organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,9-di­methyl-1,10-phenanthrolin-1-ium) hydrogen (S,S)-tartrate nona­hydrate

aYoung Researchers Club, Islamic Azad University, Khorramabad Branch, Khorramabad, Iran, and bDepartment of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5292, USA
*Correspondence e-mail: zderik@yahoo.com

(Received 1 December 2010; accepted 6 December 2010; online 11 December 2010)

The asymmetric unit of the title compound, 2C14H13N2+·2C4H5O6·9H2O, contains two cations and two anions in addition to nine mol­ecules of water. Each of the hydrogen tartrate anions is hydrogen bonded to itself by translation along [100] in a head-to-tail fashion via a short hydrogen bond with donor–acceptor distances of 2.473 (4) and 2.496 (4) Å. A large number of inter­molecular O–H⋯O, N—H⋯O and C–H⋯O hydrogen-bonding inter­actions, as well as ππ stacking [centroid–centroid distances in the range 3.642 (3) to 3.866 (3) Å], play an important role in the crystal structure.

Related literature

For proton-transfer structures of tartaric acid, see: Bai et al. (2005[Bai, G.-Y., Chen, L.-G., Li, Y., Yan, X.-L., Xing, P., Dong, C.-M., Duan, X.-M., Zhang, Y.-C. & Ge, F.-Y. (2005). Acta Cryst. E61, o1125-o1126.]); Derikvand & Olmstead (2010[Derikvand, Z. & Olmstead, M. M. (2010). Acta Cryst. E66, o185.]); Paixão et al. (1999[Paixão, J. A., Pereira Silva, P. S., Matos Beja, A., Ramos Silva, M., de Matos Gomes, E. & Belsley, M. (1999). Acta Cryst. C55, 1287-1290.]); Ryttersgaard & Larsen (2003[Ryttersgaard, C. & Larsen, S. (2003). Acta Cryst. E59, o1715-o1716.]); Smith et al. (2006[Smith, G., Wermuth, U. D. & White, J. M. (2006). Acta Cryst. C62, o694-o698.]); Su et al. (2009[Su, H., Lv, Y.-K. & Feng, Y.-L. (2009). Acta Cryst. E65, o933.]); Suresh et al. (2006[Suresh, J., Krishnakumar, R. V., Rajagopal, K. & Natarajan, S. (2006). Acta Cryst. E62, o3220-o3222.]); Wang et al. (2008[Wang, X.-H., Chao, B. & Qiu, Z.-B. (2008). Acta Cryst. E64, o784.]); Zhang et al. (2006[Zhang, Y.-C., Bai, G.-Y., Zeng, T., Li, J.-S. & Yan, X.-L. (2006). Acta Cryst. E62, o1511-o1512.]).

[Scheme 1]

Experimental

Crystal data
  • 2C14H13N2+·2C4H5O6·9H2O

  • Mr = 878.83

  • Orthorhombic, P 21 21 21

  • a = 7.0927 (5) Å

  • b = 23.3998 (15) Å

  • c = 24.9335 (16) Å

  • V = 4138.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 90 K

  • 0.53 × 0.06 × 0.05 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.975, Tmax = 0.994

  • 49446 measured reflections

  • 7023 independent reflections

  • 6177 reflections with I > 2σ(I)

  • Rint = 0.097

Refinement
  • R[F2 > 2σ(F2)] = 0.090

  • wR(F2) = 0.173

  • S = 1.25

  • 7023 reflections

  • 611 parameters

  • 111 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.47 e Å−3

  • Δρmin = −0.46 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1W 0.88 1.97 2.820 (5) 162
N4—H4C⋯O7W 0.88 1.98 2.814 (5) 159
O4—H4⋯O6W 0.84 1.80 2.633 (5) 175
O9—H9C⋯O5W 0.84 1.83 2.673 (4) 177
O10—H10A⋯O4W 0.84 1.79 2.627 (5) 172
O2W—H2C⋯O11 0.86 (4) 1.97 (2) 2.783 (4) 157 (4)
O3W—H3C⋯O5 0.87 (4) 1.95 (2) 2.798 (5) 168 (5)
O2W—H2D⋯O8W 0.88 2.42 2.903 (5) 115
O5W—H5A⋯O3 0.87 (4) 2.04 (3) 2.827 (4) 151 (5)
O5W—H5A⋯O2 0.87 (4) 2.35 (4) 3.020 (4) 135 (5)
O8W—H8B⋯O2W 0.87 (2) 2.03 (2) 2.903 (5) 178 (5)
O9W—H9A⋯O2 0.86 (4) 1.89 (2) 2.744 (4) 175 (5)
O9W—H9B⋯O9 0.87 (4) 2.08 (4) 2.849 (4) 147 (5)
O9W—H9B⋯O8 0.87 (4) 2.26 (4) 2.958 (4) 137 (5)
O1—H1⋯O5i 0.99 (6) 1.49 (6) 2.473 (4) 172 (5)
O7—H7⋯O11i 0.91 (6) 1.60 (6) 2.496 (4) 167 (5)
O4W—H4B⋯O12i 0.87 (2) 1.85 (2) 2.720 (5) 178 (6)
O6W—H6B⋯O6i 0.86 (3) 1.93 (2) 2.776 (5) 167 (5)
O3—H3B⋯O9Wii 0.84 1.81 2.647 (5) 173
O5W—H5B⋯O8ii 0.87 (4) 1.91 (2) 2.761 (4) 168 (5)
O1W—H1A⋯O2Wiii 0.87 (4) 2.22 (3) 3.062 (5) 161 (5)
O1W—H1B⋯O5Wiii 0.87 (4) 1.96 (2) 2.811 (5) 168 (6)
O3W—H3D⋯O8Wiii 0.87 (4) 2.02 (2) 2.876 (5) 168 (5)
O4W—H4A⋯O10iv 0.87 (4) 1.99 (3) 2.815 (4) 160 (5)
O4W—H4A⋯O12iv 0.87 (4) 2.40 (4) 2.998 (4) 127 (4)
O6W—H6A⋯O4v 0.87 (4) 2.15 (4) 2.892 (4) 143 (5)
O6W—H6A⋯O6v 0.87 (4) 2.19 (4) 2.909 (5) 140 (5)
O7W—H7A⋯O3Wvi 0.87 (4) 2.17 (3) 2.988 (5) 156 (5)
O7W—H7B⋯O9Wvii 0.87 (4) 2.02 (2) 2.869 (5) 165 (5)
O8W—H8A⋯O1vii 0.87 (4) 2.06 (2) 2.926 (5) 170 (5)
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1]; (v) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, -z]; (vi) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

We recently reported the structure of the trihydrate of a salt formed by proton transfer from D-tartaric acid to phenanthroline (Derikvand & Olmstead, 2010). An interesting feature of this structure was the existence of a short hydrogen bond between adjacent tartrate anions. There are many other proton transfer structures of tartaric acid, for example, (Paixão et al., 1999; Ryttersgaard & Larsen, 2003; Bai et al., 2005; Zhang et al., 2006; Smith, et al., 2006; Suresh et al., 2006; Wang et al., 2008; Su et al., 2009), some of which feature similar short hydrogen bonds. The title structure contains two protonated cations of 2,9-dimethyl-1,10-phenanthroline (neocuproine), two anions of mono-deprotonated D-tartaric acid and nine water molecules. As shown in Fig. 1, one of the protons of the tartaric acid carboxylic groups has been transferred to one of the nitrogen atoms of the 2,9-dimethyl-1,10-phenanthroline molecule. The structure reveals a pattern similar to that seen in the previous structure of (phen)(D-tartrate).3H2O. In particular, the carboxylic acid group at one end of the tartrate anion is hydrogen bonded to the deprotonated carboxylic acid group of an adjacent tartrate anion in a linear, head-to-tail fashion. Each of the two tartrate anions in the asymmetric unit displays this kind of hydrogen bond (Fig. 2). These hydrogen bonds are short (O···O distances of 2.473 (4) Å and 2.496 (4) Å), and are propagated by unit translations of the anions along the a-direction. In addition, the O—H distance is longer, the H···O distance is shorter and the O—H···O angle is more linear than other O—H···O interactions in the structure. A large number of additional hydrogen bonding interactions are also present. It is notable that crystal growth along the a-direction is clearly preferred. In the crystal used for data collection, the longest dimension, 0.53 mm, corresponds to the [100] direction. The two shorter dimensions, 0.05 mm and 0.06 mm, correspond to [010] and [001], respectively. Details of the O–H···O, N–H···O and C–H···O hydrogen bonds are given in Table 1. As was seen in the structure containing phen, the cationic dmpH+ units are stacked together via ππ interactions. The centroid-centroid distances fall in the range 3.642 (3) Å to 3.866 (3) Å. The overall packing of the structure is depicted in Fig. 3.

Related literature top

For proton-transfer structures of tartaric acid, see: Bai et al. (2005); Derikvand & Olmstead (2010); Paixão et al. (1999); Ryttersgaard & Larsen (2003); Smith et al. (2006); Su et al. (2009); Suresh et al. (2006); Wang et al. (2008); Zhang et al. (2006).

Experimental top

To an aqueous solution of D-tartaric acid (75 mg, 1 mmol) in water (10 ml) was added a solution of 2,9-dimethyl-1,10-phenanthroline (100 mg, 1 mmol) in methanol (10 ml) in a 1:1 molar ratio. The solution was stirred for 1 h. By slow evaporation of the solvent at room temperature, colorless needles were obtained after 1 week.

Refinement top

Hydrogen atoms H1 and H7 were allowed to freely refine with isotropic thermal parameters tied to 1.2 times the equivalent isotropic values of their parent O atoms. Water hydrogen atoms were located in a difference Fourier map and subsequently refined with restraints of 0.87 (2) for O—H distances and 1.34 (4) for O···O distances. N—H distances were restrained to 0.88 Å, hydroxyl O—H to 0.84 Å, and C—H to 0.98 Å using a riding model and U(iso) = 1.2 U(eq). The carbon atoms C29 to C36 were restrained to ISOR 0.004. In addition, the positional parameters of H2D were fixed due to disorder involving O2W and O8W that could not be resolved. In the absence of significant anomalous dispersion, Friedel opposites were merged in the final cycles of refinement.

Structure description top

We recently reported the structure of the trihydrate of a salt formed by proton transfer from D-tartaric acid to phenanthroline (Derikvand & Olmstead, 2010). An interesting feature of this structure was the existence of a short hydrogen bond between adjacent tartrate anions. There are many other proton transfer structures of tartaric acid, for example, (Paixão et al., 1999; Ryttersgaard & Larsen, 2003; Bai et al., 2005; Zhang et al., 2006; Smith, et al., 2006; Suresh et al., 2006; Wang et al., 2008; Su et al., 2009), some of which feature similar short hydrogen bonds. The title structure contains two protonated cations of 2,9-dimethyl-1,10-phenanthroline (neocuproine), two anions of mono-deprotonated D-tartaric acid and nine water molecules. As shown in Fig. 1, one of the protons of the tartaric acid carboxylic groups has been transferred to one of the nitrogen atoms of the 2,9-dimethyl-1,10-phenanthroline molecule. The structure reveals a pattern similar to that seen in the previous structure of (phen)(D-tartrate).3H2O. In particular, the carboxylic acid group at one end of the tartrate anion is hydrogen bonded to the deprotonated carboxylic acid group of an adjacent tartrate anion in a linear, head-to-tail fashion. Each of the two tartrate anions in the asymmetric unit displays this kind of hydrogen bond (Fig. 2). These hydrogen bonds are short (O···O distances of 2.473 (4) Å and 2.496 (4) Å), and are propagated by unit translations of the anions along the a-direction. In addition, the O—H distance is longer, the H···O distance is shorter and the O—H···O angle is more linear than other O—H···O interactions in the structure. A large number of additional hydrogen bonding interactions are also present. It is notable that crystal growth along the a-direction is clearly preferred. In the crystal used for data collection, the longest dimension, 0.53 mm, corresponds to the [100] direction. The two shorter dimensions, 0.05 mm and 0.06 mm, correspond to [010] and [001], respectively. Details of the O–H···O, N–H···O and C–H···O hydrogen bonds are given in Table 1. As was seen in the structure containing phen, the cationic dmpH+ units are stacked together via ππ interactions. The centroid-centroid distances fall in the range 3.642 (3) Å to 3.866 (3) Å. The overall packing of the structure is depicted in Fig. 3.

For proton-transfer structures of tartaric acid, see: Bai et al. (2005); Derikvand & Olmstead (2010); Paixão et al. (1999); Ryttersgaard & Larsen (2003); Smith et al. (2006); Su et al. (2009); Suresh et al. (2006); Wang et al. (2008); Zhang et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A drawing of the asymmetric unit of the title compound. Thermal ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonding interactions that support the strong hydrogen bonding between tartrate anions (symmetry code: i = x - 1, y, z).
[Figure 3] Fig. 3. Crystal packing diagram as viewed down c.
Bis(2,9-dimethyl-1,10-phenanthrolin-1-ium) hydrogen (S,S)-tartrate nonahydrate top
Crystal data top
2C14H13N2+·2C4H5O6·9H2ODx = 1.411 Mg m3
Mr = 878.83Melting point: 523 K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7481 reflections
a = 7.0927 (5) Åθ = 3.0–30.5°
b = 23.3998 (15) ŵ = 0.12 mm1
c = 24.9335 (16) ÅT = 90 K
V = 4138.2 (5) Å3Needle, colorless
Z = 40.53 × 0.06 × 0.05 mm
F(000) = 1864
Data collection top
Bruker APEXII
diffractometer
7023 independent reflections
Radiation source: fine-focus sealed tube6177 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.097
Detector resolution: 8.3 pixels mm-1θmax = 30.5°, θmin = 2.6°
ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 3233
Tmin = 0.975, Tmax = 0.994l = 3535
49446 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.090Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.25 w = 1/[σ2(Fo2) + (0.0387P)2 + 8.4022P]
where P = (Fo2 + 2Fc2)/3
7023 reflections(Δ/σ)max = 0.001
611 parametersΔρmax = 0.47 e Å3
111 restraintsΔρmin = 0.46 e Å3
Crystal data top
2C14H13N2+·2C4H5O6·9H2OV = 4138.2 (5) Å3
Mr = 878.83Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 7.0927 (5) ŵ = 0.12 mm1
b = 23.3998 (15) ÅT = 90 K
c = 24.9335 (16) Å0.53 × 0.06 × 0.05 mm
Data collection top
Bruker APEXII
diffractometer
7023 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6177 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.994Rint = 0.097
49446 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.090111 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.25Δρmax = 0.47 e Å3
7023 reflectionsΔρmin = 0.46 e Å3
611 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.0327 (5)0.46527 (16)0.33329 (14)0.0095 (7)
N20.0442 (6)0.56743 (15)0.38606 (15)0.0099 (7)
H2A0.01540.56480.35180.012*
C10.0288 (7)0.41562 (18)0.30782 (18)0.0117 (8)
C20.0453 (7)0.36264 (18)0.33514 (18)0.0113 (8)
H20.03730.32790.31560.014*
C30.0728 (7)0.36145 (19)0.38948 (18)0.0123 (9)
H30.08350.32620.40800.015*
C40.0850 (7)0.41442 (18)0.41757 (18)0.0109 (8)
C50.1207 (7)0.4176 (2)0.47412 (18)0.0134 (9)
H50.13050.38340.49460.016*
C60.1406 (7)0.4690 (2)0.49855 (19)0.0163 (9)
H60.17090.47050.53560.020*
C70.1163 (7)0.52117 (19)0.46895 (18)0.0117 (8)
C80.1368 (8)0.5760 (2)0.49209 (19)0.0172 (10)
H80.17220.57950.52870.021*
C90.1059 (7)0.62418 (19)0.46203 (19)0.0154 (9)
H90.11730.66080.47810.018*
C100.0575 (6)0.61955 (18)0.40778 (18)0.0105 (8)
C110.0611 (7)0.46398 (18)0.38698 (17)0.0101 (8)
C120.0728 (6)0.51851 (18)0.41399 (17)0.0098 (8)
C130.0119 (7)0.4179 (2)0.24814 (18)0.0138 (9)
H13A0.04640.45420.23760.021*
H13B0.06640.38610.23570.021*
H13C0.13760.41500.23200.021*
C140.0211 (7)0.67108 (18)0.37334 (19)0.0125 (9)
H14A0.05760.66270.33630.019*
H14B0.09530.70340.38670.019*
H14C0.11320.68070.37460.019*
N30.5130 (5)0.01878 (15)0.17341 (15)0.0100 (7)
N40.4445 (6)0.07881 (15)0.11789 (14)0.0092 (7)
H4C0.47100.07840.15240.011*
C150.5497 (7)0.06682 (19)0.20033 (19)0.0124 (9)
C160.5333 (7)0.12188 (18)0.1758 (2)0.0143 (9)
H160.55850.15530.19620.017*
C170.4817 (7)0.1269 (2)0.1230 (2)0.0151 (9)
H170.47150.16330.10650.018*
C180.4442 (7)0.07635 (19)0.09370 (19)0.0135 (9)
C190.3935 (7)0.0763 (2)0.0377 (2)0.0168 (10)
H190.38160.11170.01930.020*
C200.3627 (8)0.0273 (2)0.0110 (2)0.0195 (10)
H200.33060.02860.02600.023*
C210.3776 (7)0.0270 (2)0.03751 (19)0.0155 (9)
C220.3541 (7)0.0806 (2)0.01155 (18)0.0150 (9)
H220.32150.08170.02540.018*
C230.3776 (7)0.13030 (19)0.03872 (18)0.0125 (9)
H230.36210.16580.02070.015*
C240.4246 (7)0.12946 (19)0.09344 (18)0.0115 (8)
C250.4603 (7)0.02428 (19)0.12140 (18)0.0120 (8)
C260.4256 (7)0.02800 (19)0.09198 (18)0.0115 (8)
C270.6064 (8)0.0606 (2)0.25742 (19)0.0164 (10)
H27A0.63250.02040.26520.025*
H27B0.50420.07410.28060.025*
H27C0.72010.08340.26410.025*
C280.4518 (7)0.18329 (17)0.12542 (18)0.0116 (8)
H28A0.51320.17410.15960.017*
H28B0.53110.20990.10510.017*
H28C0.32900.20090.13240.017*
O10.0522 (5)0.35066 (13)0.12922 (12)0.0088 (6)
H10.088 (8)0.353 (2)0.129 (2)0.011*
O20.0346 (4)0.28017 (13)0.18981 (13)0.0101 (6)
O30.4033 (5)0.25951 (12)0.18514 (12)0.0094 (6)
H3B0.50200.26710.20230.011*
O40.3405 (5)0.26187 (13)0.07110 (13)0.0101 (6)
H40.25050.27190.05130.012*
O50.7038 (4)0.35075 (13)0.12500 (13)0.0096 (6)
O60.7107 (5)0.27534 (13)0.07009 (13)0.0110 (6)
C290.1247 (6)0.31162 (17)0.16055 (16)0.0068 (8)
C300.3399 (6)0.30930 (18)0.15785 (16)0.0059 (7)
H300.39180.34360.17660.007*
C310.4082 (6)0.30995 (18)0.09990 (16)0.0068 (8)
H310.35970.34540.08220.008*
C320.6237 (6)0.31068 (17)0.09741 (16)0.0062 (7)
O70.4298 (4)0.13513 (13)0.38098 (13)0.0088 (6)
H70.557 (9)0.132 (2)0.377 (2)0.011*
O80.4525 (5)0.19870 (13)0.31384 (13)0.0102 (6)
O90.0879 (5)0.22177 (13)0.31636 (12)0.0101 (6)
H9C0.00580.21260.29760.012*
O100.1366 (5)0.22847 (13)0.43072 (13)0.0096 (6)
H10A0.23980.22190.44600.012*
O110.2185 (4)0.13303 (13)0.38332 (12)0.0077 (6)
O120.2307 (5)0.21666 (13)0.42670 (13)0.0112 (6)
C330.3603 (6)0.17098 (17)0.34588 (17)0.0073 (8)
C340.1458 (6)0.17432 (17)0.34727 (17)0.0061 (7)
H340.09370.13890.33050.007*
C350.0721 (6)0.17825 (17)0.40533 (17)0.0059 (7)
H350.11890.14440.42590.007*
C360.1436 (6)0.17735 (18)0.40528 (16)0.0066 (8)
O1W0.0728 (6)0.58367 (14)0.27904 (14)0.0177 (7)
H1A0.076 (9)0.5612 (18)0.2511 (15)0.021*
H1B0.132 (8)0.6140 (15)0.268 (2)0.021*
O2W0.1114 (5)0.03182 (14)0.33319 (14)0.0173 (7)
H2C0.153 (8)0.0565 (14)0.3558 (16)0.021*
H2D0.10890.00030.35210.021*
O3W0.5757 (5)0.45505 (14)0.16602 (14)0.0161 (7)
H3C0.599 (8)0.4224 (14)0.151 (2)0.019*
H3D0.466 (5)0.464 (2)0.153 (2)0.019*
O4W0.4478 (5)0.21368 (13)0.48609 (12)0.0100 (6)
H4A0.479 (7)0.2357 (18)0.5126 (14)0.012*
H4B0.550 (5)0.215 (2)0.4667 (17)0.012*
O5W0.2110 (5)0.18871 (13)0.25895 (12)0.0090 (6)
H5A0.229 (7)0.2143 (17)0.2344 (14)0.011*
H5B0.307 (5)0.195 (2)0.2797 (17)0.011*
O6W0.0447 (5)0.29367 (14)0.01471 (13)0.0112 (6)
H6A0.035 (8)0.2697 (17)0.0118 (14)0.013*
H6B0.064 (4)0.293 (2)0.0301 (19)0.013*
O7W0.4713 (5)0.10319 (14)0.22815 (13)0.0143 (7)
H7A0.453 (8)0.0775 (16)0.2527 (17)0.017*
H7B0.407 (7)0.1320 (15)0.240 (2)0.017*
O8W0.2016 (5)0.03301 (14)0.37713 (14)0.0153 (7)
H8A0.146 (7)0.0662 (12)0.378 (2)0.018*
H8B0.108 (5)0.0129 (18)0.365 (2)0.018*
O9W0.3015 (5)0.28971 (14)0.24357 (12)0.0105 (6)
H9A0.200 (5)0.286 (2)0.2251 (18)0.013*
H9B0.283 (8)0.2656 (18)0.2694 (14)0.013*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0071 (16)0.0114 (17)0.0099 (16)0.0012 (14)0.0031 (14)0.0001 (13)
N20.0111 (17)0.0084 (17)0.0102 (16)0.0026 (14)0.0035 (15)0.0004 (13)
C10.012 (2)0.009 (2)0.015 (2)0.0000 (17)0.0034 (17)0.0036 (16)
C20.014 (2)0.0051 (18)0.015 (2)0.0008 (16)0.0018 (18)0.0039 (15)
C30.013 (2)0.011 (2)0.0127 (19)0.0005 (17)0.0035 (18)0.0029 (16)
C40.010 (2)0.011 (2)0.0119 (19)0.0030 (17)0.0004 (16)0.0020 (15)
C50.015 (2)0.014 (2)0.012 (2)0.0048 (18)0.0010 (18)0.0074 (16)
C60.018 (2)0.019 (2)0.012 (2)0.001 (2)0.0013 (19)0.0028 (18)
C70.010 (2)0.013 (2)0.0119 (19)0.0019 (17)0.0003 (17)0.0003 (16)
C80.019 (2)0.019 (2)0.013 (2)0.001 (2)0.0055 (19)0.0060 (18)
C90.019 (2)0.010 (2)0.017 (2)0.0022 (18)0.005 (2)0.0097 (17)
C100.0056 (19)0.011 (2)0.015 (2)0.0015 (16)0.0013 (17)0.0000 (16)
C110.012 (2)0.0079 (19)0.0100 (19)0.0017 (16)0.0003 (17)0.0007 (15)
C120.007 (2)0.010 (2)0.0118 (19)0.0013 (16)0.0012 (16)0.0010 (15)
C130.021 (2)0.011 (2)0.0097 (18)0.0004 (18)0.0034 (17)0.0036 (16)
C140.008 (2)0.0073 (19)0.022 (2)0.0009 (16)0.0018 (18)0.0030 (17)
N30.0077 (17)0.0094 (17)0.0130 (17)0.0006 (13)0.0016 (14)0.0025 (14)
N40.0122 (18)0.0065 (16)0.0089 (16)0.0011 (14)0.0017 (15)0.0023 (13)
C150.010 (2)0.011 (2)0.017 (2)0.0013 (17)0.0069 (18)0.0055 (16)
C160.015 (2)0.0040 (19)0.024 (2)0.0016 (16)0.011 (2)0.0054 (16)
C170.009 (2)0.009 (2)0.027 (2)0.0023 (16)0.0029 (19)0.0036 (18)
C180.011 (2)0.009 (2)0.021 (2)0.0006 (17)0.0056 (19)0.0014 (17)
C190.011 (2)0.017 (2)0.023 (2)0.0020 (18)0.0004 (19)0.0108 (19)
C200.018 (2)0.024 (3)0.017 (2)0.004 (2)0.004 (2)0.009 (2)
C210.017 (2)0.016 (2)0.014 (2)0.0025 (19)0.0036 (19)0.0015 (18)
C220.013 (2)0.024 (3)0.0084 (19)0.002 (2)0.0013 (17)0.0025 (18)
C230.010 (2)0.013 (2)0.014 (2)0.0029 (17)0.0014 (18)0.0018 (17)
C240.009 (2)0.012 (2)0.014 (2)0.0035 (16)0.0032 (17)0.0014 (16)
C250.0072 (19)0.012 (2)0.016 (2)0.0006 (16)0.0023 (18)0.0046 (17)
C260.013 (2)0.0080 (19)0.0137 (19)0.0034 (17)0.0007 (17)0.0005 (16)
C270.021 (2)0.014 (2)0.014 (2)0.0050 (19)0.002 (2)0.0065 (17)
C280.013 (2)0.0046 (19)0.017 (2)0.0021 (16)0.0002 (19)0.0015 (16)
O10.0051 (14)0.0118 (15)0.0094 (14)0.0019 (12)0.0024 (12)0.0015 (11)
O20.0050 (14)0.0105 (15)0.0149 (15)0.0010 (12)0.0052 (12)0.0019 (12)
O30.0074 (15)0.0087 (14)0.0120 (14)0.0004 (11)0.0032 (12)0.0046 (11)
O40.0066 (15)0.0113 (15)0.0125 (15)0.0018 (12)0.0003 (12)0.0040 (12)
O50.0037 (14)0.0078 (14)0.0173 (16)0.0010 (11)0.0014 (13)0.0021 (12)
O60.0075 (14)0.0103 (15)0.0151 (15)0.0015 (12)0.0024 (13)0.0031 (12)
C290.0080 (17)0.0044 (16)0.0079 (17)0.0027 (14)0.0010 (14)0.0048 (13)
C300.0039 (16)0.0064 (17)0.0072 (16)0.0001 (14)0.0003 (14)0.0013 (13)
C310.0041 (16)0.0086 (17)0.0075 (16)0.0002 (14)0.0020 (14)0.0008 (13)
C320.0060 (16)0.0057 (16)0.0071 (16)0.0006 (14)0.0001 (14)0.0038 (13)
O70.0047 (13)0.0089 (13)0.0129 (14)0.0003 (11)0.0039 (12)0.0004 (11)
O80.0078 (14)0.0091 (14)0.0136 (14)0.0020 (11)0.0024 (12)0.0010 (11)
O90.0076 (14)0.0114 (14)0.0114 (13)0.0010 (11)0.0040 (12)0.0047 (11)
O100.0055 (13)0.0105 (14)0.0128 (14)0.0017 (11)0.0027 (12)0.0062 (11)
O110.0048 (13)0.0066 (13)0.0118 (14)0.0012 (11)0.0025 (11)0.0006 (11)
O120.0101 (14)0.0095 (14)0.0138 (14)0.0018 (12)0.0016 (12)0.0045 (12)
C330.0086 (17)0.0043 (16)0.0091 (16)0.0023 (14)0.0018 (15)0.0036 (14)
C340.0046 (16)0.0068 (17)0.0070 (16)0.0008 (13)0.0014 (14)0.0018 (14)
C350.0009 (15)0.0065 (17)0.0102 (16)0.0008 (13)0.0017 (14)0.0008 (13)
C360.0070 (17)0.0081 (17)0.0047 (15)0.0004 (14)0.0023 (14)0.0004 (13)
O1W0.0233 (19)0.0127 (16)0.0170 (16)0.0060 (15)0.0065 (15)0.0027 (13)
O2W0.0172 (17)0.0093 (15)0.0255 (18)0.0048 (14)0.0002 (15)0.0022 (13)
O3W0.0138 (17)0.0119 (16)0.0227 (17)0.0042 (13)0.0016 (15)0.0046 (13)
O4W0.0082 (15)0.0123 (15)0.0095 (14)0.0018 (13)0.0012 (12)0.0019 (11)
O5W0.0075 (14)0.0099 (14)0.0098 (14)0.0026 (12)0.0003 (12)0.0039 (11)
O6W0.0089 (15)0.0136 (16)0.0113 (14)0.0029 (13)0.0001 (13)0.0055 (12)
O7W0.0187 (18)0.0106 (15)0.0137 (15)0.0071 (14)0.0046 (14)0.0016 (12)
O8W0.0131 (16)0.0117 (16)0.0211 (17)0.0013 (13)0.0070 (14)0.0005 (14)
O9W0.0070 (15)0.0163 (16)0.0082 (14)0.0030 (12)0.0024 (12)0.0041 (12)
Geometric parameters (Å, º) top
N1—C11.324 (5)C24—C281.503 (6)
N1—C111.354 (5)C25—C261.447 (6)
N2—C101.338 (6)C27—H27A0.9800
N2—C121.355 (5)C27—H27B0.9800
N2—H2A0.8800C27—H27C0.9800
C1—C21.419 (6)C28—H28A0.9800
C1—C131.494 (6)C28—H28B0.9800
C2—C31.369 (6)C28—H28C0.9800
C2—H20.9500O1—C291.307 (5)
C3—C41.426 (6)O1—H10.99 (6)
C3—H30.9500O2—C291.217 (5)
C4—C111.398 (6)O3—C301.422 (5)
C4—C51.434 (6)O3—H3B0.8400
C5—C61.355 (7)O4—C311.418 (5)
C5—H50.9500O4—H40.8400
C6—C71.438 (6)O5—C321.294 (5)
C6—H60.9500O6—C321.236 (5)
C7—C121.406 (6)C29—C301.529 (6)
C7—C81.415 (6)C30—C311.524 (6)
C8—C91.371 (7)C30—H301.0000
C8—H80.9500C31—C321.530 (6)
C9—C101.399 (6)C31—H311.0000
C9—H90.9500O7—C331.309 (5)
C10—C141.503 (6)O7—H70.91 (6)
C11—C121.445 (6)O8—C331.219 (5)
C13—H13A0.9800O9—C341.412 (5)
C13—H13B0.9800O9—H9C0.8400
C13—H13C0.9800O10—C351.411 (5)
C14—H14A0.9800O10—H10A0.8400
C14—H14B0.9800O11—C361.287 (5)
C14—H14C0.9800O12—C361.230 (5)
N3—C151.335 (6)C33—C341.524 (6)
N3—C251.356 (6)C34—C351.542 (6)
N4—C241.340 (5)C34—H341.0000
N4—C261.360 (6)C35—C361.530 (6)
N4—H4C0.8800C35—H351.0000
C15—C161.431 (6)O1W—H1A0.87 (4)
C15—C271.486 (7)O1W—H1B0.87 (4)
C16—C171.371 (7)O2W—H2C0.86 (4)
C16—H160.9500O2W—H2D0.88
C17—C181.414 (6)O3W—H3C0.87 (4)
C17—H170.9500O3W—H3D0.87 (4)
C18—C251.405 (6)O4W—H4A0.87 (4)
C18—C191.442 (7)O4W—H4B0.87 (4)
C19—C201.344 (7)O5W—H5A0.87 (4)
C19—H190.9500O5W—H5B0.87 (4)
C20—C211.436 (7)O6W—H6A0.87 (4)
C20—H200.9500O6W—H6B0.86 (3)
C21—C261.400 (6)O7W—H7A0.87 (4)
C21—C221.421 (7)O7W—H7B0.87 (4)
C22—C231.356 (7)O8W—H8A0.87 (4)
C22—H220.9500O8W—H8B0.87 (2)
C23—C241.405 (6)O9W—H9A0.86 (4)
C23—H230.9500O9W—H9B0.87 (4)
C1—N1—C11117.2 (4)C23—C22—H22119.5
C10—N2—C12123.5 (4)C21—C22—H22119.5
C10—N2—H2A118.3C22—C23—C24120.2 (4)
C12—N2—H2A118.3C22—C23—H23119.9
N1—C1—C2122.3 (4)C24—C23—H23119.9
N1—C1—C13116.6 (4)N4—C24—C23118.6 (4)
C2—C1—C13121.1 (4)N4—C24—C28119.1 (4)
C3—C2—C1120.3 (4)C23—C24—C28122.3 (4)
C3—C2—H2119.9N3—C25—C18125.1 (4)
C1—C2—H2119.9N3—C25—C26116.8 (4)
C2—C3—C4118.5 (4)C18—C25—C26118.0 (4)
C2—C3—H3120.8N4—C26—C21119.9 (4)
C4—C3—H3120.8N4—C26—C25118.8 (4)
C11—C4—C3116.5 (4)C21—C26—C25121.3 (4)
C11—C4—C5121.0 (4)C15—C27—H27A109.5
C3—C4—C5122.6 (4)C15—C27—H27B109.5
C6—C5—C4120.4 (4)H27A—C27—H27B109.5
C6—C5—H5119.8C15—C27—H27C109.5
C4—C5—H5119.8H27A—C27—H27C109.5
C5—C6—C7120.7 (4)H27B—C27—H27C109.5
C5—C6—H6119.6C24—C28—H28A109.5
C7—C6—H6119.6C24—C28—H28B109.5
C12—C7—C8117.4 (4)H28A—C28—H28B109.5
C12—C7—C6119.3 (4)C24—C28—H28C109.5
C8—C7—C6123.3 (4)H28A—C28—H28C109.5
C9—C8—C7120.4 (4)H28B—C28—H28C109.5
C9—C8—H8119.8C29—O1—H1116 (3)
C7—C8—H8119.8C30—O3—H3B109.5
C8—C9—C10120.3 (4)C31—O4—H4109.5
C8—C9—H9119.9O2—C29—O1125.0 (4)
C10—C9—H9119.9O2—C29—C30121.9 (4)
N2—C10—C9118.6 (4)O1—C29—C30113.0 (4)
N2—C10—C14119.2 (4)O3—C30—C31111.2 (3)
C9—C10—C14122.2 (4)O3—C30—C29108.9 (3)
N1—C11—C4125.1 (4)C31—C30—C29111.0 (4)
N1—C11—C12116.7 (4)O3—C30—H30108.6
C4—C11—C12118.1 (4)C31—C30—H30108.6
N2—C12—C7119.8 (4)C29—C30—H30108.6
N2—C12—C11119.8 (4)O4—C31—C30111.4 (3)
C7—C12—C11120.4 (4)O4—C31—C32109.1 (3)
C1—C13—H13A109.5C30—C31—C32110.9 (4)
C1—C13—H13B109.5O4—C31—H31108.5
H13A—C13—H13B109.5C30—C31—H31108.5
C1—C13—H13C109.5C32—C31—H31108.5
H13A—C13—H13C109.5O6—C32—O5124.0 (4)
H13B—C13—H13C109.5O6—C32—C31120.9 (4)
C10—C14—H14A109.5O5—C32—C31115.1 (4)
C10—C14—H14B109.5C33—O7—H7111 (3)
H14A—C14—H14B109.5C34—O9—H9C109.5
C10—C14—H14C109.5C35—O10—H10A109.5
H14A—C14—H14C109.5O8—C33—O7125.2 (4)
H14B—C14—H14C109.5O8—C33—C34121.6 (4)
C15—N3—C25117.1 (4)O7—C33—C34113.2 (4)
C24—N4—C26123.2 (4)O9—C34—C33108.6 (4)
C24—N4—H4C118.4O9—C34—C35111.5 (3)
C26—N4—H4C118.4C33—C34—C35111.3 (4)
N3—C15—C16121.8 (4)O9—C34—H34108.5
N3—C15—C27116.9 (4)C33—C34—H34108.5
C16—C15—C27121.3 (4)C35—C34—H34108.5
C17—C16—C15120.6 (4)O10—C35—C36109.6 (4)
C17—C16—H16119.7O10—C35—C34111.2 (3)
C15—C16—H16119.7C36—C35—C34109.7 (4)
C16—C17—C18118.3 (4)O10—C35—H35108.8
C16—C17—H17120.8C36—C35—H35108.8
C18—C17—H17120.8C34—C35—H35108.8
C25—C18—C17117.1 (4)O12—C36—O11125.4 (4)
C25—C18—C19119.7 (4)O12—C36—C35119.4 (4)
C17—C18—C19123.2 (4)O11—C36—C35115.1 (4)
C20—C19—C18121.4 (4)H1A—O1W—H1B103 (4)
C20—C19—H19119.3H2C—O2W—H2D103
C18—C19—H19119.3H3C—O3W—H3D102 (4)
C19—C20—C21121.0 (5)H4A—O4W—H4B101 (4)
C19—C20—H20119.5H5A—O5W—H5B101 (3)
C21—C20—H20119.5H6A—O6W—H6B105 (4)
C26—C21—C22117.1 (4)H7A—O7W—H7B102 (4)
C26—C21—C20118.6 (4)H8A—O8W—H8B98 (4)
C22—C21—C20124.2 (4)H9A—O9W—H9B102 (4)
C23—C22—C21121.0 (4)
C11—N1—C1—C22.7 (7)C26—C21—C22—C230.0 (7)
C11—N1—C1—C13175.5 (4)C20—C21—C22—C23177.4 (5)
N1—C1—C2—C32.3 (8)C21—C22—C23—C240.4 (7)
C13—C1—C2—C3175.8 (5)C26—N4—C24—C231.6 (7)
C1—C2—C3—C40.2 (7)C26—N4—C24—C28178.9 (4)
C2—C3—C4—C112.1 (7)C22—C23—C24—N40.4 (7)
C2—C3—C4—C5177.6 (5)C22—C23—C24—C28179.9 (5)
C11—C4—C5—C63.0 (7)C15—N3—C25—C181.0 (7)
C3—C4—C5—C6176.6 (5)C15—N3—C25—C26178.4 (4)
C4—C5—C6—C73.3 (7)C17—C18—C25—N31.6 (7)
C5—C6—C7—C120.5 (7)C19—C18—C25—N3177.7 (4)
C5—C6—C7—C8179.4 (5)C17—C18—C25—C26179.0 (4)
C12—C7—C8—C93.1 (7)C19—C18—C25—C260.3 (7)
C6—C7—C8—C9177.9 (5)C24—N4—C26—C212.0 (7)
C7—C8—C9—C101.4 (8)C24—N4—C26—C25176.6 (4)
C12—N2—C10—C90.9 (7)C22—C21—C26—N41.1 (7)
C12—N2—C10—C14179.4 (4)C20—C21—C26—N4178.7 (5)
C8—C9—C10—N20.7 (7)C22—C21—C26—C25177.4 (5)
C8—C9—C10—C14179.6 (5)C20—C21—C26—C250.1 (7)
C1—N1—C11—C40.6 (7)N3—C25—C26—N41.1 (6)
C1—N1—C11—C12177.5 (4)C18—C25—C26—N4178.7 (4)
C3—C4—C11—N11.8 (7)N3—C25—C26—C21177.5 (4)
C5—C4—C11—N1177.9 (5)C18—C25—C26—C210.1 (7)
C3—C4—C11—C12179.9 (4)O2—C29—C30—O311.4 (6)
C5—C4—C11—C120.2 (7)O1—C29—C30—O3169.4 (3)
C10—N2—C12—C71.0 (7)O2—C29—C30—C31134.1 (4)
C10—N2—C12—C11178.2 (4)O1—C29—C30—C3146.7 (5)
C8—C7—C12—N22.9 (7)O3—C30—C31—O460.1 (4)
C6—C7—C12—N2178.1 (4)C29—C30—C31—O461.2 (5)
C8—C7—C12—C11176.2 (4)O3—C30—C31—C3261.5 (5)
C6—C7—C12—C112.8 (7)C29—C30—C31—C32177.1 (3)
N1—C11—C12—N24.0 (6)O4—C31—C32—O64.8 (6)
C4—C11—C12—N2177.8 (4)C30—C31—C32—O6127.8 (4)
N1—C11—C12—C7175.2 (4)O4—C31—C32—O5176.0 (3)
C4—C11—C12—C73.0 (7)C30—C31—C32—O553.1 (5)
C25—N3—C15—C160.3 (6)O8—C33—C34—O913.3 (6)
C25—N3—C15—C27179.7 (4)O7—C33—C34—O9168.2 (3)
N3—C15—C16—C171.0 (7)O8—C33—C34—C35136.4 (4)
C27—C15—C16—C17179.7 (5)O7—C33—C34—C3545.1 (5)
C15—C16—C17—C180.4 (7)O9—C34—C35—O1058.9 (4)
C16—C17—C18—C250.8 (7)C33—C34—C35—O1062.5 (5)
C16—C17—C18—C19178.4 (5)O9—C34—C35—C3662.5 (5)
C25—C18—C19—C200.6 (7)C33—C34—C35—C36176.1 (3)
C17—C18—C19—C20178.6 (5)O10—C35—C36—O121.5 (6)
C18—C19—C20—C210.5 (8)C34—C35—C36—O12123.8 (4)
C19—C20—C21—C260.2 (8)O10—C35—C36—O11179.6 (3)
C19—C20—C21—C22177.5 (5)C34—C35—C36—O1158.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1W0.881.972.820 (5)162
N4—H4C···O7W0.881.982.814 (5)159
O4—H4···O6W0.841.802.633 (5)175
O9—H9C···O5W0.841.832.673 (4)177
O10—H10A···O4W0.841.792.627 (5)172
O2W—H2C···O110.86 (4)1.97 (2)2.783 (4)157 (4)
O3W—H3C···O50.87 (4)1.95 (2)2.798 (5)168 (5)
O2W—H2D···O8W0.882.422.903 (5)115
O5W—H5A···O30.87 (4)2.04 (3)2.827 (4)151 (5)
O5W—H5A···O20.87 (4)2.35 (4)3.020 (4)135 (5)
O8W—H8B···O2W0.87 (2)2.03 (2)2.903 (5)178 (5)
O9W—H9A···O20.86 (4)1.89 (2)2.744 (4)175 (5)
O9W—H9B···O90.87 (4)2.08 (4)2.849 (4)147 (5)
O9W—H9B···O80.87 (4)2.26 (4)2.958 (4)137 (5)
O1—H1···O5i0.99 (6)1.49 (6)2.473 (4)172 (5)
O7—H7···O11i0.91 (6)1.60 (6)2.496 (4)167 (5)
O4W—H4B···O12i0.87 (2)1.85 (2)2.720 (5)178 (6)
O6W—H6B···O6i0.86 (3)1.93 (2)2.776 (5)167 (5)
O3—H3B···O9Wii0.841.812.647 (5)173
O5W—H5B···O8ii0.87 (4)1.91 (2)2.761 (4)168 (5)
O1W—H1A···O2Wiii0.87 (4)2.22 (3)3.062 (5)161 (5)
O1W—H1B···O5Wiii0.87 (4)1.96 (2)2.811 (5)168 (6)
O3W—H3D···O8Wiii0.87 (4)2.02 (2)2.876 (5)168 (5)
O4W—H4A···O10iv0.87 (4)1.99 (3)2.815 (4)160 (5)
O4W—H4A···O12iv0.87 (4)2.40 (4)2.998 (4)127 (4)
O6W—H6A···O4v0.87 (4)2.15 (4)2.892 (4)143 (5)
O6W—H6A···O6v0.87 (4)2.19 (4)2.909 (5)140 (5)
O7W—H7A···O3Wvi0.87 (4)2.17 (3)2.988 (5)156 (5)
O7W—H7B···O9Wvii0.87 (4)2.02 (2)2.869 (5)165 (5)
O8W—H8A···O1vii0.87 (4)2.06 (2)2.926 (5)170 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2; (iv) x1/2, y+1/2, z+1; (v) x1/2, y+1/2, z; (vi) x+1, y1/2, z+1/2; (vii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula2C14H13N2+·2C4H5O6·9H2O
Mr878.83
Crystal system, space groupOrthorhombic, P212121
Temperature (K)90
a, b, c (Å)7.0927 (5), 23.3998 (15), 24.9335 (16)
V3)4138.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.53 × 0.06 × 0.05
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.975, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
49446, 7023, 6177
Rint0.097
(sin θ/λ)max1)0.714
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.090, 0.173, 1.25
No. of reflections7023
No. of parameters611
No. of restraints111
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.46

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1W0.881.972.820 (5)162.1
N4—H4C···O7W0.881.982.814 (5)158.6
O4—H4···O6W0.841.802.633 (5)174.6
O9—H9C···O5W0.841.832.673 (4)176.6
O10—H10A···O4W0.841.792.627 (5)172.1
O2W—H2C···O110.86 (4)1.97 (2)2.783 (4)157 (4)
O3W—H3C···O50.87 (4)1.95 (2)2.798 (5)168 (5)
O2W—H2D···O8W0.882.422.903 (5)115
O5W—H5A···O30.87 (4)2.04 (3)2.827 (4)151 (5)
O5W—H5A···O20.87 (4)2.35 (4)3.020 (4)135 (5)
O8W—H8B···O2W0.87 (2)2.03 (2)2.903 (5)178 (5)
O9W—H9A···O20.86 (4)1.89 (2)2.744 (4)175 (5)
O9W—H9B···O90.87 (4)2.08 (4)2.849 (4)147 (5)
O9W—H9B···O80.87 (4)2.26 (4)2.958 (4)137 (5)
O1—H1···O5i0.99 (6)1.49 (6)2.473 (4)172 (5)
O7—H7···O11i0.91 (6)1.60 (6)2.496 (4)167 (5)
O4W—H4B···O12i0.87 (2)1.85 (2)2.720 (5)178 (6)
O6W—H6B···O6i0.86 (3)1.93 (2)2.776 (5)167 (5)
O3—H3B···O9Wii0.841.812.647 (5)173.3
O5W—H5B···O8ii0.87 (4)1.91 (2)2.761 (4)168 (5)
O1W—H1A···O2Wiii0.87 (4)2.22 (3)3.062 (5)161 (5)
O1W—H1B···O5Wiii0.87 (4)1.96 (2)2.811 (5)168 (6)
O3W—H3D···O8Wiii0.87 (4)2.02 (2)2.876 (5)168 (5)
O4W—H4A···O10iv0.87 (4)1.99 (3)2.815 (4)160 (5)
O4W—H4A···O12iv0.87 (4)2.40 (4)2.998 (4)127 (4)
O6W—H6A···O4v0.87 (4)2.15 (4)2.892 (4)143 (5)
O6W—H6A···O6v0.87 (4)2.19 (4)2.909 (5)140 (5)
O7W—H7A···O3Wvi0.87 (4)2.17 (3)2.988 (5)156 (5)
O7W—H7B···O9Wvii0.87 (4)2.02 (2)2.869 (5)165 (5)
O8W—H8A···O1vii0.87 (4)2.06 (2)2.926 (5)170 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x, y+1/2, z+1/2; (iv) x1/2, y+1/2, z+1; (v) x1/2, y+1/2, z; (vi) x+1, y1/2, z+1/2; (vii) x, y1/2, z+1/2.
 

References

First citationBai, G.-Y., Chen, L.-G., Li, Y., Yan, X.-L., Xing, P., Dong, C.-M., Duan, X.-M., Zhang, Y.-C. & Ge, F.-Y. (2005). Acta Cryst. E61, o1125–o1126.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDerikvand, Z. & Olmstead, M. M. (2010). Acta Cryst. E66, o185.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaixão, J. A., Pereira Silva, P. S., Matos Beja, A., Ramos Silva, M., de Matos Gomes, E. & Belsley, M. (1999). Acta Cryst. C55, 1287–1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRyttersgaard, C. & Larsen, S. (2003). Acta Cryst. E59, o1715–o1716.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Wermuth, U. D. & White, J. M. (2006). Acta Cryst. C62, o694–o698.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSu, H., Lv, Y.-K. & Feng, Y.-L. (2009). Acta Cryst. E65, o933.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuresh, J., Krishnakumar, R. V., Rajagopal, K. & Natarajan, S. (2006). Acta Cryst. E62, o3220–o3222.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-H., Chao, B. & Qiu, Z.-B. (2008). Acta Cryst. E64, o784.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Y.-C., Bai, G.-Y., Zeng, T., Li, J.-S. & Yan, X.-L. (2006). Acta Cryst. E62, o1511–o1512.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds