metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

trans-Di­aqua­(pyridazine-3-carboxyl­ato-κ2N2,O)lithium

aInstitute of Nuclear Chemistry and Technology, ul.Dorodna 16, 03-195 Warszawa, Poland
*Correspondence e-mail: j.leciejewicz@ichtj.waw.pl

(Received 4 January 2011; accepted 5 January 2011; online 15 January 2011)

The structure of the title complex, [Li(C5H3N2O2)(H2O)2], is built of monomeric mol­ecules. In each, an Li+ ion is N,O-chelated by the pyridazine-3-carboxyl­ate ligand and two water O atoms. The coordination geometry of the metal ion is distorted tetra­hedral. The monomers are linked by a system of hydrogen bonds in which water mol­ecules act as donors and carboxyl­ate O atoms act as acceptors. O—H⋯N hydrogen bonding is also present.

Related literature

For the structures of 3d transition metal complexes with the title ligand, see: Ardiwinata et al. (1989[Ardiwinata, E. S., Craig, D. C. & Philips, D. J. (1989). Inorg. Chim. Acta, 166, 233-238.]); Gryz et al. (2003[Gryz, M., Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505-1511.], 2004[Gryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481-m1483.]). The structures of complexes with: Mg2+ (Gryz et al., 2006[Gryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m123-m124.]); Ca2+ (Starosta & Leciejewicz, 2007[Starosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662-m1663.]); UO22+ (Leciejewicz & Starosta, 2009[Leciejewicz, J. & Starosta, W. (2009). Acta Cryst. E65, m94.]) and Pb2+ (Starosta & Leciejewicz, 2010[Starosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m192.]) have been also reported. For the structure of pyridazine-3-carb­oxy­lic acid hydro­chloride, see: Gryz et al. (2003[Gryz, M., Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505-1511.]).

[Scheme 1]

Experimental

Crystal data
  • [Li(C5H3N2O2)(H2O)2]

  • Mr = 166.07

  • Monoclinic, P 21 /c

  • a = 7.4620 (15) Å

  • b = 13.738 (3) Å

  • c = 8.0330 (16) Å

  • β = 112.27 (3)°

  • V = 762.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.41 × 0.13 × 0.11 mm

Data collection
  • Kuma KM-4 four-circle diffractometer

  • Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008)[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.] Tmin = 0.972, Tmax = 0.989

  • 1681 measured reflections

  • 1579 independent reflections

  • 878 reflections with I > 2σ(I)

  • Rint = 0.044

  • 3 standard reflections every 200 reflections intensity decay: 0.1%

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.150

  • S = 0.99

  • 1579 reflections

  • 137 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Selected bond lengths (Å)

O1—Li1 1.950 (5)
O3—Li1 1.896 (5)
N2—Li1 2.095 (4)
Li1—O4 1.907 (5)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H41⋯O2i 0.85 (4) 1.90 (4) 2.720 (3) 164 (3)
O4—H42⋯O2ii 0.84 (4) 2.07 (4) 2.823 (3) 150 (4)
O3—H32⋯O1iii 0.99 (4) 1.77 (4) 2.741 (3) 167 (3)
O3—H31⋯N1iv 0.77 (5) 2.10 (5) 2.840 (3) 160 (5)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1; (iv) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma, 1996[Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: DATAPROC (Kuma, 2001[Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal ion complexes with pyridazine-3-carboxylate ligand show a veriaty of coordination modes and molecular patterns. Monomeric molecules with octahedral coordination geometry have been reported in the structures of a Mn complex (Ardiwinata et al. 1989), two Zn complexes (Gryz et al., 2003, 2004) and a Mg complex (Gryz et al., 2006). On the other hand, the structure of a Ca complex is built of binuclear molecules (Starosta & Leciejewicz, 2007). The structure of an uranyl complex is also composed of binuclear molecules but with a different system of internal bridging as compared to that one observed in the crystals of the Ca compound (Leciejewicz & Starosta, 2009). The structure of a Pb complex is catenated polymeric (Starosta & Leciejewicz, 2010). The crystal structure of the title compound contains discrete mononuclear molecules. In each, a Li1+ ion is chelated by one pyridazine-3-carboxylate ligand molecule which uses its N,O- bonding site and two water O atoms arranged in trans mode. The coordination environment of the metal ion is slightly distorted tetrahedral. The relevant Li—O and Li—N bond distances and bond angles are in fair agreement with those reported for Li1+ complexes with carboxylate ligands. The pyridazine ring is almost planar [r.m.s. deviation is 0.0099 (1) Å]. The C7/O1/O2 carboxylic group makes with the ring a dihedral angle of 2.0 (1)°. Bond lengths and bond angles within the ligand molecule are close to those reported for the pyridazine-3-carboxylic acid hydrochloride (Gryz et al. 2003) and other metal complexes with the title ligand. Coordinated water molecules and carboxylate O atoms participate in a network of hydrogen bonds. An O—H···N of 2.840 (3)%A is also observed. This network is responsible for the stability of the crystal structure.

Related literature top

For the structures of 3d transition metal complexes with the title ligand, see: Ardiwinata et al. (1989), Gryz et al. (2003), and Gryz, et al. (2004). The structures of complexes with: Mg2+ (Gryz et al., 2006); Ca2+ (Starosta & Leciejewicz, 2007); UO22+ (Leciejewicz & Starosta, 2009) and Pb2+ (Starosta & Leciejewicz, 2010) have been also reported. For the structure of pyridazine-3-carboxylic acid hydrochloride, see: Gryz et al. (2003).

Experimental top

30 mL of an aqueous solution containing 1 mmol of LiOH (Aldrich) was titrated with 0.1 N HCl until pH of ca 6 was reached. Then, a solution of 1 mmol of pyridazine-3-carboxylic acid in 30 mL of hot water was added, the mixture heated at 323 K with stirring for 3 h on a water bath and then left to crystallise at the ambient temperature. After evaporating to dryness well formed single crystals were found on the bottom of the reaction pot. They were washed with ethanol and dried in air.

Refinement top

Water hydrogen atoms were located in a difference map and refined isotropically. H atoms attached to pyridazine-ring C atoms were positioned at calculated positions and treated as riding on the parent atoms, with C—H=0.93 Å and Uiso(H)=1.2Ueq(C).

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A molecule of the title compound with atom labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing diagram.
trans-Diaqua(pyridazine-3-carboxylato- κ2N2,O)lithium top
Crystal data top
[Li(C5H3N2O2)(H2O)2]F(000) = 344
Mr = 166.07Dx = 1.447 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.4620 (15) ÅCell parameters from 3 reflections
b = 13.738 (3) Åθ = 6–15°
c = 8.0330 (16) ŵ = 0.12 mm1
β = 112.27 (3)°T = 293 K
V = 762.1 (3) Å3Blocks, colourless
Z = 40.41 × 0.13 × 0.11 mm
Data collection top
Kuma KM-4 four-circle
diffractometer
878 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 27.1°, θmin = 3.0°
profile data from ω/2θ scansh = 09
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 017
Tmin = 0.972, Tmax = 0.989l = 108
1681 measured reflections3 standard reflections every 200 reflections
1579 independent reflections intensity decay: 0.1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.1002P)2]
where P = (Fo2 + 2Fc2)/3
1579 reflections(Δ/σ)max < 0.001
137 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Li(C5H3N2O2)(H2O)2]V = 762.1 (3) Å3
Mr = 166.07Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.4620 (15) ŵ = 0.12 mm1
b = 13.738 (3) ÅT = 293 K
c = 8.0330 (16) Å0.41 × 0.13 × 0.11 mm
β = 112.27 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
878 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.044
Tmin = 0.972, Tmax = 0.9893 standard reflections every 200 reflections
1681 measured reflections intensity decay: 0.1%
1579 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.150H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.25 e Å3
1579 reflectionsΔρmin = 0.30 e Å3
137 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5660 (2)0.46534 (12)0.7782 (2)0.0433 (5)
O20.7322 (3)0.35353 (12)0.9796 (2)0.0453 (5)
O30.6476 (3)0.62905 (16)0.5350 (3)0.0504 (5)
N20.7489 (3)0.60891 (13)0.9918 (2)0.0341 (5)
C30.7981 (3)0.51905 (15)1.0537 (3)0.0297 (5)
N10.8297 (3)0.68561 (14)1.0952 (3)0.0436 (5)
C40.9386 (3)0.5005 (2)1.2220 (3)0.0380 (6)
C60.9614 (4)0.6700 (2)1.2587 (3)0.0447 (6)
C70.6887 (3)0.43841 (16)0.9250 (3)0.0331 (5)
C51.0237 (4)0.5780 (2)1.3266 (3)0.0430 (6)
Li10.5577 (6)0.6038 (3)0.7221 (5)0.0411 (9)
H30.974 (4)0.440 (2)1.258 (3)0.043 (7)*
H61.006 (4)0.728 (2)1.330 (3)0.042 (7)*
H410.332 (5)0.741 (3)0.668 (4)0.063 (9)*
O40.3421 (3)0.68308 (15)0.7066 (3)0.0480 (5)
H420.344 (6)0.691 (3)0.811 (6)0.089 (13)*
H320.573 (5)0.604 (2)0.413 (5)0.086 (11)*
H310.678 (6)0.682 (4)0.527 (6)0.108 (17)*
H51.112 (5)0.571 (2)1.441 (4)0.064 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0484 (10)0.0356 (9)0.0360 (9)0.0082 (8)0.0048 (8)0.0012 (7)
O20.0622 (12)0.0271 (9)0.0441 (10)0.0006 (8)0.0173 (9)0.0001 (7)
O30.0643 (13)0.0424 (11)0.0410 (10)0.0133 (10)0.0161 (10)0.0018 (8)
N20.0328 (11)0.0277 (10)0.0367 (10)0.0018 (8)0.0076 (9)0.0019 (8)
C30.0279 (10)0.0301 (11)0.0335 (10)0.0011 (9)0.0143 (9)0.0013 (9)
N10.0438 (12)0.0338 (11)0.0462 (12)0.0015 (9)0.0094 (10)0.0071 (9)
C40.0373 (12)0.0388 (13)0.0369 (12)0.0033 (11)0.0129 (10)0.0047 (11)
C60.0440 (15)0.0427 (14)0.0429 (14)0.0128 (12)0.0114 (12)0.0120 (11)
C70.0372 (12)0.0318 (12)0.0347 (12)0.0018 (10)0.0184 (11)0.0014 (9)
C50.0333 (13)0.0566 (15)0.0328 (13)0.0066 (12)0.0052 (11)0.0002 (11)
Li10.035 (2)0.043 (2)0.038 (2)0.0004 (18)0.0061 (18)0.0022 (17)
O40.0532 (12)0.0418 (11)0.0478 (12)0.0100 (9)0.0177 (9)0.0099 (9)
Geometric parameters (Å, º) top
O1—C71.244 (3)N1—C61.326 (3)
O1—Li11.950 (5)C4—C51.357 (4)
O2—C71.245 (3)C4—H30.89 (3)
O3—Li11.896 (5)C6—C51.386 (4)
O3—H320.99 (4)C6—H60.96 (3)
O3—H310.77 (5)C5—H50.91 (3)
N2—C31.329 (3)Li1—O41.907 (5)
N2—N11.336 (3)Li1—H422.31 (4)
N2—Li12.095 (4)O4—H410.85 (4)
C3—C41.385 (3)O4—H420.84 (4)
C3—C71.524 (3)
C7—O1—Li1117.15 (19)C4—C5—C6117.7 (2)
Li1—O3—H32119 (2)C4—C5—H5122 (2)
Li1—O3—H31117 (3)C6—C5—H5120 (2)
H32—O3—H31109 (4)O3—Li1—O4112.8 (2)
C3—N2—N1120.27 (18)O3—Li1—O1111.8 (2)
C3—N2—Li1109.80 (18)O4—Li1—O1121.6 (2)
N1—N2—Li1129.77 (18)O3—Li1—N2120.4 (2)
N2—C3—C4122.4 (2)O4—Li1—N2106.0 (2)
N2—C3—C7114.86 (19)O1—Li1—N281.06 (16)
C4—C3—C7122.7 (2)O3—Li1—C7117.9 (2)
C6—N1—N2118.6 (2)O4—Li1—C7127.7 (2)
C5—C4—C3117.6 (2)O1—Li1—C723.74 (9)
C5—C4—H3121.3 (17)N2—Li1—C757.68 (11)
C3—C4—H3121.0 (17)O3—Li1—H42129.8 (11)
N1—C6—C5123.3 (2)O4—Li1—H4220.1 (10)
N1—C6—H6114.9 (15)O1—Li1—H42113.7 (10)
C5—C6—H6121.7 (15)N2—Li1—H4286.7 (10)
O1—C7—O2127.8 (2)C7—Li1—H42112.3 (11)
O1—C7—C3116.06 (19)Li1—O4—H41121 (2)
O2—C7—C3116.2 (2)Li1—O4—H42108 (3)
O2—C7—Li1165.72 (18)H41—O4—H42102 (3)
C3—C7—Li177.30 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.85 (4)1.90 (4)2.720 (3)164 (3)
O4—H42···O2ii0.84 (4)2.07 (4)2.823 (3)150 (4)
O3—H32···O1iii0.99 (4)1.77 (4)2.741 (3)167 (3)
O3—H31···N1iv0.77 (5)2.10 (5)2.840 (3)160 (5)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Li(C5H3N2O2)(H2O)2]
Mr166.07
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.4620 (15), 13.738 (3), 8.0330 (16)
β (°) 112.27 (3)
V3)762.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.41 × 0.13 × 0.11
Data collection
DiffractometerKuma KM-4 four-circle
diffractometer
Absorption correctionAnalytical
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.972, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
1681, 1579, 878
Rint0.044
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.150, 0.99
No. of reflections1579
No. of parameters137
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.30

Computer programs: KM-4 Software (Kuma, 1996), DATAPROC (Kuma, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
O1—Li11.950 (5)N2—Li12.095 (4)
O3—Li11.896 (5)Li1—O41.907 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H41···O2i0.85 (4)1.90 (4)2.720 (3)164 (3)
O4—H42···O2ii0.84 (4)2.07 (4)2.823 (3)150 (4)
O3—H32···O1iii0.99 (4)1.77 (4)2.741 (3)167 (3)
O3—H31···N1iv0.77 (5)2.10 (5)2.840 (3)160 (5)
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+2; (iii) x+1, y+1, z+1; (iv) x, y+3/2, z1/2.
 

References

First citationArdiwinata, E. S., Craig, D. C. & Philips, D. J. (1989). Inorg. Chim. Acta, 166, 233–238.  CAS Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2004). Acta Cryst. E60, m1481–m1483.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGryz, M., Starosta, W. & Leciejewicz, J. (2006). Acta Cryst. E62, m123–m124.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGryz, M., Starosta, W., Ptasiewicz-Bak, H. & Leciejewicz, J. (2003). J. Coord. Chem. 56, 1505–1511.  Web of Science CSD CrossRef CAS Google Scholar
First citationKuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationKuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.  Google Scholar
First citationLeciejewicz, J. & Starosta, W. (2009). Acta Cryst. E65, m94.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2007). Acta Cryst. E63, m1662–m1663.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationStarosta, W. & Leciejewicz, J. (2010). Acta Cryst. E66, m192.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds