metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Trisilver(I) citrate

aInorganic Chemistry, School of Chemical Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
*Correspondence e-mail: afischer@kth.se

(Received 31 December 2010; accepted 17 January 2011; online 22 January 2011)

Trisilver(I) citrate, 3Ag+·C6H5O73−, was obtained by evaporation of a saturated aqueous solution of the raw material that had been obtained from sodium dihydrogen citrate and silver nitrate. It features one formula unit in the asymmetric unit. There is an intra­molecular O—H⋯O hydrogen bond between the OH group and one of the terminal carboxyl­ate groups. Different citrate groups are linked via the three Ag+ ions, yielding a three-dimensional network with rather irregular [AgO4] polyhedra.

Related literature

For the preparation and structure of ammonium disilver(I) citrate monohydrate, see: Sagatys et al. (1993[Sagatys, D. S., Smith, G., Bott, R. C., Lynch, D. E. & Kennard, C. H. L. (1993). Polyhedron, 12, 709-713.]) and for tetra­ammonium copper(II) bis­(citrate), see: Bott et al. (1991[Bott, R. C., Sagatys, D. S., Lynch, D. E., Smith, G., Kennard, C. H. L. & Mak, T. C. W. (1991). Aust. J. Chem. 44, 1495-1498.]). For 109Ag solid-state NMR studies on different silver salts, including commercial silver citrate, see: Penner & Li (2004[Penner, G. H. & Li, W. (2004). Inorg. Chem. 43, 5588-5597.]).

[Scheme 1]

Experimental

Crystal data
  • 3Ag+·C6H5O73−

  • Mr = 512.71

  • Orthorhombic, P b c a

  • a = 6.6181 (7) Å

  • b = 11.8477 (11) Å

  • c = 22.386 (2) Å

  • V = 1755.3 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.65 mm−1

  • T = 299 K

  • 0.12 × 0.05 × 0.02 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.631, Tmax = 0.876

  • 15238 measured reflections

  • 2008 independent reflections

  • 1493 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.051

  • S = 1.10

  • 2008 reflections

  • 148 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.21 e Å−3

Table 1
Selected bond lengths (Å)

Ag1—O6i 2.275 (3)
Ag1—O3 2.416 (3)
Ag1—O6ii 2.539 (3)
Ag1—O7ii 2.555 (3)
Ag2—O2iii 2.300 (3)
Ag2—O3 2.477 (4)
Ag2—O7ii 2.550 (3)
Ag2—O2ii 2.566 (3)
Ag3—O4 2.197 (3)
Ag3—O1iii 2.340 (3)
Ag3—O5iv 2.404 (3)
Ag3—O4iv 2.519 (4)
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5O⋯O7 0.81 (2) 1.90 (3) 2.636 (5) 152 (5)

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DIRAX (Duisenberg, 1992[Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.]); data reduction: EVALCCD (Duisenberg et al., 2003[Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220-229.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2007)[Brandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structures of many citrates of common metal ions are surprisingly sparsely investigated. Of the citrates of coinage metal cations, only ammonium disilver citrate monohydrate (Sagatys et al., 1993) and tetraammonium copper(II) bis(citrate) (Bott et al. 1991) have been reported. Here, we report the crystal structure of trisilver citrate, which was obtained from mixing solutions of sodium dihydrogen citrate and silver nitrate.

The basic structural of the 3D-polymeric structure shows an intramolecular hydrogen bond O–H···O bond between O5 and O7 (Fig. 1). As expected from the charges, all three carboxy groups are deprotonated. The coordination polyhedra about the Ag+ cations are quite irregular, the Ag–O distances are in the range 2.275 (3) to 2.566 (3) Å (Table 1). The Ag2–Ag3 contact of 2.8801 (6) Å is the shortest one in the structure. It can be noted that significantly shorter distances Ag+–Ag+ are observed in many silver coordination compounds.

Related literature top

For the preparation and structure of ammonium disilver(I) citrate monohydrate, see: Sagatys et al. (1993) and for tetraammonium copper(II) bis(citrate), see: Bott et al. (1991). For 109Ag solid-state NMR studies on different silver salts, including commercial silver citrate, see: Penner & Li (2004).

Experimental top

An aqueous solution (0.5 mol/L) of sodium dihydrogen citrate was prepared by dissolving the respecitve amounts of trisodium citrate (Merck, p.a.) and citric acid in demineralised water. 1 mL of this solution was added to 1 mL of a solution of silver nitrate (0.5 mol/L), yielding a white precipitate. The latter was washed with demineralised water. The precipitate was then heated to 323 K with 1 mL of demineralised water. Upon cooling to room remperature, the saturated solution was filtered off and put aside for evaporation. Within a couple of days, small, colourless, rod-like crystals formed, that were suitable for structure determination. It can be noted that crystals of the title compound turned brown during the structure determination; however, no significant decrease in diffraction intensity could be observed. The initial precipitate formed from sodium dihydrogen citrate and silver nitrate was investigated by powder diffraction and it could be confirmed that it consisted of pure trisilver citrate. In addition, this powder pattern is identical with that of commercial "silver citrate hydrate".

Refinement top

Methylene-H atoms were placed at calculated positions (C–H=0.97 Å, Uiso=1.2 Ueq of the respective C atom). The hydroxy-H atom was located from the Fourier map and was refined with a restraint (O–H=0.82 (2) Å) and Uiso=1.5 Ueq(O)). The largest Fourier peak/hole (1.21 and -1.21 e/Å3, respectively), are found 0.82 and 0.77Å from Ag2.

Computing details top

Data collection: Collect; cell refinement: DIRAX (Duisenberg, 1992); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Thermal ellipsoids at the 50% probability level. H bond as dashed line.
Trisilver citrate top
Crystal data top
3Ag+·C6H5O73F(000) = 1904
Mr = 512.71Dx = 3.880 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 53 reflections
a = 6.6181 (7) Åθ = 4.0–20.0°
b = 11.8477 (11) ŵ = 6.65 mm1
c = 22.386 (2) ÅT = 299 K
V = 1755.3 (3) Å3Rod, colourless
Z = 80.12 × 0.05 × 0.02 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1493 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
ϕ & ω scansθmax = 27.5°, θmin = 4.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 88
Tmin = 0.631, Tmax = 0.876k = 1415
15238 measured reflectionsl = 2929
2008 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0117P)2 + 5.8189P]
where P = (Fo2 + 2Fc2)/3
S = 1.10(Δ/σ)max = 0.001
2008 reflectionsΔρmax = 1.21 e Å3
148 parametersΔρmin = 1.21 e Å3
1 restraint
Crystal data top
3Ag+·C6H5O73V = 1755.3 (3) Å3
Mr = 512.71Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 6.6181 (7) ŵ = 6.65 mm1
b = 11.8477 (11) ÅT = 299 K
c = 22.386 (2) Å0.12 × 0.05 × 0.02 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
2008 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1493 reflections with I > 2σ(I)
Tmin = 0.631, Tmax = 0.876Rint = 0.055
15238 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.051H atoms treated by a mixture of independent and constrained refinement
S = 1.10Δρmax = 1.21 e Å3
2008 reflectionsΔρmin = 1.21 e Å3
148 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.10659 (6)0.25916 (4)0.431564 (16)0.02802 (12)
Ag20.27992 (6)0.15476 (4)0.296424 (16)0.03187 (12)
Ag30.42015 (6)0.32800 (4)0.216249 (16)0.02955 (12)
C10.7295 (7)0.5962 (4)0.33652 (19)0.0165 (10)
C20.4709 (7)0.3885 (4)0.3454 (2)0.0181 (11)
C30.5610 (7)0.4467 (4)0.39995 (19)0.0168 (10)
C40.7567 (7)0.5110 (4)0.38916 (18)0.0155 (10)
C50.8155 (7)0.5769 (4)0.44573 (19)0.0160 (10)
C61.0229 (7)0.6305 (4)0.4444 (2)0.0176 (11)
O10.5862 (5)0.6651 (3)0.34287 (14)0.0244 (8)
O20.8489 (5)0.5926 (3)0.29317 (14)0.0240 (8)
O30.3092 (5)0.3355 (3)0.35141 (15)0.0317 (9)
O40.5631 (5)0.3974 (3)0.29684 (14)0.0307 (9)
O50.9113 (5)0.4296 (3)0.37668 (14)0.0186 (7)
O61.0678 (5)0.7019 (3)0.48333 (15)0.0296 (9)
O71.1480 (5)0.6006 (3)0.40461 (15)0.0272 (8)
H3A0.46170.49900.41570.020*
H3B0.58560.39000.43040.020*
H5A0.71610.63590.45220.019*
H5B0.80890.52600.47960.019*
H5O1.012 (5)0.468 (4)0.379 (2)0.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0264 (2)0.0362 (3)0.02149 (19)0.00746 (19)0.00281 (17)0.00024 (17)
Ag20.0284 (2)0.0484 (3)0.01882 (19)0.0047 (2)0.00075 (17)0.00654 (19)
Ag30.0383 (3)0.0327 (3)0.01763 (18)0.0018 (2)0.00653 (17)0.00150 (17)
C10.014 (2)0.020 (3)0.016 (2)0.005 (2)0.004 (2)0.003 (2)
C20.018 (3)0.014 (3)0.022 (2)0.002 (2)0.004 (2)0.002 (2)
C30.014 (2)0.021 (3)0.015 (2)0.001 (2)0.0015 (19)0.0013 (19)
C40.015 (2)0.016 (3)0.016 (2)0.003 (2)0.001 (2)0.0021 (19)
C50.019 (3)0.015 (3)0.014 (2)0.002 (2)0.0004 (19)0.0012 (19)
C60.017 (3)0.020 (3)0.016 (2)0.002 (2)0.004 (2)0.003 (2)
O10.0250 (19)0.023 (2)0.0250 (17)0.0080 (17)0.0029 (15)0.0076 (15)
O20.0222 (18)0.034 (2)0.0162 (16)0.0004 (16)0.0039 (15)0.0037 (15)
O30.029 (2)0.040 (2)0.0260 (18)0.013 (2)0.0013 (16)0.0050 (17)
O40.029 (2)0.044 (2)0.0188 (17)0.0117 (18)0.0016 (17)0.0080 (16)
O50.0197 (19)0.0140 (19)0.0220 (16)0.0030 (16)0.0001 (15)0.0033 (14)
O60.031 (2)0.034 (2)0.0232 (17)0.0112 (18)0.0018 (16)0.0115 (16)
O70.0223 (19)0.030 (2)0.0296 (19)0.0022 (17)0.0038 (16)0.0077 (16)
Geometric parameters (Å, º) top
Ag1—O6i2.275 (3)C3—C41.522 (6)
Ag1—O32.416 (3)C4—O51.433 (6)
Ag1—O6ii2.539 (3)C4—C51.538 (6)
Ag1—O7ii2.555 (3)C5—C61.513 (7)
Ag2—O2iii2.300 (3)C6—O61.251 (6)
Ag2—O32.477 (4)C6—O71.266 (6)
Ag2—O7ii2.550 (3)O1—Ag3vi2.340 (3)
Ag2—O2ii2.566 (3)O2—Ag2vi2.300 (3)
Ag2—Ag32.8801 (6)O2—Ag2vii2.566 (3)
Ag2—Ag3iv3.1563 (7)O4—Ag3v2.519 (4)
Ag3—O42.197 (3)O5—Ag3v2.404 (3)
Ag3—O1iii2.340 (3)O6—Ag1i2.275 (3)
Ag3—O5iv2.404 (3)O6—Ag1vii2.539 (3)
Ag3—O4iv2.519 (4)O7—Ag2vii2.550 (3)
Ag3—Ag2v3.1563 (7)O7—Ag1vii2.555 (3)
C1—O21.252 (5)C3—H3A0.9700
C1—O11.260 (6)C3—H3B0.9700
C1—C41.562 (6)C5—H5A0.9700
C2—O31.248 (6)C5—H5B0.9700
C2—O41.252 (6)O5—H5O0.81 (2)
C2—C31.523 (6)
O6i—Ag1—O3145.89 (13)O4—C2—C3117.8 (4)
O6i—Ag1—O6ii95.88 (6)C4—C3—C2115.6 (4)
O3—Ag1—O6ii88.17 (12)O5—C4—C3107.6 (4)
O6i—Ag1—O7ii132.00 (12)O5—C4—C5108.8 (4)
O3—Ag1—O7ii75.34 (12)C3—C4—C5109.8 (3)
O6ii—Ag1—O7ii51.10 (11)O5—C4—C1111.7 (3)
O2iii—Ag2—O3137.63 (12)C3—C4—C1110.2 (4)
O2iii—Ag2—O7ii144.77 (12)C5—C4—C1108.8 (4)
O3—Ag2—O7ii74.39 (11)C6—C5—C4115.2 (4)
O2iii—Ag2—O2ii103.78 (10)O6—C6—O7121.6 (4)
O3—Ag2—O2ii100.80 (12)O6—C6—C5119.1 (4)
O7ii—Ag2—O2ii77.04 (10)O7—C6—C5119.4 (4)
O2iii—Ag2—Ag378.71 (9)C1—O1—Ag3vi119.0 (3)
O3—Ag2—Ag370.64 (8)C1—O2—Ag2vi115.5 (3)
O7ii—Ag2—Ag3135.29 (8)C1—O2—Ag2vii124.9 (3)
O2ii—Ag2—Ag383.01 (8)Ag2vi—O2—Ag2vii106.72 (12)
O2iii—Ag2—Ag3iv81.39 (9)C2—O3—Ag1138.1 (3)
O3—Ag2—Ag3iv62.71 (9)C2—O3—Ag2116.7 (3)
O7ii—Ag2—Ag3iv112.94 (8)Ag1—O3—Ag290.13 (12)
O2ii—Ag2—Ag3iv155.01 (8)C2—O4—Ag3118.2 (3)
Ag3—Ag2—Ag3iv73.958 (16)C2—O4—Ag3v122.1 (3)
O4—Ag3—O1iii141.33 (13)Ag3—O4—Ag3v100.73 (13)
O4—Ag3—O5iv122.24 (13)C4—O5—Ag3v121.5 (2)
O1iii—Ag3—O5iv85.60 (11)C6—O6—Ag1i126.9 (3)
O4—Ag3—O4iv112.16 (13)C6—O6—Ag1vii93.7 (3)
O1iii—Ag3—O4iv100.76 (12)Ag1i—O6—Ag1vii139.37 (15)
O5iv—Ag3—O4iv73.33 (11)C6—O7—Ag2vii136.0 (3)
O4—Ag3—Ag283.90 (9)C6—O7—Ag1vii92.6 (3)
O1iii—Ag3—Ag276.06 (8)Ag2vii—O7—Ag1vii85.45 (11)
O5iv—Ag3—Ag2152.65 (8)C4—C3—H3A108.4
O4iv—Ag3—Ag290.16 (8)C2—C3—H3A108.4
O4—Ag3—Ag2v89.56 (10)C4—C3—H3B108.4
O1iii—Ag3—Ag2v55.00 (8)C2—C3—H3B108.4
O5iv—Ag3—Ag2v105.44 (8)H3A—C3—H3B107.4
O4iv—Ag3—Ag2v155.43 (9)C6—C5—H5A108.5
Ag2—Ag3—Ag2v80.542 (17)C4—C5—H5A108.5
O2—C1—O1125.8 (4)C6—C5—H5B108.5
O2—C1—C4119.4 (4)C4—C5—H5B108.5
O1—C1—C4114.9 (4)H5A—C5—H5B107.5
O3—C2—O4123.6 (4)C4—O5—H5O101 (4)
O3—C2—C3118.6 (4)Ag3v—O5—H5O109 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z; (iii) x+1, y1/2, z+1/2; (iv) x1/2, y, z+1/2; (v) x+1/2, y, z+1/2; (vi) x+1, y+1/2, z+1/2; (vii) x+3/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O70.81 (2)1.90 (3)2.636 (5)152 (5)

Experimental details

Crystal data
Chemical formula3Ag+·C6H5O73
Mr512.71
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)299
a, b, c (Å)6.6181 (7), 11.8477 (11), 22.386 (2)
V3)1755.3 (3)
Z8
Radiation typeMo Kα
µ (mm1)6.65
Crystal size (mm)0.12 × 0.05 × 0.02
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.631, 0.876
No. of measured, independent and
observed [I > 2σ(I)] reflections
15238, 2008, 1493
Rint0.055
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.051, 1.10
No. of reflections2008
No. of parameters148
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.21, 1.21

Computer programs: Collect, DIRAX (Duisenberg, 1992), EVALCCD (Duisenberg et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2007), publCIF (Westrip, 2010).

Selected bond lengths (Å) top
Ag1—O6i2.275 (3)Ag2—O7ii2.550 (3)
Ag1—O32.416 (3)Ag2—O2ii2.566 (3)
Ag1—O6ii2.539 (3)Ag3—O42.197 (3)
Ag1—O7ii2.555 (3)Ag3—O1iii2.340 (3)
Ag2—O2iii2.300 (3)Ag3—O5iv2.404 (3)
Ag2—O32.477 (4)Ag3—O4iv2.519 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+3/2, y1/2, z; (iii) x+1, y1/2, z+1/2; (iv) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5O···O70.81 (2)1.90 (3)2.636 (5)152 (5)
 

Acknowledgements

The Swedish Research Council (VR) is acknowledged for providing funding for the single-crystal diffractometer.

References

First citationBott, R. C., Sagatys, D. S., Lynch, D. E., Smith, G., Kennard, C. H. L. & Mak, T. C. W. (1991). Aust. J. Chem. 44, 1495–1498.  CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (2007). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationDuisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92–96.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDuisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst. 36, 220–229.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationPenner, G. H. & Li, W. (2004). Inorg. Chem. 43, 5588–5597.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSagatys, D. S., Smith, G., Bott, R. C., Lynch, D. E. & Kennard, C. H. L. (1993). Polyhedron, 12, 709–713.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds