metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

cis-(Pyridin-2-ylcarbonimidodi­thio­ato-κ2S,S′)bis­­(tri­phenyl­phosphane-κP)palladium(II)

aInstitute of General and Inorganic Chemistry, NAS Ukraine, Kyiv, prosp. Palladina 32/34, 03680, Ukraine
*Correspondence e-mail: orysyk@ionc.kiev.ua

(Received 19 November 2010; accepted 2 December 2010; online 8 December 2010)

The title compound, [Pd(C6H4N2S2)(C18H15P)2], was obtained as a minor product from the reaction of trans-PdCl2(PPh3)2 with piperazine-1,4-dicarbothioic acid bis­(pyridin-2-yl)amide. The PdII atom displays a slightly distorted square-planar PdP2S2 geometry with a bidentately coordinated pyridin-2-ylcarbonimidodithio­ate ligand and two triphenyl­phosphine mol­ecules, coordinated in cis positions. The crystal structure features weak ππ [centroid–centroid distance =3.7327(15) Å] and C–H⋯π inter­actions and contains an almost spherically shaped void of 50.4 Å3 per unit cell.

Related literature

For the biological activity of Pd compounds, see: Garoufis et al. (2009[Garoufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384-1397.]). For related structures, see: Ahmed et al. (1977[Ahmed, J., Itoh, K., Matsuda, I., Ueda, F., Ishii, Y. & Ibers, J. A. (1977). Inorg. Chem. 16, 620-624.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C6H4N2S2)(C18H15P)2]

  • Mr = 799.17

  • Triclinic, [P \overline 1]

  • a = 10.9163 (10) Å

  • b = 12.7235 (12) Å

  • c = 15.7104 (14) Å

  • α = 102.609 (1)°

  • β = 107.672 (1)°

  • γ = 108.567 (1)°

  • V = 1847.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.74 mm−1

  • T = 173 K

  • 0.50 × 0.30 × 0.16 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.712, Tmax = 0.890

  • 30024 measured reflections

  • 7568 independent reflections

  • 6811 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.055

  • S = 1.06

  • 7568 reflections

  • 442 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the N2/C2/C6/C5/C4/C3, C7–C12, C13–C18, C19–C24 and C25–C30 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15⋯Cg1i 0.95 2.73 3.4991 (3) 139
C20—H20⋯Cg2ii 0.95 2.93 3.7152 (2) 141
C9—H9⋯Cg3ii 0.95 2.70 3.4657 (2) 138
C4—H4⋯Cg4iii 0.95 2.72 3.5712 (2) 150
C35—H35⋯Cg5iv 0.95 2.98 3.7681 (2) 141
Symmetry codes: (i) x-1, y-1, z; (ii) -x, -y+1, -z+1; (iii) -x+1, -y+2, -z+1; (iv) -x, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Structural investigation of palladium coordination compounds with carbothioamide derivatives has an actuality due to their potential biological activity (Garoufis et al., 2009). The current paper reports a structural study of a coordination compound obtained as a minor product as a result of the decomposition of the initially used organic ligand molecule in DMF solution.

The asymmetric unit of crystal structure contains one molecule of the complex, in which palladium displays a slightly distorted square-planar PdP2S2 coordination geometry (Fig. 1). Mean deviation from the plane Pd1/P1/P2/S1/S2 is 0.0455 Å (maximum deviation for S1 = -0.0646 (5) Å). The values of Pd–P and Pd–S bond lengths correspond to those in related structures (Ahmed et al., 1977). S1–Pd1–S2 strongly deviates from 90° due to steric strain of the four-membered ring. The opposite angle P1–Pd1–P2 has a value of 99.77 (2)° that can be explained by repulsion of bulky phenyl rings of triphenylphosphine moieties. The organic ligand molecule coordinates to palladium bidentantly as a dianion. Two triphenylphosphine ligands coordinate to the palladium in a cis-conformation, although there is a trans-conformation in the initial reagent. The bonds C1–S1 and C2–S2 correspond to C–S single bonds (Allen et al., 1987). At the same time, C1—N1 shows a value of 1.275 (2) Å corresponding to a classical C=N double bond. The ligand molecule contains two planar fragments C1/N1/S1/S2 and N1/N2/C2–C6, creating a dihedral angle of 58.22 (8)°. The crystal structure of the title compound shows a large number of weak ππ and C–H···π interactions and contains an almost spherically shaped void of 50.4 Å3 per unit cell (Fig. 2).

Related literature top

For the biological activity of Pd compounds, see: Garoufis et al. (2009). For related structures, see: Ahmed et al. (1977). For bond-length data, see: Allen et al. (1987).

Experimental top

20 ml (10 -2 mol/L) DMF solution of piperazine-1,4-dicarbothioic acid bis-pyridin-2-ylamide was stirred with 20 ml (2x10 -2 mol/L) solution of PdCl2(PPh3)2 in chloroform. As a result of slow evaporation (1 month) several yellow prismatic crystals of the title compound were obtained from reaction mixture (yield ~5%).

Refinement top

All H atoms were placed in calculated positions with C–H = 0.95 Å and Uiso(H) = 1.2Uiso(C).

Structure description top

Structural investigation of palladium coordination compounds with carbothioamide derivatives has an actuality due to their potential biological activity (Garoufis et al., 2009). The current paper reports a structural study of a coordination compound obtained as a minor product as a result of the decomposition of the initially used organic ligand molecule in DMF solution.

The asymmetric unit of crystal structure contains one molecule of the complex, in which palladium displays a slightly distorted square-planar PdP2S2 coordination geometry (Fig. 1). Mean deviation from the plane Pd1/P1/P2/S1/S2 is 0.0455 Å (maximum deviation for S1 = -0.0646 (5) Å). The values of Pd–P and Pd–S bond lengths correspond to those in related structures (Ahmed et al., 1977). S1–Pd1–S2 strongly deviates from 90° due to steric strain of the four-membered ring. The opposite angle P1–Pd1–P2 has a value of 99.77 (2)° that can be explained by repulsion of bulky phenyl rings of triphenylphosphine moieties. The organic ligand molecule coordinates to palladium bidentantly as a dianion. Two triphenylphosphine ligands coordinate to the palladium in a cis-conformation, although there is a trans-conformation in the initial reagent. The bonds C1–S1 and C2–S2 correspond to C–S single bonds (Allen et al., 1987). At the same time, C1—N1 shows a value of 1.275 (2) Å corresponding to a classical C=N double bond. The ligand molecule contains two planar fragments C1/N1/S1/S2 and N1/N2/C2–C6, creating a dihedral angle of 58.22 (8)°. The crystal structure of the title compound shows a large number of weak ππ and C–H···π interactions and contains an almost spherically shaped void of 50.4 Å3 per unit cell (Fig. 2).

For the biological activity of Pd compounds, see: Garoufis et al. (2009). For related structures, see: Ahmed et al. (1977). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. General view of title compound. Thermal ellipsoids are given at 50% probability.
[Figure 2] Fig. 2. Packing diagram of title compound. Dark spheres indicate voids.
cis-(Pyridin-2-ylcarbonimidodithioato- κ2S,S')bis(triphenylphosphane-κP)palladium(II) top
Crystal data top
[Pd(C6H4N2S2)(C18H15P)2]Z = 2
Mr = 799.17F(000) = 816
Triclinic, P1Dx = 1.437 Mg m3
Hall symbol: -P 1Melting point: 558 K
a = 10.9163 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.7235 (12) ÅCell parameters from 9826 reflections
c = 15.7104 (14) Åθ = 2.7–26.5°
α = 102.609 (1)°µ = 0.74 mm1
β = 107.672 (1)°T = 173 K
γ = 108.567 (1)°Block, yellow
V = 1847.2 (3) Å30.50 × 0.30 × 0.16 mm
Data collection top
Bruker APEXII CCD
diffractometer
7568 independent reflections
Radiation source: fine-focus sealed tube6811 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 26.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.712, Tmax = 0.890k = 1515
30024 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.055H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0192P)2 + 1.2908P]
where P = (Fo2 + 2Fc2)/3
7568 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.54 e Å3
Crystal data top
[Pd(C6H4N2S2)(C18H15P)2]γ = 108.567 (1)°
Mr = 799.17V = 1847.2 (3) Å3
Triclinic, P1Z = 2
a = 10.9163 (10) ÅMo Kα radiation
b = 12.7235 (12) ŵ = 0.74 mm1
c = 15.7104 (14) ÅT = 173 K
α = 102.609 (1)°0.50 × 0.30 × 0.16 mm
β = 107.672 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7568 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6811 reflections with I > 2σ(I)
Tmin = 0.712, Tmax = 0.890Rint = 0.025
30024 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.055H-atom parameters constrained
S = 1.06Δρmax = 0.43 e Å3
7568 reflectionsΔρmin = 0.54 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.261679 (13)0.490049 (11)0.242076 (9)0.01556 (4)
S10.40275 (5)0.68151 (4)0.35196 (3)0.02194 (10)
S20.44221 (5)0.56216 (4)0.19302 (3)0.02078 (10)
P10.10786 (5)0.47339 (4)0.31797 (3)0.01678 (9)
P20.15254 (5)0.30268 (4)0.12882 (3)0.01660 (9)
N10.61298 (16)0.78937 (13)0.29662 (11)0.0242 (3)
N20.79863 (18)0.93668 (15)0.43303 (12)0.0315 (4)
C10.50723 (18)0.69887 (16)0.28491 (13)0.0198 (4)
C20.6625 (2)0.89572 (16)0.37398 (13)0.0244 (4)
C30.8521 (2)1.03808 (18)0.50638 (15)0.0364 (5)
H30.94811.06770.54910.044*
C40.7757 (3)1.10161 (18)0.52328 (15)0.0382 (5)
H40.81771.17260.57670.046*
C50.6371 (3)1.06015 (18)0.46105 (16)0.0380 (5)
H50.58201.10260.47070.046*
C60.5785 (2)0.95570 (17)0.38411 (15)0.0324 (5)
H60.48350.92600.33960.039*
C70.21273 (18)0.52223 (15)0.44574 (12)0.0187 (4)
C80.2197 (2)0.61859 (16)0.51214 (13)0.0239 (4)
H80.16480.66040.49210.029*
C90.3069 (2)0.65392 (18)0.60798 (14)0.0297 (4)
H90.31280.72090.65290.036*
C100.3851 (2)0.59247 (19)0.63835 (14)0.0306 (5)
H100.44150.61520.70420.037*
C110.3810 (2)0.4978 (2)0.57281 (15)0.0321 (5)
H110.43560.45600.59350.039*
C120.2972 (2)0.46390 (18)0.47686 (14)0.0268 (4)
H120.29710.40040.43180.032*
C130.03915 (19)0.33285 (15)0.28912 (13)0.0208 (4)
C140.0328 (2)0.25909 (16)0.34274 (14)0.0262 (4)
H140.04850.28360.39960.031*
C150.1447 (2)0.14992 (18)0.31339 (16)0.0367 (5)
H150.13930.10020.35030.044*
C160.2634 (2)0.11321 (19)0.23120 (17)0.0405 (6)
H160.33920.03830.21130.049*
C170.2717 (2)0.18551 (19)0.17795 (16)0.0376 (5)
H170.35370.16030.12140.045*
C180.1609 (2)0.29515 (17)0.20653 (14)0.0277 (4)
H180.16800.34480.16970.033*
C190.01908 (18)0.57093 (15)0.29947 (12)0.0187 (4)
C200.07535 (19)0.57915 (17)0.34150 (14)0.0250 (4)
H200.09260.53430.38090.030*
C210.1439 (2)0.65267 (18)0.32576 (15)0.0285 (4)
H210.20620.65920.35560.034*
C220.1218 (2)0.71635 (17)0.26679 (14)0.0285 (4)
H220.16930.76610.25590.034*
C230.0304 (2)0.70755 (17)0.22360 (13)0.0259 (4)
H230.01640.75030.18230.031*
C240.04113 (19)0.63604 (15)0.24065 (12)0.0206 (4)
H240.10530.63160.21200.025*
C250.25221 (18)0.26491 (16)0.06117 (12)0.0214 (4)
C260.2939 (2)0.17213 (18)0.06223 (14)0.0295 (4)
H260.27210.12610.10010.035*
C270.3676 (2)0.1469 (2)0.00776 (17)0.0425 (6)
H270.39430.08280.00770.051*
C280.4017 (2)0.2146 (2)0.04599 (17)0.0470 (6)
H280.45280.19750.08240.056*
C290.3620 (2)0.3075 (2)0.04720 (15)0.0408 (6)
H290.38650.35440.08390.049*
C300.2863 (2)0.33189 (18)0.00545 (14)0.0298 (4)
H300.25750.39460.00350.036*
C310.12398 (19)0.19049 (15)0.18454 (12)0.0195 (4)
C320.2376 (2)0.21068 (17)0.26675 (14)0.0273 (4)
H320.32200.28060.29090.033*
C330.2284 (2)0.12971 (19)0.31339 (15)0.0358 (5)
H330.30610.14400.36930.043*
C340.1051 (3)0.02747 (18)0.27813 (15)0.0372 (5)
H340.09890.02880.30940.045*
C350.0081 (2)0.00757 (17)0.19791 (15)0.0317 (5)
H350.09250.06220.17450.038*
C360.0001 (2)0.08889 (16)0.15087 (13)0.0238 (4)
H360.07880.07500.09590.029*
C370.01405 (18)0.27074 (15)0.03346 (12)0.0189 (4)
C380.0635 (2)0.35919 (17)0.03277 (13)0.0255 (4)
H380.01090.43440.08220.031*
C390.1891 (2)0.33812 (19)0.03965 (15)0.0330 (5)
H390.22200.39880.03950.040*
C400.2660 (2)0.2292 (2)0.11178 (14)0.0330 (5)
H400.35260.21460.16060.040*
C410.2168 (2)0.14114 (19)0.11288 (14)0.0321 (5)
H410.26940.06640.16280.038*
C420.0908 (2)0.16209 (17)0.04121 (13)0.0251 (4)
H420.05660.10210.04300.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.01550 (7)0.01378 (7)0.01700 (7)0.00506 (5)0.00705 (5)0.00543 (5)
S10.0217 (2)0.0161 (2)0.0238 (2)0.00335 (18)0.01150 (18)0.00261 (18)
S20.0189 (2)0.0201 (2)0.0219 (2)0.00547 (17)0.01043 (17)0.00524 (17)
P10.0178 (2)0.0159 (2)0.0188 (2)0.00725 (17)0.00877 (17)0.00762 (17)
P20.0173 (2)0.0147 (2)0.0171 (2)0.00594 (17)0.00677 (17)0.00551 (17)
N10.0203 (8)0.0208 (8)0.0279 (8)0.0048 (6)0.0110 (7)0.0060 (7)
N20.0281 (9)0.0266 (9)0.0310 (9)0.0047 (7)0.0078 (7)0.0094 (7)
C10.0173 (8)0.0210 (9)0.0232 (9)0.0092 (7)0.0086 (7)0.0090 (7)
C20.0253 (10)0.0192 (9)0.0263 (10)0.0030 (8)0.0129 (8)0.0095 (8)
C30.0359 (12)0.0278 (11)0.0281 (11)0.0030 (9)0.0030 (9)0.0074 (9)
C40.0502 (14)0.0218 (10)0.0295 (11)0.0045 (10)0.0127 (10)0.0056 (9)
C50.0462 (13)0.0241 (11)0.0479 (13)0.0136 (10)0.0255 (11)0.0123 (10)
C60.0270 (10)0.0242 (10)0.0390 (12)0.0056 (8)0.0120 (9)0.0077 (9)
C70.0180 (8)0.0205 (9)0.0191 (9)0.0068 (7)0.0090 (7)0.0092 (7)
C80.0249 (9)0.0249 (10)0.0248 (9)0.0109 (8)0.0125 (8)0.0096 (8)
C90.0295 (10)0.0316 (11)0.0241 (10)0.0088 (9)0.0135 (8)0.0049 (8)
C100.0200 (9)0.0452 (12)0.0217 (10)0.0072 (9)0.0076 (8)0.0133 (9)
C110.0247 (10)0.0450 (13)0.0342 (11)0.0189 (9)0.0116 (9)0.0212 (10)
C120.0283 (10)0.0307 (10)0.0264 (10)0.0169 (9)0.0119 (8)0.0108 (8)
C130.0228 (9)0.0169 (9)0.0248 (9)0.0067 (7)0.0144 (7)0.0065 (7)
C140.0328 (10)0.0215 (9)0.0297 (10)0.0110 (8)0.0182 (9)0.0110 (8)
C150.0529 (14)0.0217 (10)0.0458 (13)0.0119 (10)0.0347 (12)0.0144 (9)
C160.0418 (13)0.0217 (10)0.0479 (14)0.0025 (9)0.0299 (11)0.0007 (10)
C170.0276 (11)0.0348 (12)0.0337 (11)0.0005 (9)0.0132 (9)0.0012 (9)
C180.0254 (10)0.0272 (10)0.0275 (10)0.0069 (8)0.0125 (8)0.0078 (8)
C190.0165 (8)0.0170 (8)0.0225 (9)0.0076 (7)0.0066 (7)0.0073 (7)
C200.0231 (9)0.0268 (10)0.0313 (10)0.0111 (8)0.0143 (8)0.0154 (8)
C210.0247 (10)0.0317 (11)0.0374 (11)0.0154 (9)0.0172 (9)0.0147 (9)
C220.0261 (10)0.0264 (10)0.0357 (11)0.0153 (8)0.0100 (8)0.0125 (9)
C230.0311 (10)0.0239 (10)0.0265 (10)0.0130 (8)0.0114 (8)0.0137 (8)
C240.0213 (9)0.0196 (9)0.0213 (9)0.0082 (7)0.0095 (7)0.0067 (7)
C250.0164 (8)0.0219 (9)0.0187 (9)0.0040 (7)0.0060 (7)0.0012 (7)
C260.0232 (10)0.0320 (11)0.0302 (10)0.0130 (8)0.0096 (8)0.0046 (9)
C270.0293 (11)0.0478 (14)0.0447 (13)0.0216 (11)0.0131 (10)0.0004 (11)
C280.0290 (12)0.0623 (16)0.0395 (13)0.0137 (11)0.0205 (10)0.0025 (12)
C290.0323 (12)0.0491 (14)0.0282 (11)0.0021 (10)0.0178 (9)0.0043 (10)
C300.0291 (10)0.0294 (11)0.0247 (10)0.0066 (9)0.0121 (8)0.0047 (8)
C310.0246 (9)0.0166 (8)0.0206 (9)0.0106 (7)0.0112 (7)0.0066 (7)
C320.0285 (10)0.0232 (10)0.0269 (10)0.0100 (8)0.0082 (8)0.0076 (8)
C330.0459 (13)0.0358 (12)0.0291 (11)0.0225 (10)0.0108 (10)0.0153 (9)
C340.0621 (15)0.0260 (11)0.0350 (12)0.0225 (11)0.0241 (11)0.0188 (9)
C350.0424 (12)0.0187 (9)0.0343 (11)0.0084 (9)0.0202 (10)0.0096 (8)
C360.0275 (10)0.0175 (9)0.0243 (9)0.0075 (8)0.0108 (8)0.0056 (7)
C370.0192 (8)0.0213 (9)0.0187 (8)0.0081 (7)0.0100 (7)0.0089 (7)
C380.0298 (10)0.0246 (10)0.0237 (9)0.0131 (8)0.0102 (8)0.0094 (8)
C390.0363 (11)0.0378 (12)0.0333 (11)0.0237 (10)0.0128 (9)0.0168 (9)
C400.0266 (10)0.0468 (13)0.0247 (10)0.0157 (10)0.0063 (8)0.0157 (9)
C410.0298 (11)0.0331 (11)0.0208 (10)0.0079 (9)0.0039 (8)0.0033 (8)
C420.0272 (10)0.0237 (10)0.0225 (9)0.0110 (8)0.0086 (8)0.0057 (8)
Geometric parameters (Å, º) top
Pd1—P22.3067 (5)C18—H180.9500
Pd1—P12.3206 (5)C19—C241.393 (2)
Pd1—S22.3236 (5)C19—C201.400 (3)
Pd1—S12.3339 (5)C20—C211.389 (3)
S1—C11.7691 (19)C20—H200.9500
S2—C11.7632 (18)C21—C221.383 (3)
P1—C191.8212 (18)C21—H210.9500
P1—C71.8257 (17)C22—C231.385 (3)
P1—C131.8318 (18)C22—H220.9500
P2—C371.8237 (18)C23—C241.393 (3)
P2—C311.8246 (18)C23—H230.9500
P2—C251.8320 (19)C24—H240.9500
N1—C11.275 (2)C25—C261.395 (3)
N1—C21.421 (2)C25—C301.397 (3)
N2—C31.340 (3)C26—C271.394 (3)
N2—C21.342 (2)C26—H260.9500
C2—C61.389 (3)C27—C281.378 (4)
C3—C41.375 (3)C27—H270.9500
C3—H30.9500C28—C291.384 (4)
C4—C51.375 (3)C28—H280.9500
C4—H40.9500C29—C301.389 (3)
C5—C61.387 (3)C29—H290.9500
C5—H50.9500C30—H300.9500
C6—H60.9500C31—C361.391 (2)
C7—C81.390 (3)C31—C321.397 (3)
C7—C121.400 (3)C32—C331.385 (3)
C8—C91.392 (3)C32—H320.9500
C8—H80.9500C33—C341.388 (3)
C9—C101.381 (3)C33—H330.9500
C9—H90.9500C34—C351.377 (3)
C10—C111.382 (3)C34—H340.9500
C10—H100.9500C35—C361.393 (3)
C11—C121.387 (3)C35—H350.9500
C11—H110.9500C36—H360.9500
C12—H120.9500C37—C381.395 (3)
C13—C141.395 (3)C37—C421.395 (2)
C13—C181.399 (3)C38—C391.390 (3)
C14—C151.390 (3)C38—H380.9500
C14—H140.9500C39—C401.380 (3)
C15—C161.378 (3)C39—H390.9500
C15—H150.9500C40—C411.388 (3)
C16—C171.377 (3)C40—H400.9500
C16—H160.9500C41—C421.388 (3)
C17—C181.390 (3)C41—H410.9500
C17—H170.9500C42—H420.9500
P2—Pd1—P199.768 (17)C17—C18—H18119.8
P2—Pd1—S296.202 (17)C13—C18—H18119.8
P1—Pd1—S2163.859 (17)C24—C19—C20118.93 (16)
P2—Pd1—S1171.187 (17)C24—C19—P1120.20 (14)
P1—Pd1—S188.614 (17)C20—C19—P1120.84 (14)
S2—Pd1—S175.557 (17)C21—C20—C19120.29 (18)
C1—S1—Pd187.98 (6)C21—C20—H20119.9
C1—S2—Pd188.45 (6)C19—C20—H20119.9
C19—P1—C7107.41 (8)C22—C21—C20120.26 (19)
C19—P1—C13102.38 (8)C22—C21—H21119.9
C7—P1—C13105.76 (8)C20—C21—H21119.9
C19—P1—Pd1110.53 (6)C21—C22—C23120.00 (18)
C7—P1—Pd1107.71 (6)C21—C22—H22120.0
C13—P1—Pd1122.17 (6)C23—C22—H22120.0
C37—P2—C31108.92 (8)C22—C23—C24120.09 (18)
C37—P2—C25101.60 (8)C22—C23—H23120.0
C31—P2—C25103.24 (8)C24—C23—H23120.0
C37—P2—Pd1115.41 (6)C23—C24—C19120.40 (17)
C31—P2—Pd1110.71 (6)C23—C24—H24119.8
C25—P2—Pd1115.92 (6)C19—C24—H24119.8
C1—N1—C2119.58 (16)C26—C25—C30118.96 (18)
C3—N2—C2117.30 (19)C26—C25—P2123.02 (15)
N1—C1—S2122.57 (14)C30—C25—P2118.02 (15)
N1—C1—S1129.67 (14)C27—C26—C25120.1 (2)
S2—C1—S1107.75 (9)C27—C26—H26120.0
N2—C2—C6122.92 (18)C25—C26—H26120.0
N2—C2—N1114.58 (17)C28—C27—C26120.2 (2)
C6—C2—N1122.40 (17)C28—C27—H27119.9
N2—C3—C4123.7 (2)C26—C27—H27119.9
N2—C3—H3118.2C27—C28—C29120.4 (2)
C4—C3—H3118.2C27—C28—H28119.8
C3—C4—C5118.5 (2)C29—C28—H28119.8
C3—C4—H4120.7C28—C29—C30119.8 (2)
C5—C4—H4120.7C28—C29—H29120.1
C4—C5—C6119.4 (2)C30—C29—H29120.1
C4—C5—H5120.3C29—C30—C25120.6 (2)
C6—C5—H5120.3C29—C30—H30119.7
C5—C6—C2118.2 (2)C25—C30—H30119.7
C5—C6—H6120.9C36—C31—C32119.22 (17)
C2—C6—H6120.9C36—C31—P2124.91 (14)
C8—C7—C12118.79 (17)C32—C31—P2115.87 (14)
C8—C7—P1123.31 (14)C33—C32—C31120.60 (19)
C12—C7—P1117.77 (14)C33—C32—H32119.7
C7—C8—C9120.08 (18)C31—C32—H32119.7
C7—C8—H8120.0C32—C33—C34119.70 (19)
C9—C8—H8120.0C32—C33—H33120.2
C10—C9—C8120.55 (19)C34—C33—H33120.2
C10—C9—H9119.7C35—C34—C33120.12 (19)
C8—C9—H9119.7C35—C34—H34119.9
C9—C10—C11119.91 (18)C33—C34—H34119.9
C9—C10—H10120.0C34—C35—C36120.54 (19)
C11—C10—H10120.0C34—C35—H35119.7
C10—C11—C12119.90 (19)C36—C35—H35119.7
C10—C11—H11120.1C31—C36—C35119.81 (18)
C12—C11—H11120.1C31—C36—H36120.1
C11—C12—C7120.68 (18)C35—C36—H36120.1
C11—C12—H12119.7C38—C37—C42118.81 (17)
C7—C12—H12119.7C38—C37—P2119.11 (14)
C14—C13—C18118.55 (17)C42—C37—P2122.02 (14)
C14—C13—P1123.23 (14)C39—C38—C37120.48 (18)
C18—C13—P1118.14 (14)C39—C38—H38119.8
C15—C14—C13120.31 (19)C37—C38—H38119.8
C15—C14—H14119.8C40—C39—C38120.16 (19)
C13—C14—H14119.8C40—C39—H39119.9
C16—C15—C14120.5 (2)C38—C39—H39119.9
C16—C15—H15119.7C39—C40—C41119.96 (18)
C14—C15—H15119.7C39—C40—H40120.0
C17—C16—C15119.82 (19)C41—C40—H40120.0
C17—C16—H16120.1C40—C41—C42120.11 (19)
C15—C16—H16120.1C40—C41—H41119.9
C16—C17—C18120.3 (2)C42—C41—H41119.9
C16—C17—H17119.8C41—C42—C37120.44 (18)
C18—C17—H17119.8C41—C42—H42119.8
C17—C18—C13120.42 (19)C37—C42—H42119.8
P1—Pd1—S1—C1173.50 (6)C15—C16—C17—C180.2 (3)
S2—Pd1—S1—C13.32 (6)C16—C17—C18—C130.6 (3)
P2—Pd1—S2—C1179.85 (6)C14—C13—C18—C171.2 (3)
P1—Pd1—S2—C18.20 (9)P1—C13—C18—C17175.65 (16)
S1—Pd1—S2—C13.33 (6)C7—P1—C19—C24121.46 (15)
P2—Pd1—P1—C19114.37 (6)C13—P1—C19—C24127.42 (15)
S2—Pd1—P1—C1957.20 (9)Pd1—P1—C19—C244.21 (16)
S1—Pd1—P1—C1968.37 (6)C7—P1—C19—C2060.49 (16)
P2—Pd1—P1—C7128.56 (6)C13—P1—C19—C2050.63 (16)
S2—Pd1—P1—C759.86 (9)Pd1—P1—C19—C20177.74 (13)
S1—Pd1—P1—C748.70 (6)C24—C19—C20—C211.0 (3)
P2—Pd1—P1—C136.03 (7)P1—C19—C20—C21179.10 (15)
S2—Pd1—P1—C13177.61 (8)C19—C20—C21—C221.4 (3)
S1—Pd1—P1—C13171.23 (7)C20—C21—C22—C230.4 (3)
P1—Pd1—P2—C3770.58 (6)C21—C22—C23—C241.0 (3)
S2—Pd1—P2—C37107.07 (6)C22—C23—C24—C191.4 (3)
P1—Pd1—P2—C3153.70 (6)C20—C19—C24—C230.4 (3)
S2—Pd1—P2—C31128.65 (6)P1—C19—C24—C23177.72 (14)
P1—Pd1—P2—C25170.83 (7)C37—P2—C25—C26115.11 (16)
S2—Pd1—P2—C2511.52 (7)C31—P2—C25—C262.26 (17)
C2—N1—C1—S2178.05 (14)Pd1—P2—C25—C26118.96 (14)
C2—N1—C1—S10.8 (3)C37—P2—C25—C3064.24 (15)
Pd1—S2—C1—N1176.49 (15)C31—P2—C25—C30177.10 (14)
Pd1—S2—C1—S14.46 (8)Pd1—P2—C25—C3061.69 (15)
Pd1—S1—C1—N1176.59 (17)C30—C25—C26—C270.4 (3)
Pd1—S1—C1—S24.44 (8)P2—C25—C26—C27178.91 (15)
C3—N2—C2—C62.3 (3)C25—C26—C27—C281.2 (3)
C3—N2—C2—N1178.74 (17)C26—C27—C28—C290.7 (3)
C1—N1—C2—N2123.01 (19)C27—C28—C29—C300.5 (3)
C1—N1—C2—C660.6 (3)C28—C29—C30—C251.3 (3)
C2—N2—C3—C40.6 (3)C26—C25—C30—C290.8 (3)
N2—C3—C4—C50.9 (3)P2—C25—C30—C29179.85 (15)
C3—C4—C5—C60.6 (3)C37—P2—C31—C368.05 (19)
C4—C5—C6—C21.1 (3)C25—P2—C31—C3699.36 (17)
N2—C2—C6—C52.6 (3)Pd1—P2—C31—C36135.96 (15)
N1—C2—C6—C5178.74 (18)C37—P2—C31—C32172.34 (14)
C19—P1—C7—C80.90 (18)C25—P2—C31—C3280.26 (15)
C13—P1—C7—C8109.69 (16)Pd1—P2—C31—C3244.43 (16)
Pd1—P1—C7—C8118.17 (15)C36—C31—C32—C331.2 (3)
C19—P1—C7—C12176.58 (14)P2—C31—C32—C33178.47 (16)
C13—P1—C7—C1274.64 (16)C31—C32—C33—C340.0 (3)
Pd1—P1—C7—C1257.50 (15)C32—C33—C34—C350.9 (3)
C12—C7—C8—C91.5 (3)C33—C34—C35—C360.6 (3)
P1—C7—C8—C9177.10 (14)C32—C31—C36—C351.5 (3)
C7—C8—C9—C101.3 (3)P2—C31—C36—C35178.10 (15)
C8—C9—C10—C112.5 (3)C34—C35—C36—C310.6 (3)
C9—C10—C11—C120.8 (3)C31—P2—C37—C38126.65 (15)
C10—C11—C12—C72.1 (3)C25—P2—C37—C38124.84 (15)
C8—C7—C12—C113.2 (3)Pd1—P2—C37—C381.44 (17)
P1—C7—C12—C11179.03 (15)C31—P2—C37—C4256.15 (17)
C19—P1—C13—C14137.46 (16)C25—P2—C37—C4252.37 (17)
C7—P1—C13—C1425.11 (18)Pd1—P2—C37—C42178.64 (13)
Pd1—P1—C13—C1498.32 (16)C42—C37—C38—C391.8 (3)
C19—P1—C13—C1845.87 (16)P2—C37—C38—C39179.09 (16)
C7—P1—C13—C18158.23 (15)C37—C38—C39—C400.1 (3)
Pd1—P1—C13—C1878.34 (16)C38—C39—C40—C411.0 (3)
C18—C13—C14—C150.9 (3)C39—C40—C41—C420.4 (3)
P1—C13—C14—C15175.73 (15)C40—C41—C42—C371.3 (3)
C13—C14—C15—C160.1 (3)C38—C37—C42—C412.4 (3)
C14—C15—C16—C170.4 (3)P2—C37—C42—C41179.61 (15)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the N2/C2/C6/C5/C4/C3, C7–C12, C13–C18, C19–C24 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.952.733.4991 (3)139
C20—H20···Cg2ii0.952.933.7152 (2)141
C9—H9···Cg3ii0.952.703.4657 (2)138
C4—H4···Cg4iii0.952.723.5712 (2)150
C35—H35···Cg5iv0.952.983.7681 (2)141
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Pd(C6H4N2S2)(C18H15P)2]
Mr799.17
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)10.9163 (10), 12.7235 (12), 15.7104 (14)
α, β, γ (°)102.609 (1), 107.672 (1), 108.567 (1)
V3)1847.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.50 × 0.30 × 0.16
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.712, 0.890
No. of measured, independent and
observed [I > 2σ(I)] reflections
30024, 7568, 6811
Rint0.025
(sin θ/λ)max1)0.627
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.055, 1.06
No. of reflections7568
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 0.54

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2, Cg3, Cg4 and Cg5 are the centroids of the N2/C2/C6/C5/C4/C3, C7–C12, C13–C18, C19–C24 and C25–C30 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C15—H15···Cg1i0.952.733.4991 (3)139
C20—H20···Cg2ii0.952.933.7152 (2)141
C9—H9···Cg3ii0.952.703.4657 (2)138
C4—H4···Cg4iii0.952.723.5712 (2)150
C35—H35···Cg5iv0.952.983.7681 (2)141
Symmetry codes: (i) x1, y1, z; (ii) x, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x, y, z.
 

Acknowledgements

The authors thank the Ukrainian National Academy of Sciences for financial support of the study.

References

First citationAhmed, J., Itoh, K., Matsuda, I., Ueda, F., Ishii, Y. & Ibers, J. A. (1977). Inorg. Chem. 16, 620–624.  CSD CrossRef CAS Web of Science Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGaroufis, A., Hadjikakou, S. K. & Hadjiliadis, N. (2009). Coord. Chem. Rev. 253, 1384–1397.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds