metal-organic compounds
Trisilver(I) citrate
aInorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
*Correspondence e-mail: afischer@kth.se
Trisilver(I) citrate, 3Ag+·C6H5O73−, was obtained by evaporation of a saturated aqueous solution of the raw material that had been obtained from sodium dihydrogen citrate and silver nitrate. It features one formula unit in the There is an intramolecular O—H⋯O hydrogen bond between the OH group and one of the terminal carboxylate groups. Different citrate groups are linked via the three Ag+ ions, yielding a three-dimensional network with rather irregular [AgO4] polyhedra.
Related literature
For the preparation and structure of ammonium disilver(I) citrate monohydrate, see: Sagatys et al. (1993) and for tetraammonium copper(II) bis(citrate), see: Bott et al. (1991). For 109Ag solid-state NMR studies on different silver salts, including commercial silver citrate, see: Penner & Li (2004).
Experimental
Crystal data
|
Refinement
|
|
Data collection: COLLECT (Nonius, 1998); cell DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).
Supporting information
10.1107/S160053681100239X/kp2301sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681100239X/kp2301Isup2.hkl
An aqueous solution (0.5 mol/L) of sodium dihydrogen citrate was prepared by dissolving the respecitve amounts of trisodium citrate (Merck, p.a.) and citric acid in demineralised water. 1 mL of this solution was added to 1 mL of a solution of silver nitrate (0.5 mol/L), yielding a white precipitate. The latter was washed with demineralised water. The precipitate was then heated to 323 K with 1 mL of demineralised water. Upon cooling to room remperature, the
was filtered off and put aside for evaporation. Within a couple of days, small, colourless, rod-like crystals formed, that were suitable for It can be noted that crystals of the title compound turned brown during the however, no significant decrease in diffraction intensity could be observed. The initial precipitate formed from sodium dihydrogen citrate and silver nitrate was investigated by powder diffraction and it could be confirmed that it consisted of pure trisilver citrate. In addition, this powder pattern is identical with that of commercial "silver citrate hydrate".Methylene-H atoms were placed at calculated positions (C–H=0.97 Å, Uiso=1.2 Ueq of the respective C atom). The hydroxy-H atom was located from the Fourier map and was refined with a restraint (O–H=0.82 (2) Å) and Uiso=1.5 Ueq(O)). The largest Fourier peak/hole (1.21 and -1.21 e/Å3, respectively), are found 0.82 and 0.77Å from Ag2.
Data collection: Collect; cell
DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).Fig. 1. The molecular structure of the title compound. Thermal ellipsoids at the 50% probability level. H bond as dashed line. |
3Ag+·C6H5O73− | F(000) = 1904 |
Mr = 512.71 | Dx = 3.880 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 53 reflections |
a = 6.6181 (7) Å | θ = 4.0–20.0° |
b = 11.8477 (11) Å | µ = 6.65 mm−1 |
c = 22.386 (2) Å | T = 299 K |
V = 1755.3 (3) Å3 | Rod, colourless |
Z = 8 | 0.12 × 0.05 × 0.02 mm |
Bruker–Nonius KappaCCD diffractometer | 1493 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.055 |
ϕ & ω scans | θmax = 27.5°, θmin = 4.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | h = −8→8 |
Tmin = 0.631, Tmax = 0.876 | k = −14→15 |
15238 measured reflections | l = −29→29 |
2008 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.051 | w = 1/[σ2(Fo2) + (0.0117P)2 + 5.8189P] where P = (Fo2 + 2Fc2)/3 |
S = 1.10 | (Δ/σ)max = 0.001 |
2008 reflections | Δρmax = 1.21 e Å−3 |
148 parameters | Δρmin = −1.21 e Å−3 |
1 restraint |
3Ag+·C6H5O73− | V = 1755.3 (3) Å3 |
Mr = 512.71 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 6.6181 (7) Å | µ = 6.65 mm−1 |
b = 11.8477 (11) Å | T = 299 K |
c = 22.386 (2) Å | 0.12 × 0.05 × 0.02 mm |
Bruker–Nonius KappaCCD diffractometer | 2008 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) | 1493 reflections with I > 2σ(I) |
Tmin = 0.631, Tmax = 0.876 | Rint = 0.055 |
15238 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 1 restraint |
wR(F2) = 0.051 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.10 | Δρmax = 1.21 e Å−3 |
2008 reflections | Δρmin = −1.21 e Å−3 |
148 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ag1 | 0.10659 (6) | 0.25916 (4) | 0.431564 (16) | 0.02802 (12) | |
Ag2 | 0.27992 (6) | 0.15476 (4) | 0.296424 (16) | 0.03187 (12) | |
Ag3 | 0.42015 (6) | 0.32800 (4) | 0.216249 (16) | 0.02955 (12) | |
C1 | 0.7295 (7) | 0.5962 (4) | 0.33652 (19) | 0.0165 (10) | |
C2 | 0.4709 (7) | 0.3885 (4) | 0.3454 (2) | 0.0181 (11) | |
C3 | 0.5610 (7) | 0.4467 (4) | 0.39995 (19) | 0.0168 (10) | |
C4 | 0.7567 (7) | 0.5110 (4) | 0.38916 (18) | 0.0155 (10) | |
C5 | 0.8155 (7) | 0.5769 (4) | 0.44573 (19) | 0.0160 (10) | |
C6 | 1.0229 (7) | 0.6305 (4) | 0.4444 (2) | 0.0176 (11) | |
O1 | 0.5862 (5) | 0.6651 (3) | 0.34287 (14) | 0.0244 (8) | |
O2 | 0.8489 (5) | 0.5926 (3) | 0.29317 (14) | 0.0240 (8) | |
O3 | 0.3092 (5) | 0.3355 (3) | 0.35141 (15) | 0.0317 (9) | |
O4 | 0.5631 (5) | 0.3974 (3) | 0.29684 (14) | 0.0307 (9) | |
O5 | 0.9113 (5) | 0.4296 (3) | 0.37668 (14) | 0.0186 (7) | |
O6 | 1.0678 (5) | 0.7019 (3) | 0.48333 (15) | 0.0296 (9) | |
O7 | 1.1480 (5) | 0.6006 (3) | 0.40461 (15) | 0.0272 (8) | |
H3A | 0.4617 | 0.4990 | 0.4157 | 0.020* | |
H3B | 0.5856 | 0.3900 | 0.4304 | 0.020* | |
H5A | 0.7161 | 0.6359 | 0.4522 | 0.019* | |
H5B | 0.8089 | 0.5260 | 0.4796 | 0.019* | |
H5O | 1.012 (5) | 0.468 (4) | 0.379 (2) | 0.028* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ag1 | 0.0264 (2) | 0.0362 (3) | 0.02149 (19) | 0.00746 (19) | 0.00281 (17) | −0.00024 (17) |
Ag2 | 0.0284 (2) | 0.0484 (3) | 0.01882 (19) | −0.0047 (2) | −0.00075 (17) | −0.00654 (19) |
Ag3 | 0.0383 (3) | 0.0327 (3) | 0.01763 (18) | −0.0018 (2) | −0.00653 (17) | −0.00150 (17) |
C1 | 0.014 (2) | 0.020 (3) | 0.016 (2) | −0.005 (2) | −0.004 (2) | −0.003 (2) |
C2 | 0.018 (3) | 0.014 (3) | 0.022 (2) | −0.002 (2) | −0.004 (2) | 0.002 (2) |
C3 | 0.014 (2) | 0.021 (3) | 0.015 (2) | 0.001 (2) | 0.0015 (19) | −0.0013 (19) |
C4 | 0.015 (2) | 0.016 (3) | 0.016 (2) | 0.003 (2) | 0.001 (2) | 0.0021 (19) |
C5 | 0.019 (3) | 0.015 (3) | 0.014 (2) | 0.002 (2) | 0.0004 (19) | 0.0012 (19) |
C6 | 0.017 (3) | 0.020 (3) | 0.016 (2) | 0.002 (2) | −0.004 (2) | 0.003 (2) |
O1 | 0.0250 (19) | 0.023 (2) | 0.0250 (17) | 0.0080 (17) | 0.0029 (15) | 0.0076 (15) |
O2 | 0.0222 (18) | 0.034 (2) | 0.0162 (16) | 0.0004 (16) | 0.0039 (15) | 0.0037 (15) |
O3 | 0.029 (2) | 0.040 (2) | 0.0260 (18) | −0.013 (2) | 0.0013 (16) | −0.0050 (17) |
O4 | 0.029 (2) | 0.044 (2) | 0.0188 (17) | −0.0117 (18) | 0.0016 (17) | −0.0080 (16) |
O5 | 0.0197 (19) | 0.0140 (19) | 0.0220 (16) | 0.0030 (16) | 0.0001 (15) | −0.0033 (14) |
O6 | 0.031 (2) | 0.034 (2) | 0.0232 (17) | −0.0112 (18) | 0.0018 (16) | −0.0115 (16) |
O7 | 0.0223 (19) | 0.030 (2) | 0.0296 (19) | −0.0022 (17) | 0.0038 (16) | −0.0077 (16) |
Ag1—O6i | 2.275 (3) | C3—C4 | 1.522 (6) |
Ag1—O3 | 2.416 (3) | C4—O5 | 1.433 (6) |
Ag1—O6ii | 2.539 (3) | C4—C5 | 1.538 (6) |
Ag1—O7ii | 2.555 (3) | C5—C6 | 1.513 (7) |
Ag2—O2iii | 2.300 (3) | C6—O6 | 1.251 (6) |
Ag2—O3 | 2.477 (4) | C6—O7 | 1.266 (6) |
Ag2—O7ii | 2.550 (3) | O1—Ag3vi | 2.340 (3) |
Ag2—O2ii | 2.566 (3) | O2—Ag2vi | 2.300 (3) |
Ag2—Ag3 | 2.8801 (6) | O2—Ag2vii | 2.566 (3) |
Ag2—Ag3iv | 3.1563 (7) | O4—Ag3v | 2.519 (4) |
Ag3—O4 | 2.197 (3) | O5—Ag3v | 2.404 (3) |
Ag3—O1iii | 2.340 (3) | O6—Ag1i | 2.275 (3) |
Ag3—O5iv | 2.404 (3) | O6—Ag1vii | 2.539 (3) |
Ag3—O4iv | 2.519 (4) | O7—Ag2vii | 2.550 (3) |
Ag3—Ag2v | 3.1563 (7) | O7—Ag1vii | 2.555 (3) |
C1—O2 | 1.252 (5) | C3—H3A | 0.9700 |
C1—O1 | 1.260 (6) | C3—H3B | 0.9700 |
C1—C4 | 1.562 (6) | C5—H5A | 0.9700 |
C2—O3 | 1.248 (6) | C5—H5B | 0.9700 |
C2—O4 | 1.252 (6) | O5—H5O | 0.81 (2) |
C2—C3 | 1.523 (6) | ||
O6i—Ag1—O3 | 145.89 (13) | O4—C2—C3 | 117.8 (4) |
O6i—Ag1—O6ii | 95.88 (6) | C4—C3—C2 | 115.6 (4) |
O3—Ag1—O6ii | 88.17 (12) | O5—C4—C3 | 107.6 (4) |
O6i—Ag1—O7ii | 132.00 (12) | O5—C4—C5 | 108.8 (4) |
O3—Ag1—O7ii | 75.34 (12) | C3—C4—C5 | 109.8 (3) |
O6ii—Ag1—O7ii | 51.10 (11) | O5—C4—C1 | 111.7 (3) |
O2iii—Ag2—O3 | 137.63 (12) | C3—C4—C1 | 110.2 (4) |
O2iii—Ag2—O7ii | 144.77 (12) | C5—C4—C1 | 108.8 (4) |
O3—Ag2—O7ii | 74.39 (11) | C6—C5—C4 | 115.2 (4) |
O2iii—Ag2—O2ii | 103.78 (10) | O6—C6—O7 | 121.6 (4) |
O3—Ag2—O2ii | 100.80 (12) | O6—C6—C5 | 119.1 (4) |
O7ii—Ag2—O2ii | 77.04 (10) | O7—C6—C5 | 119.4 (4) |
O2iii—Ag2—Ag3 | 78.71 (9) | C1—O1—Ag3vi | 119.0 (3) |
O3—Ag2—Ag3 | 70.64 (8) | C1—O2—Ag2vi | 115.5 (3) |
O7ii—Ag2—Ag3 | 135.29 (8) | C1—O2—Ag2vii | 124.9 (3) |
O2ii—Ag2—Ag3 | 83.01 (8) | Ag2vi—O2—Ag2vii | 106.72 (12) |
O2iii—Ag2—Ag3iv | 81.39 (9) | C2—O3—Ag1 | 138.1 (3) |
O3—Ag2—Ag3iv | 62.71 (9) | C2—O3—Ag2 | 116.7 (3) |
O7ii—Ag2—Ag3iv | 112.94 (8) | Ag1—O3—Ag2 | 90.13 (12) |
O2ii—Ag2—Ag3iv | 155.01 (8) | C2—O4—Ag3 | 118.2 (3) |
Ag3—Ag2—Ag3iv | 73.958 (16) | C2—O4—Ag3v | 122.1 (3) |
O4—Ag3—O1iii | 141.33 (13) | Ag3—O4—Ag3v | 100.73 (13) |
O4—Ag3—O5iv | 122.24 (13) | C4—O5—Ag3v | 121.5 (2) |
O1iii—Ag3—O5iv | 85.60 (11) | C6—O6—Ag1i | 126.9 (3) |
O4—Ag3—O4iv | 112.16 (13) | C6—O6—Ag1vii | 93.7 (3) |
O1iii—Ag3—O4iv | 100.76 (12) | Ag1i—O6—Ag1vii | 139.37 (15) |
O5iv—Ag3—O4iv | 73.33 (11) | C6—O7—Ag2vii | 136.0 (3) |
O4—Ag3—Ag2 | 83.90 (9) | C6—O7—Ag1vii | 92.6 (3) |
O1iii—Ag3—Ag2 | 76.06 (8) | Ag2vii—O7—Ag1vii | 85.45 (11) |
O5iv—Ag3—Ag2 | 152.65 (8) | C4—C3—H3A | 108.4 |
O4iv—Ag3—Ag2 | 90.16 (8) | C2—C3—H3A | 108.4 |
O4—Ag3—Ag2v | 89.56 (10) | C4—C3—H3B | 108.4 |
O1iii—Ag3—Ag2v | 55.00 (8) | C2—C3—H3B | 108.4 |
O5iv—Ag3—Ag2v | 105.44 (8) | H3A—C3—H3B | 107.4 |
O4iv—Ag3—Ag2v | 155.43 (9) | C6—C5—H5A | 108.5 |
Ag2—Ag3—Ag2v | 80.542 (17) | C4—C5—H5A | 108.5 |
O2—C1—O1 | 125.8 (4) | C6—C5—H5B | 108.5 |
O2—C1—C4 | 119.4 (4) | C4—C5—H5B | 108.5 |
O1—C1—C4 | 114.9 (4) | H5A—C5—H5B | 107.5 |
O3—C2—O4 | 123.6 (4) | C4—O5—H5O | 101 (4) |
O3—C2—C3 | 118.6 (4) | Ag3v—O5—H5O | 109 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, z; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1/2, y, −z+1/2; (v) x+1/2, y, −z+1/2; (vi) −x+1, y+1/2, −z+1/2; (vii) −x+3/2, y+1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O7 | 0.81 (2) | 1.90 (3) | 2.636 (5) | 152 (5) |
Experimental details
Crystal data | |
Chemical formula | 3Ag+·C6H5O73− |
Mr | 512.71 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 299 |
a, b, c (Å) | 6.6181 (7), 11.8477 (11), 22.386 (2) |
V (Å3) | 1755.3 (3) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 6.65 |
Crystal size (mm) | 0.12 × 0.05 × 0.02 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2003) |
Tmin, Tmax | 0.631, 0.876 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15238, 2008, 1493 |
Rint | 0.055 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.051, 1.10 |
No. of reflections | 2008 |
No. of parameters | 148 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.21, −1.21 |
Computer programs: Collect, DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), publCIF (Westrip, 2010).
Ag1—O6i | 2.275 (3) | Ag2—O7ii | 2.550 (3) |
Ag1—O3 | 2.416 (3) | Ag2—O2ii | 2.566 (3) |
Ag1—O6ii | 2.539 (3) | Ag3—O4 | 2.197 (3) |
Ag1—O7ii | 2.555 (3) | Ag3—O1iii | 2.340 (3) |
Ag2—O2iii | 2.300 (3) | Ag3—O5iv | 2.404 (3) |
Ag2—O3 | 2.477 (4) | Ag3—O4iv | 2.519 (4) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, y−1/2, z; (iii) −x+1, y−1/2, −z+1/2; (iv) x−1/2, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
O5—H5O···O7 | 0.81 (2) | 1.90 (3) | 2.636 (5) | 152 (5) |
Acknowledgements
The Swedish Research Council (VR) is acknowledged for providing funding for the single-crystal diffractometer.
References
Bott, R. C., Sagatys, D. S., Lynch, D. E., Smith, G., Kennard, C. H. L. & Mak, T. C. W. (1991). Aust. J. Chem. 44, 1495–1498. CSD CrossRef CAS Google Scholar
Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96. CrossRef CAS Web of Science IUCr Journals Google Scholar
Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229. Web of Science CrossRef CAS IUCr Journals Google Scholar
Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Penner, G. H. & Li, W. (2004). Inorg. Chem. 43, 5588–5597. Web of Science CrossRef PubMed CAS Google Scholar
Sagatys, D. S., Smith, G., Bott, R. C., Lynch, D. E. & Kennard, C. H. L. (1993). Polyhedron, 12, 709–713. CSD CrossRef CAS Web of Science Google Scholar
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The structures of many citrates of common metal ions are surprisingly sparsely investigated. Of the citrates of coinage metal cations, only ammonium disilver citrate monohydrate (Sagatys et al., 1993) and tetraammonium copper(II) bis(citrate) (Bott et al. 1991) have been reported. Here, we report the crystal structure of trisilver citrate, which was obtained from mixing solutions of sodium dihydrogen citrate and silver nitrate.
The basic structural of the 3D-polymeric structure shows an intramolecular hydrogen bond O–H···O bond between O5 and O7 (Fig. 1). As expected from the charges, all three carboxy groups are deprotonated. The coordination polyhedra about the Ag+ cations are quite irregular, the Ag–O distances are in the range 2.275 (3) to 2.566 (3) Å (Table 1). The Ag2–Ag3 contact of 2.8801 (6) Å is the shortest one in the structure. It can be noted that significantly shorter distances Ag+–Ag+ are observed in many silver coordination compounds.