metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

{2-Morpholino-N-[1-(2-pyrid­yl)ethyl­­idene]ethanamine-κ3N,N′,N′′}bis­­(thio­cyanato-κN)zinc(II)

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: khaledi@siswa.um.edu.my

(Received 9 December 2010; accepted 22 December 2010; online 8 January 2011)

The asymmetric unit of the title compound, [Zn(NCS)2(C13H19N3O)], contains two crystallographically independent mol­ecules. In each mol­ecule, the ZnII ion is five-coordinated by the N,N′,N"-tridentate Schiff base and the N atoms of two thio­cyanate ligands in a distorted square-pyramidal geometry. The two mol­ecules differ mainly in the deviations from the ideal geometry, with τ values of 0.14 and 0.33. In the crystal, inter­molecular C—H⋯S hydrogen bonds are observed. An intra­molecular C—H⋯N hydrogen bond occurs in one of the independent mol­ecules.

Related literature

For the crystal structures of similar zinc complexes, see: Cai (2009[Cai, B.-H. (2009). Acta Cryst. E65, m142.]); Chen et al. (2005[Chen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2483-m2484.]). For a description of the geometry of complexes with five-coordinate metal atoms, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(NCS)2(C13H19N3O)]

  • Mr = 414.84

  • Triclinic, [P \overline 1]

  • a = 9.9203 (2) Å

  • b = 13.5659 (2) Å

  • c = 14.6957 (2) Å

  • α = 112.702 (1)°

  • β = 91.471 (1)°

  • γ = 94.356 (1)°

  • V = 1815.97 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.59 mm−1

  • T = 100 K

  • 0.42 × 0.33 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.554, Tmax = 0.691

  • 15347 measured reflections

  • 7111 independent reflections

  • 6171 reflections with I > 2σ(I)

  • Rint = 0.020

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.072

  • S = 1.02

  • 7111 reflections

  • 435 parameters

  • 5 restraints

  • H-atom parameters constrained

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯S1i 0.99 2.84 3.826 (2) 175
C16—H16⋯S2ii 0.95 2.74 3.670 (2) 168
C27—H27B⋯N9 0.99 2.55 3.421 (3) 147
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: SHELXL97 and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

2-morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine zinc is the condensation product of the reaction of 2-acetylpyridine and 4-(2-aminoethyl)morpholine. Owing to the presence of several donor atoms and the flexibility of the morpholine ring, this Schiff base can, in principle, show ambidentate coordination behavior toward metal ions. On the other hand, thiocyanate is known to bind metal ions in different modes: N-donor, S-donor or N:S-bridging mode. The title compound is a mixed-ligand zinc(II) complex with the two ambidentate ligands. In the crystal, two geometrically slightly different molecules exist. The weighted r.m.s. fit for the superposition of the non-H atoms in both molecules is 1.5267 Å. The Schiff base ligand in the molecules acts as an N,N',N"-tridentate chelate, along with the N atoms of two isothiocyanate ligands this makes penta-coordiante zinc(II) complexes. Similar coordination environment has been reported in related mixed-ligand zinc(II) complexes (Cai, 2009; Chen et al., 2005). The geometry of the two present complexes can be determined by using the index τ = (β-α)/60, where β is the largest angle and α is the second one around the metal center. For an ideal square-pyramid τ is 0, while it is 1 in a perfect trigonal-bipyramid (Addison et al.,1984). The τ values in the two molecules are 0.14 for the Zn1 complex and 0.33 for the Zn2 complex, indicating distorted square-pyramidal geometries. The NCS groups are almost linear [178.3 (2)° and 179.9 (3)° in the Zn1 complex; 179.1 (2)° and 179.1 (2)° in the Zn2 complex], whereas the Zn—N—CS linkages are somewhat bent [158.34 (19)° and 165.19 (18)° in the Zn1 complex; 145.54 (17)° and 169.54 (18)° in the Zn2 complex]. The morpholine rings in both molecules adopt a chair conformation. The crystal structure is stabilized by intermolecular C—H···S and an intramolecular C—H···N hydrogen bond (Table 1).

Related literature top

For the crystal structures of similar zinc complexes, see: Cai (2009); Chen et al. (2005). For a description of the geometry of five-coordinated metal complexes, see: Addison et al. (1984).

Experimental top

A mixture of 2-acetylpyridine (0.20 g, 1.65 mmol) and 4-(2-aminoethyl)morpholine (0.21 g, 1.65 mmol) in ethanol (20 ml) was refluxed for 2 hr followed by addition of a solution of zinc(II) acetate dihydrate (0.36 g, 1.65 mmol) and sodium thiocyanate (0.134 g, 1.65 mmol) in a minimum amount of water. The resulting solution was refluxed for 30 min, then left at room temperature. The crystals of the title complex were obtained in a few days.

Refinement top

The hydrogen atoms were placed at calculated positions (H—CAr = 0.95 Å; HCMethyl = 0.98 Å; HCMethylene = 0.99 Å) and were treated as riding on their parent atoms with U(H) set to 1.2–1.5 Ueq(C). Additional rigid-bond type restraints (DELU in SHELXL97) were placed on the displacement parameters of S1 and C14; S2 and C15; S3 and C29; S4 and C30; N10 and C3.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of the title compound at the 30% probability level. Hydrogen atoms have been omitted for clarity.
{2-Morpholino-N-[1-(2-pyridyl)ethylidene]ethanamine- κ3N,N',N''}bis(thiocyanato-κN)zinc(II) top
Crystal data top
[Zn(NCS)2(C13H19N3O)]Z = 4
Mr = 414.84F(000) = 856
Triclinic, P1Dx = 1.517 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.9203 (2) ÅCell parameters from 7261 reflections
b = 13.5659 (2) Åθ = 2.5–30.5°
c = 14.6957 (2) ŵ = 1.59 mm1
α = 112.702 (1)°T = 100 K
β = 91.471 (1)°Block, yellow
γ = 94.356 (1)°0.42 × 0.33 × 0.25 mm
V = 1815.97 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
7111 independent reflections
Radiation source: fine-focus sealed tube6171 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ϕ and ω scansθmax = 26.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.554, Tmax = 0.691k = 1616
15347 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.8172P]
where P = (Fo2 + 2Fc2)/3
7111 reflections(Δ/σ)max = 0.001
435 parametersΔρmax = 0.63 e Å3
5 restraintsΔρmin = 0.27 e Å3
Crystal data top
[Zn(NCS)2(C13H19N3O)]γ = 94.356 (1)°
Mr = 414.84V = 1815.97 (5) Å3
Triclinic, P1Z = 4
a = 9.9203 (2) ÅMo Kα radiation
b = 13.5659 (2) ŵ = 1.59 mm1
c = 14.6957 (2) ÅT = 100 K
α = 112.702 (1)°0.42 × 0.33 × 0.25 mm
β = 91.471 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7111 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6171 reflections with I > 2σ(I)
Tmin = 0.554, Tmax = 0.691Rint = 0.020
15347 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0275 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.02Δρmax = 0.63 e Å3
7111 reflectionsΔρmin = 0.27 e Å3
435 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.19481 (2)0.410155 (19)0.190924 (17)0.01900 (7)
S10.18204 (6)0.44706 (5)0.52312 (4)0.03297 (15)
S20.49821 (6)0.67240 (5)0.15470 (4)0.02846 (13)
O10.49220 (16)0.27533 (15)0.32934 (13)0.0348 (4)
N10.00833 (17)0.43646 (14)0.15397 (12)0.0199 (4)
N20.15687 (17)0.30747 (14)0.04303 (12)0.0203 (4)
N30.37745 (17)0.31359 (15)0.16386 (13)0.0220 (4)
N40.15900 (18)0.42921 (16)0.32803 (13)0.0258 (4)
C10.0848 (2)0.50901 (18)0.21249 (16)0.0250 (5)
H10.05500.54740.27990.030*
C20.2065 (2)0.53031 (19)0.17825 (18)0.0295 (5)
H20.25850.58320.22130.035*
C30.2508 (2)0.47373 (19)0.08096 (17)0.0292 (5)
H30.33350.48730.05590.035*
C40.1727 (2)0.39631 (19)0.01981 (17)0.0257 (5)
H40.20220.35500.04720.031*
C50.0514 (2)0.38077 (17)0.05858 (15)0.0203 (4)
C60.0427 (2)0.30383 (17)0.00108 (15)0.0207 (4)
C70.0008 (2)0.2307 (2)0.10502 (16)0.0303 (5)
H7A0.06430.17700.13050.045*
H7B0.00460.27260.14620.045*
H7C0.09060.19450.10650.045*
C80.2657 (2)0.24304 (18)0.00450 (16)0.0251 (5)
H8A0.27410.24120.07210.030*
H8B0.24680.16850.00900.030*
C90.3955 (2)0.29495 (19)0.05839 (16)0.0260 (5)
H9A0.46920.24790.03370.031*
H9B0.42180.36420.05290.031*
C100.3596 (2)0.20758 (18)0.17256 (17)0.0258 (5)
H10A0.43070.16280.13690.031*
H10B0.27060.17050.14090.031*
C110.3674 (2)0.2191 (2)0.27917 (17)0.0292 (5)
H11A0.29120.25820.31340.035*
H11B0.35840.14690.28150.035*
C120.5035 (2)0.3799 (2)0.32699 (18)0.0331 (6)
H12A0.58840.42050.36370.040*
H12B0.42660.41920.35990.040*
C130.5035 (2)0.3728 (2)0.22158 (18)0.0290 (5)
H13A0.51250.44610.22190.035*
H13B0.58230.33590.18960.035*
C140.1676 (2)0.43803 (17)0.41001 (16)0.0214 (4)
C150.3793 (2)0.59693 (16)0.17611 (15)0.0194 (4)
Zn20.30417 (2)0.953591 (19)0.691039 (17)0.01820 (7)
S30.65029 (6)1.07952 (5)0.92910 (4)0.03050 (14)
S40.05616 (6)1.21315 (5)0.63775 (4)0.02613 (13)
O20.06613 (17)0.85681 (14)0.89498 (12)0.0358 (4)
N50.29418 (19)0.54316 (15)0.19158 (14)0.0279 (4)
N60.49783 (18)0.98236 (14)0.63008 (13)0.0220 (4)
N70.31286 (18)0.82075 (14)0.56062 (12)0.0213 (4)
N80.12340 (17)0.84559 (14)0.69974 (13)0.0222 (4)
N90.40186 (18)1.00133 (15)0.82261 (13)0.0241 (4)
N100.19805 (19)1.06809 (15)0.68484 (14)0.0261 (4)
C160.5889 (2)1.06648 (18)0.67001 (16)0.0268 (5)
H160.56381.12840.72240.032*
C170.7190 (2)1.0676 (2)0.63832 (17)0.0301 (5)
H170.78141.12950.66750.036*
C180.7562 (2)0.9774 (2)0.56381 (17)0.0333 (6)
H180.84530.97550.54150.040*
C190.6615 (2)0.8887 (2)0.52143 (17)0.0304 (5)
H190.68470.82560.46950.036*
C200.5332 (2)0.89417 (17)0.55625 (15)0.0215 (4)
C210.4233 (2)0.80383 (18)0.51743 (15)0.0232 (5)
C220.4504 (3)0.7028 (2)0.43377 (17)0.0346 (6)
H22A0.36740.65370.41340.052*
H22B0.52140.66860.45510.052*
H22C0.48010.71970.37800.052*
C230.1933 (2)0.74271 (18)0.53134 (16)0.0274 (5)
H23A0.21260.67770.54280.033*
H23B0.16780.72130.46030.033*
C240.0797 (2)0.79550 (19)0.59319 (16)0.0279 (5)
H24A0.04900.85110.57140.033*
H24B0.00220.74110.58310.033*
C250.0097 (2)0.9010 (2)0.75502 (17)0.0299 (5)
H25A0.07320.85050.73690.036*
H25B0.00760.96180.73620.036*
C260.0408 (3)0.9423 (2)0.86506 (18)0.0344 (6)
H26A0.12130.99540.88370.041*
H26B0.03660.97890.89990.041*
C270.1808 (2)0.8079 (2)0.84673 (17)0.0297 (5)
H27A0.20180.75040.86900.036*
H27B0.26010.86210.86560.036*
C280.1563 (2)0.76110 (18)0.73578 (16)0.0257 (5)
H28A0.23820.72860.70480.031*
H28B0.08050.70380.71630.031*
C290.5052 (2)1.03434 (17)0.86717 (15)0.0221 (4)
C300.1385 (2)1.12873 (17)0.66588 (15)0.0195 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01919 (13)0.02094 (13)0.01724 (13)0.00064 (10)0.00103 (9)0.00842 (10)
S10.0416 (3)0.0372 (3)0.0187 (3)0.0095 (3)0.0067 (2)0.0122 (2)
S20.0309 (3)0.0258 (3)0.0314 (3)0.0019 (2)0.0092 (2)0.0139 (2)
O10.0272 (9)0.0481 (11)0.0368 (10)0.0044 (8)0.0064 (7)0.0254 (9)
N10.0206 (9)0.0204 (9)0.0189 (9)0.0010 (7)0.0006 (7)0.0085 (7)
N20.0224 (9)0.0217 (9)0.0178 (9)0.0009 (7)0.0016 (7)0.0090 (7)
N30.0185 (9)0.0266 (10)0.0238 (9)0.0001 (7)0.0003 (7)0.0135 (8)
N40.0226 (9)0.0338 (11)0.0218 (10)0.0031 (8)0.0016 (8)0.0115 (8)
C10.0268 (11)0.0226 (11)0.0227 (11)0.0014 (9)0.0001 (9)0.0060 (9)
C20.0265 (12)0.0270 (12)0.0325 (13)0.0050 (10)0.0035 (10)0.0085 (10)
C30.0220 (11)0.0356 (13)0.0326 (13)0.0024 (10)0.0024 (10)0.0166 (11)
C40.0235 (11)0.0305 (12)0.0233 (11)0.0014 (9)0.0034 (9)0.0116 (10)
C50.0202 (10)0.0220 (11)0.0201 (11)0.0032 (8)0.0008 (8)0.0107 (9)
C60.0233 (11)0.0231 (11)0.0176 (10)0.0007 (9)0.0018 (8)0.0104 (9)
C70.0302 (12)0.0398 (14)0.0171 (11)0.0030 (11)0.0005 (9)0.0070 (10)
C80.0259 (11)0.0291 (12)0.0205 (11)0.0062 (9)0.0045 (9)0.0091 (9)
C90.0231 (11)0.0328 (13)0.0259 (12)0.0058 (9)0.0059 (9)0.0146 (10)
C100.0236 (11)0.0276 (12)0.0301 (12)0.0033 (9)0.0014 (9)0.0154 (10)
C110.0285 (12)0.0334 (13)0.0335 (13)0.0038 (10)0.0003 (10)0.0216 (11)
C120.0208 (11)0.0426 (15)0.0356 (14)0.0012 (10)0.0070 (10)0.0163 (12)
C130.0187 (11)0.0347 (13)0.0354 (13)0.0004 (10)0.0016 (9)0.0162 (11)
C140.0202 (10)0.0221 (11)0.0208 (9)0.0014 (8)0.0018 (8)0.0080 (9)
C150.0252 (10)0.0166 (10)0.0155 (10)0.0041 (8)0.0013 (8)0.0050 (8)
Zn20.01948 (13)0.01887 (13)0.01650 (12)0.00159 (9)0.00018 (9)0.00725 (10)
S30.0260 (3)0.0318 (3)0.0302 (3)0.0036 (2)0.0090 (2)0.0100 (3)
S40.0305 (3)0.0271 (3)0.0246 (3)0.0090 (2)0.0018 (2)0.0131 (2)
O20.0370 (9)0.0446 (11)0.0289 (9)0.0068 (8)0.0065 (7)0.0194 (8)
N50.0326 (11)0.0255 (10)0.0265 (10)0.0047 (8)0.0059 (8)0.0130 (8)
N60.0259 (9)0.0223 (9)0.0187 (9)0.0026 (8)0.0026 (7)0.0089 (8)
N70.0276 (10)0.0198 (9)0.0170 (9)0.0005 (7)0.0033 (7)0.0086 (7)
N80.0202 (9)0.0255 (10)0.0210 (9)0.0024 (7)0.0029 (7)0.0102 (8)
N90.0250 (10)0.0276 (10)0.0198 (9)0.0015 (8)0.0007 (8)0.0101 (8)
N100.0296 (10)0.0273 (10)0.0250 (10)0.0069 (8)0.0042 (8)0.0132 (8)
C160.0314 (12)0.0253 (12)0.0235 (11)0.0001 (10)0.0018 (9)0.0098 (10)
C170.0308 (12)0.0376 (14)0.0230 (12)0.0053 (10)0.0011 (10)0.0146 (10)
C180.0272 (12)0.0524 (16)0.0244 (12)0.0039 (11)0.0069 (10)0.0190 (12)
C190.0339 (13)0.0380 (14)0.0199 (11)0.0090 (11)0.0064 (10)0.0106 (10)
C200.0279 (11)0.0256 (11)0.0136 (10)0.0071 (9)0.0021 (8)0.0095 (9)
C210.0334 (12)0.0245 (11)0.0136 (10)0.0073 (9)0.0017 (9)0.0089 (9)
C220.0460 (15)0.0313 (13)0.0214 (12)0.0067 (11)0.0035 (11)0.0040 (10)
C230.0358 (13)0.0253 (12)0.0185 (11)0.0049 (10)0.0071 (9)0.0077 (9)
C240.0259 (11)0.0317 (13)0.0240 (12)0.0073 (10)0.0087 (9)0.0112 (10)
C250.0222 (11)0.0342 (13)0.0351 (13)0.0021 (10)0.0003 (10)0.0166 (11)
C260.0303 (13)0.0373 (14)0.0337 (13)0.0030 (11)0.0070 (10)0.0123 (11)
C270.0306 (12)0.0352 (13)0.0261 (12)0.0081 (10)0.0031 (10)0.0172 (10)
C280.0256 (11)0.0265 (12)0.0270 (12)0.0061 (9)0.0028 (9)0.0144 (10)
C290.0244 (10)0.0232 (11)0.0186 (10)0.0015 (8)0.0009 (8)0.0084 (9)
C300.0208 (10)0.0203 (10)0.0168 (10)0.0005 (8)0.0024 (8)0.0067 (8)
Geometric parameters (Å, º) top
Zn1—N41.9752 (18)Zn2—N101.9702 (19)
Zn1—N51.9858 (19)Zn2—N91.9847 (18)
Zn1—N22.0851 (17)Zn2—N72.0724 (18)
Zn1—N12.1647 (17)Zn2—N62.2113 (18)
Zn1—N32.2698 (18)Zn2—N82.2662 (17)
S1—C141.621 (2)S3—C291.626 (2)
S2—C151.620 (2)S4—C301.625 (2)
O1—C111.426 (3)O2—C271.424 (3)
O1—C121.428 (3)O2—C261.426 (3)
N1—C11.333 (3)N6—C161.328 (3)
N1—C51.349 (3)N6—C201.346 (3)
N2—C61.278 (3)N7—C211.272 (3)
N2—C81.459 (3)N7—C231.464 (3)
N3—C131.481 (3)N8—C251.484 (3)
N3—C91.489 (3)N8—C241.483 (3)
N3—C101.490 (3)N8—C281.489 (3)
N4—C141.164 (3)N9—C291.162 (3)
C1—C21.389 (3)N10—C301.160 (3)
C1—H10.9500C16—C171.384 (3)
C2—C31.377 (3)C16—H160.9500
C2—H20.9500C17—C181.374 (3)
C3—C41.393 (3)C17—H170.9500
C3—H30.9500C18—C191.392 (3)
C4—C51.383 (3)C18—H180.9500
C4—H40.9500C19—C201.380 (3)
C5—C61.488 (3)C19—H190.9500
C6—C71.495 (3)C20—C211.497 (3)
C7—H7A0.9800C21—C221.495 (3)
C7—H7B0.9800C22—H22A0.9800
C7—H7C0.9800C22—H22B0.9800
C8—C91.518 (3)C22—H22C0.9800
C8—H8A0.9900C23—C241.511 (3)
C8—H8B0.9900C23—H23A0.9900
C9—H9A0.9900C23—H23B0.9900
C9—H9B0.9900C24—H24A0.9900
C10—C111.513 (3)C24—H24B0.9900
C10—H10A0.9900C25—C261.508 (3)
C10—H10B0.9900C25—H25A0.9900
C11—H11A0.9900C25—H25B0.9900
C11—H11B0.9900C26—H26A0.9900
C12—C131.514 (3)C26—H26B0.9900
C12—H12A0.9900C27—C281.509 (3)
C12—H12B0.9900C27—H27A0.9900
C13—H13A0.9900C27—H27B0.9900
C13—H13B0.9900C28—H28A0.9900
C15—N51.158 (3)C28—H28B0.9900
N4—Zn1—N5109.20 (8)N10—Zn2—N7116.72 (7)
N4—Zn1—N2144.10 (7)N9—Zn2—N7132.79 (7)
N5—Zn1—N2106.50 (7)N10—Zn2—N6103.26 (7)
N4—Zn1—N194.84 (7)N9—Zn2—N688.45 (7)
N5—Zn1—N199.47 (7)N7—Zn2—N674.79 (7)
N2—Zn1—N175.52 (7)N10—Zn2—N895.58 (7)
N4—Zn1—N3101.50 (7)N9—Zn2—N8104.11 (7)
N5—Zn1—N395.61 (7)N7—Zn2—N878.69 (7)
N2—Zn1—N378.47 (7)N6—Zn2—N8152.32 (7)
N1—Zn1—N3152.73 (7)C27—O2—C26108.42 (17)
C11—O1—C12108.95 (17)C15—N5—Zn1158.34 (19)
C1—N1—C5118.96 (18)C16—N6—C20118.93 (19)
C1—N1—Zn1126.23 (14)C16—N6—Zn2126.84 (15)
C5—N1—Zn1114.37 (14)C20—N6—Zn2112.82 (14)
C6—N2—C8123.61 (18)C21—N7—C23123.23 (19)
C6—N2—Zn1119.77 (15)C21—N7—Zn2120.06 (15)
C8—N2—Zn1116.62 (13)C23—N7—Zn2116.11 (14)
C13—N3—C9107.76 (16)C25—N8—C24108.46 (17)
C13—N3—C10108.19 (17)C25—N8—C28108.55 (17)
C9—N3—C10108.54 (17)C24—N8—C28109.78 (17)
C13—N3—Zn1114.89 (14)C25—N8—Zn2115.82 (13)
C9—N3—Zn199.80 (12)C24—N8—Zn298.72 (13)
C10—N3—Zn1116.86 (13)C28—N8—Zn2114.90 (13)
C14—N4—Zn1165.19 (18)C29—N9—Zn2145.54 (17)
N1—C1—C2122.2 (2)C30—N10—Zn2169.54 (18)
N1—C1—H1118.9N6—C16—C17122.6 (2)
C2—C1—H1118.9N6—C16—H16118.7
C3—C2—C1119.0 (2)C17—C16—H16118.7
C3—C2—H2120.5C18—C17—C16118.7 (2)
C1—C2—H2120.5C18—C17—H17120.6
C2—C3—C4119.1 (2)C16—C17—H17120.6
C2—C3—H3120.5C17—C18—C19119.1 (2)
C4—C3—H3120.5C17—C18—H18120.4
C5—C4—C3118.7 (2)C19—C18—H18120.4
C5—C4—H4120.7C20—C19—C18118.7 (2)
C3—C4—H4120.7C20—C19—H19120.6
N1—C5—C4122.0 (2)C18—C19—H19120.6
N1—C5—C6114.78 (18)N6—C20—C19121.9 (2)
C4—C5—C6123.18 (19)N6—C20—C21114.45 (18)
N2—C6—C5115.26 (18)C19—C20—C21123.7 (2)
N2—C6—C7125.6 (2)N7—C21—C22125.4 (2)
C5—C6—C7119.15 (18)N7—C21—C20115.53 (19)
C6—C7—H7A109.5C22—C21—C20119.0 (2)
C6—C7—H7B109.5C21—C22—H22A109.5
H7A—C7—H7B109.5C21—C22—H22B109.5
C6—C7—H7C109.5H22A—C22—H22B109.5
H7A—C7—H7C109.5C21—C22—H22C109.5
H7B—C7—H7C109.5H22A—C22—H22C109.5
N2—C8—C9107.21 (18)H22B—C22—H22C109.5
N2—C8—H8A110.3N7—C23—C24107.55 (18)
C9—C8—H8A110.3N7—C23—H23A110.2
N2—C8—H8B110.3C24—C23—H23A110.2
C9—C8—H8B110.3N7—C23—H23B110.2
H8A—C8—H8B108.5C24—C23—H23B110.2
N3—C9—C8110.92 (17)H23A—C23—H23B108.5
N3—C9—H9A109.5N8—C24—C23111.46 (18)
C8—C9—H9A109.5N8—C24—H24A109.3
N3—C9—H9B109.5C23—C24—H24A109.3
C8—C9—H9B109.5N8—C24—H24B109.3
H9A—C9—H9B108.0C23—C24—H24B109.3
N3—C10—C11111.94 (19)H24A—C24—H24B108.0
N3—C10—H10A109.2N8—C25—C26111.31 (19)
C11—C10—H10A109.2N8—C25—H25A109.4
N3—C10—H10B109.2C26—C25—H25A109.4
C11—C10—H10B109.2N8—C25—H25B109.4
H10A—C10—H10B107.9C26—C25—H25B109.4
O1—C11—C10111.59 (18)H25A—C25—H25B108.0
O1—C11—H11A109.3O2—C26—C25111.0 (2)
C10—C11—H11A109.3O2—C26—H26A109.4
O1—C11—H11B109.3C25—C26—H26A109.4
C10—C11—H11B109.3O2—C26—H26B109.4
H11A—C11—H11B108.0C25—C26—H26B109.4
O1—C12—C13110.8 (2)H26A—C26—H26B108.0
O1—C12—H12A109.5O2—C27—C28111.75 (19)
C13—C12—H12A109.5O2—C27—H27A109.3
O1—C12—H12B109.5C28—C27—H27A109.3
C13—C12—H12B109.5O2—C27—H27B109.3
H12A—C12—H12B108.1C28—C27—H27B109.3
N3—C13—C12111.49 (18)H27A—C27—H27B107.9
N3—C13—H13A109.3N8—C28—C27110.69 (19)
C12—C13—H13A109.3N8—C28—H28A109.5
N3—C13—H13B109.3C27—C28—H28A109.5
C12—C13—H13B109.3N8—C28—H28B109.5
H13A—C13—H13B108.0C27—C28—H28B109.5
N4—C14—S1178.3 (2)H28A—C28—H28B108.1
N5—C15—S2179.9 (3)N9—C29—S3179.5 (2)
N10—Zn2—N9109.96 (8)N10—C30—S4179.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···S1i0.992.843.826 (2)175
C16—H16···S2ii0.952.743.670 (2)168
C27—H27B···N90.992.553.421 (3)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.

Experimental details

Crystal data
Chemical formula[Zn(NCS)2(C13H19N3O)]
Mr414.84
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)9.9203 (2), 13.5659 (2), 14.6957 (2)
α, β, γ (°)112.702 (1), 91.471 (1), 94.356 (1)
V3)1815.97 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.59
Crystal size (mm)0.42 × 0.33 × 0.25
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.554, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
15347, 7111, 6171
Rint0.020
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.072, 1.02
No. of reflections7111
No. of parameters435
No. of restraints5
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.63, 0.27

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), X-SEED (Barbour, 2001), SHELXL97 (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···S1i0.992.843.826 (2)175
C16—H16···S2ii0.952.743.670 (2)168
C27—H27B···N90.992.553.421 (3)147
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1.
 

Acknowledgements

The authors thank the University of Malaya for funding this study (UMRG grant RG024/09BIO).

References

First citationAddison, A. W., Rao, T. N., Reedijk, J., Rijn, V. J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.  CSD CrossRef Web of Science Google Scholar
First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCai, B.-H. (2009). Acta Cryst. E65, m142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationChen, G., Bai, Z.-P. & Qu, S.-J. (2005). Acta Cryst. E61, m2483–m2484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds