15)N3—C9—H9A109.5
C4—C3—C2118.59 (19)N3—C9—H9B109.5
C4—C3—H3A120.7H9A—C9—H9B109.5
C2—C3—H3A120.7N3—C9—H9C109.5
C3—C4—C5121.40 (19)H9A—C9—H9C109.5
C3—C4—Cl2119.12 (17)H9B—C9—H9C109.5
C5—C4—Cl2119.47 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.90 (1)2.54 (1)3.4169 (18)167 (2)
N3—H3···S1ii0.89 (1)2.77 (2)3.491 (2)139 (2)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC9H9Cl2N3S
Mr262.15
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)13.444 (3), 9.3299 (19), 18.499 (4)
β (°) 92.160 (2)
V3)2318.7 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.71
Crystal size (mm)0.18 × 0.17 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.883, 0.913
No. of measured, independent and
observed [I > 2σ(I)] reflections
7167, 2518, 1956
Rint0.029
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.092, 1.05
No. of reflections2518
No. of parameters143
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.35

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···S1i0.898 (10)2.536 (12)3.4169 (18)167 (2)
N3—H3···S1ii0.893 (10)2.765 (19)3.491 (2)139 (2)
Symmetry codes: (i) x, y, z+3/2; (ii) x+1/2, y1/2, z+3/2.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBeraldo, H., Lima, R., Teixeira, L. R., Moura, A. A. & West, D. X. (2001). J. Mol. Struct. 559, 99–106.  Web of Science CSD CrossRef CAS Google Scholar
First citationBernhardt, P. V., Caldwell, L. M., Lovejoy, D. B. & Richardson, D. R. (2003). Acta Cryst. C59, o629–o633.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCasas, J. S., Castineiras, A., Lobana, T. S., Sanchez, A., Sordo, J. & Garcia-Tasende, M. S. (2001). J. Chem. Crystallogr. 31, 329–332.  Web of Science CSD CrossRef CAS Google Scholar
First citationJouad, E. M., Allain, M., Khan, M. A. & Bouet, G. M. (2002). J. Mol. Struct. 604, 205–209.  Web of Science CSD CrossRef CAS Google Scholar
First citationKarakurt, T., Dinçer, M., Yılmaz, I. & Çukurovalı, A. (2003). Acta Cryst. E59, o1997–o1999.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, R. (2010). Acta Cryst. E66, o3324.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSampath, N., Malathy Sony, S. M., Ponnuswamy, M. N. & Nethaji, M. (2003). Acta Cryst. C59, o346–o348.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSelvanayagam, S., Yogavel, M., Rajakannan, V., Velmurugan, D., Shanmuga Sundara Raj, S. & Fun, H.-K. (2002). Acta Cryst. E58, o1336–o1338.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2004). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSwearingen, J. K., Kaminsky, W. & West, D. X. (2002). Transition Met. Chem. 27, 724–731.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds