inorganic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­yttrium(III) tris­­ulfide disilicate

aDepartment of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA
*Correspondence e-mail: ibers@chem.northwestern.edu

(Received 14 December 2010; accepted 28 December 2010; online 15 January 2011)

Tetra­yttrium(III) tris­ulfide disilicate, Y4S3(Si2O7), crystallizes in the Sm4S3(Si2O7) structure type. The structure consists of isolated (Si2O7)6− units (2mm. symmetry) and two crystallo­graphically independent Y3+ cations bridged by one S and one O atom. The first Y atom (site symmetry .m.) is coordinated by three O atoms and three S atoms in a trigonal–prismatic arrangement whereas the second Y atom (site symmetry ..2) is coordinated by six O atoms and three S atoms in a tricapped trigonal–prismatic arrangement.

Related literature

For lanthanide sulfide disilicates of formula Ln4S3(Si2O7), see: Zeng et al. (1999[Zeng, H.-Y., Mao, J.-G. & Huang, J.-S. (1999). J. Alloys Compd, 291, 89-93.]) for Ln = La; Hartenbach & Schleid (2002[Hartenbach, I. & Schleid, T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 175-176.]) for Ln = Ce; Sieke & Schleid (2000[Sieke, C. & Schleid, T. (2000). Z. Anorg. Allg. Chem. 626, 196-201.]) for Ln = Pr; Grupe et al. (1992[Grupe, M., Lissner, F., Schleid, T. & Urland, T. (1992). Z. Anorg. Allg. Chem. 616, 53-60.]) for Ln = Nd, Er; Sieke & Schleid (1999[Sieke, C. & Schleid, T. (1999). Z. Anorg. Allg. Chem. 625, 131-136.]) for Ln = Sm; Sieke et al. (2002[Sieke, C., Hartenbach, I. & Schleid, T. (2002). Z. Naturforsch. Teil B, 57, 1427-1432.]) for Ln = Gd, Tb, Dy, Ho, Er, Tm; Range et al. (1996[Range, K.-J., Andratschke, M. & Gietl, A. (1996). Z. Kristallogr. 211, 816.]) for Ln = Yb. For lanthanide selenide disilicates of formula Ln4Se3(Si2O7), see: Deudon et al. (1993[Deudon, C., Meerschaut, A. & Rouxel, J. (1993). J. Solid State Chem. 104, 282-288.]) for Ln = La; Grupe & Urland (1989[Grupe, M. & Urland, W. (1989). Naturwissenschaften, 76, 327-329.]) for Ln = Ce, Nd; Grupe et al. (1992[Grupe, M., Lissner, F., Schleid, T. & Urland, T. (1992). Z. Anorg. Allg. Chem. 616, 53-60.]) for Ln = Pr, Sm, Gd. Ionic radii were taken from Shannon (1976[Shannon, R. D. (1976). Acta Cryst. A32, 751-767.]). For computational details, see: Gelato & Parthé (1987[Gelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139-143.]). For additional synthetic details, see: Larroque & Beauvy (1986[Larroque, R. C. & Beauvy, M. (1986). J. Less-Common Met. 121, 487-496.]).

Experimental

Crystal data
  • Y4S3(Si2O7)

  • Mr = 620.00

  • Tetragonal, I 41 /a m d

  • a = 11.6706 (16) Å

  • c = 13.5873 (19) Å

  • V = 1850.6 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 25.78 mm−1

  • T = 100 K

  • 0.10 × 0.08 × 0.08 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: numerical [face-indexed using SADABS (Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.])] Tmin = 0.191, Tmax = 0.238

  • 10831 measured reflections

  • 668 independent reflections

  • 587 reflections with I > 2σ(I)

  • Rint = 0.066

Refinement
  • R[F2 > 2σ(F2)] = 0.020

  • wR(F2) = 0.045

  • S = 1.25

  • 668 reflections

  • 47 parameters

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.77 e Å−3

Table 1
Selected geometric parameters (Å, °)

Y1—O2 2.279 (3)
Y1—O1i 2.428 (2)
Y1—S1ii 2.7714 (8)
Y1—S2 2.7874 (6)
Y2—O1iii 2.355 (2)
Y2—O2iv 2.3884 (15)
Y2—O1iv 2.530 (2)
Y2—S1iv 2.8419 (9)
Y2—S3v 2.8652 (6)
Si1—O3 1.621 (2)
Si1—O1 1.623 (2)
Si1—O2 1.641 (3)
Y1vi—S1—Y2vii 90.389 (13)
Y1viii—O1—Y2ix 106.88 (8)
Si1x—O3—Si1 128.1 (3)
Symmetry codes: (i) [y-{\script{1\over 4}}, x-{\script{1\over 4}}, z+{\script{1\over 4}}]; (ii) [-x+{\script{1\over 2}}, -y, z+{\script{1\over 2}}]; (iii) [-y+{\script{1\over 4}}, x+{\script{1\over 4}}, -z+{\script{3\over 4}}]; (iv) [x, y+{\script{1\over 2}}, -z+1]; (v) -x, -y+1, -z+1; (vi) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}]; (vii) [y-{\script{1\over 4}}, -x+{\script{1\over 4}}, -z+{\script{3\over 4}}]; (viii) [y+{\script{1\over 4}}, -x+{\script{1\over 4}}, z-{\script{1\over 4}}]; (ix) [x, y-{\script{1\over 2}}, -z+1]; (x) [-x, -y+{\script{1\over 2}}, z].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalMaker (Palmer, 2009[Palmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Tetrayttrium(III) trisulfide disilicate, Y4S3(Si2O7), crystallizes in the Sm4S3(Si2O7) structure type (Grupe et al., 1992). A view of the coordination environment of the atoms in Y4S3(Si2O7) is shown in Fig. 1. There are two crystallographically independent yttrium atoms. Atoms Y1 and Y2 are at sites of symmetry .m. and ..2, respectively. Atom Y1 is coordinated by three O atoms and three S atoms in a distorted trigonal-prismatic arrangement whereas atom Y2 is coordinated by six O atoms and three S atoms in the form of a distorted tri-capped trigonal prism. There are three crystallographically independent S atoms. Atoms S1, S2, and S3 are at sites of symmetry .2., 4m2, and 4m2, respectively. Atoms S1 and S2 are coordinated by four Y atoms in disphenoidal arrangements and atom S3 is coordinated by four Y atoms in a square-planar arrangement. There is one crystallographically independent Si atom at a site of symmetry .m. and three crystallographically independent O atoms at sites of symmetry 1, .m., and 2mm. . The disilicate (Si2O7)6- units (symmetry 2mm.) are made up of two corner-sharing silicate tetrahedra in the form of a bow-tie. These units stack in a staggered fashion along the c-axis as seen in Fig. 2.

There exist eleven Ln4Q3(Si2O7) analogues where Ln is a lanthanide and Q is S, specifically when Ln = La–Nd, Sm, Gd–Tm (Zeng et al., 1999; Hartenbach & Schleid, 2002; Sieke & Schleid, 1999; Grupe et al., 1992; Sieke & Schleid, 1998; Sieke et al., 2002; Range et al., 1996). There exist six Ln4Q3(Si2O7) analogues of the title compound where Q = Se, specifically when Ln = La—Nd, Sm, Gd (Deudon et al., 1993; Grupe & Urland, 1989; Grupe et al., 1992). No analogues where Q = Te were found in the literature.

The title compound crystallizes with eight formula units in space group I41/amd. The unit-cell dimensions are a = 11.6706 (16) Å and c = 13.5873 (19) Å. For the Ln4S3(Si2O7) analogues, the unit cell varies between a = 12.098 (3) Å and c = 14.379 (5) Å for Ln = La (Zeng et al., 1999) and a = 11.543 (1) Å and c = 13.322 (1) Å for Ln = Yb (Range et al., 1996). A plot of axis length versus lanthanide crystal radius (Shannon, 1976) leads to nearly linear curves (Sieke et al., 2002) and adding Ln = Y to the plot not surprisingly keeps the near linearity. The plot is shown in Fig. 3. The unit-cell dimensions of Y4S3(Si2O7) are closest to that of Ho4S3(Si2O7), where a = 11.6595 (10) Å and c = 13.5577 (12) Å (Sieke et al., 2002). In fact, of all the lanthanide radii, the crystal radius of Ho (1.212 Å) is closest to that of Y (1.215 Å) (Shannon, 1976).

Related literature top

For lanthanide sulfide disilicates of formula Ln4S3(Si2O7), see: Zeng et al. (1999) for Ln = La; Hartenbach & Schleid (2002) for Ln = Ce; Sieke & Schleid (2000) for Ln = Pr; Grupe et al. (1992) for Ln = Nd, Er; Sieke & Schleid (1999) for Ln = Sm; Sieke et al. (2002) for Ln = Gd, Tb, Dy, Ho, Er, Tm; Range et al. (1996) for Ln = Yb. For lanthanide selenide disilicates of formula Ln4Se3(Si2O7), see: Deudon et al. (1993) for Ln = La; Grupe & Urland (1989) for Ln = Ce, Nd; Grupe et al. (1992) for Ln = Pr, Sm, Gd. Ionic radii were taken from Shannon (1976). For computational details, see: Gelato & Parthé (1987). For additional synthetic details, see: Larroque & Beauvy (1986).

Experimental top

The compound was synthesized accidentally. ThO2 (Alfa-Aesar), Y2S3 (Strem, 99.9%) S (Alfa-Aesar, 99.99%), and Sb (Aldrich, 99.5%), were used as received. Sb2S3 was prepared from the direct reaction of the elements in a sealed fused-silica tube at 1123 K. ThOS was prepared from ThO2 and S following a modified procedure by Larroque et al. (1986). A fused-silica tube was loaded with ThOS (35 mg, 0.125 mmol) and Y2S3 (35.6 mg, 0.130 mmol), evacuated to near 10 -4 Torr, flame sealed, and placed in a computer-controlled furnace. It was heated to 1273 K in 24 h, kept at 1273 K for 168 h, cooled to 873 K in 198 h, and then rapidly cooled to 298 K in 5 h. The resulting tan powder (50 mg) was loaded with Sb2S3 (20 mg, 0.6 mmol) in a fused-silica tube and heated as before. The resulting tube was etched and contained clear crystals of composition Y/S/Si/O as determined by EDX analysis. The silicon and oxygen were abstracted from the silica tube and introduced into the reaction in the second step.

Refinement top

Origin choice 2 of space group I41/amd was used. The structure was standardized by means of the program STRUCTURE TIDY (Gelato & Parthé, 1987). The highest peak (0.61 (16) e Å-3) is 0.48 Å from atom O3 and the deepest hole (-0.77 (16) e Å-3) is 0.45 Å from atom Y1.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008b); molecular graphics: CrystalMaker (Palmer, 2009); software used to prepare material for publication: SHELXL97(Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. View showing the local coordination environment of atoms Y1 and Y2 as well as the disilicate unit. The 95% probability displacement ellipsoids are depicted.
[Figure 2] Fig. 2. View down the b-axis (left) and down the c-axis (right). The disilicate units are staggered when viewed down the c-axis. Colour key: yttrium – blue, sulfur – brown, silicate tetrahedra – green. Unit cell is outlined.
[Figure 3] Fig. 3. Plot of axial length versus lanthanide crystal radius for a 9-coordinate lanthanide in the Ln4S3(Si2O7) structure family (Ln = lanthanide element). Axial length decreases as the atomic mass of the lanthanide increases owing to the lanthanide contraction. Yttrium fits on the plot closest to holmium.
Tetrayttrium(III) trisulfide disilicate top
Crystal data top
Y4S3(Si2O7)Dx = 4.451 Mg m3
Mr = 620.00Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/amdCell parameters from 2730 reflections
Hall symbol: -I 4bd 2θ = 2.3–27.6°
a = 11.6706 (16) ŵ = 25.78 mm1
c = 13.5873 (19) ÅT = 100 K
V = 1850.6 (4) Å3Polyhedron, colorless
Z = 80.10 × 0.08 × 0.08 mm
F(000) = 2304
Data collection top
Bruker APEXII CCD
diffractometer
668 independent reflections
Radiation source: fine-focus sealed tube587 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
ω scansθmax = 29.2°, θmin = 2.3°
Absorption correction: numerical
[face-indexed using SADABS (Sheldrick, 2008a)]
h = 1515
Tmin = 0.191, Tmax = 0.238k = 1515
10831 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020 w = [1/[σ2(Fo2) + (0.0199*Fo2)2]
wR(F2) = 0.045(Δ/σ)max = 0.001
S = 1.25Δρmax = 0.61 e Å3
668 reflectionsΔρmin = 0.77 e Å3
47 parametersExtinction correction: SHELXL97 (Sheldrick, 2008a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00065 (7)
Crystal data top
Y4S3(Si2O7)Z = 8
Mr = 620.00Mo Kα radiation
Tetragonal, I41/amdµ = 25.78 mm1
a = 11.6706 (16) ÅT = 100 K
c = 13.5873 (19) Å0.10 × 0.08 × 0.08 mm
V = 1850.6 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
668 independent reflections
Absorption correction: numerical
[face-indexed using SADABS (Sheldrick, 2008a)]
587 reflections with I > 2σ(I)
Tmin = 0.191, Tmax = 0.238Rint = 0.066
10831 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02047 parameters
wR(F2) = 0.0450 restraints
S = 1.25Δρmax = 0.61 e Å3
668 reflectionsΔρmin = 0.77 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Y10.00000.01464 (4)0.34012 (3)0.00768 (13)
Y20.17360 (2)0.42360 (2)0.87500.00517 (13)
S10.35327 (9)0.00000.00000.0096 (2)
S20.00000.25000.37500.0089 (4)
S30.00000.75000.12500.0052 (4)
Si10.00000.12512 (10)0.09531 (9)0.0049 (2)
O10.12244 (17)0.10968 (19)0.04018 (15)0.0082 (5)
O20.00000.0169 (2)0.1724 (2)0.0062 (6)
O30.00000.25000.1475 (3)0.0110 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Y10.0078 (2)0.0087 (2)0.0065 (2)0.0000.0000.00089 (16)
Y20.00547 (15)0.00547 (15)0.0046 (2)0.00152 (15)0.00013 (11)0.00013 (11)
S10.0059 (5)0.0152 (6)0.0077 (6)0.0000.0000.0041 (4)
S20.0098 (7)0.0098 (7)0.0072 (11)0.0000.0000.000
S30.0048 (6)0.0048 (6)0.0062 (10)0.0000.0000.000
Si10.0055 (6)0.0041 (5)0.0050 (6)0.0000.0000.0006 (4)
O10.0044 (10)0.0116 (11)0.0085 (12)0.0005 (9)0.0019 (8)0.0017 (9)
O20.0036 (14)0.0048 (14)0.0103 (18)0.0000.0000.0008 (12)
O30.020 (2)0.007 (2)0.006 (2)0.0000.0000.000
Geometric parameters (Å, º) top
Y1—O22.279 (3)S1—Y1xvii2.7714 (8)
Y1—O1i2.428 (2)S1—Y2xviii2.8420 (9)
Y1—O1ii2.428 (2)S1—Y2vii2.8420 (9)
Y1—S1iii2.7714 (8)S2—Y1x2.7874 (6)
Y1—S1iv2.7714 (8)S2—Y1xviii2.7874 (6)
Y1—S22.7874 (6)S2—Y1xix2.7874 (6)
Y1—Si1v3.4158 (8)S3—Y2xii2.8652 (5)
Y1—Si1ii3.4158 (8)S3—Y2xv2.8652 (6)
Y1—Y2vi3.7117 (5)S3—Y2xx2.8652 (6)
Y1—Y2vii3.7117 (5)S3—Y2xxi2.8652 (5)
Y1—Y2viii3.9830 (6)Si1—O31.621 (2)
Y1—Y2ix3.9830 (6)Si1—O11.623 (2)
Y2—O1x2.355 (2)Si1—O1xxii1.623 (2)
Y2—O1xi2.355 (2)Si1—O21.641 (3)
Y2—O2xii2.3884 (15)Si1—Y2vi3.1303 (10)
Y2—O2xiii2.3884 (15)Si1—Y2vii3.1303 (10)
Y2—O1xii2.530 (2)Si1—Y1xxiii3.4158 (8)
Y2—O1xiv2.530 (2)Si1—Y1xxiv3.4158 (8)
Y2—S1xii2.8419 (9)O1—Y2xviii2.355 (2)
Y2—S1x2.8419 (9)O1—Y1xxiii2.428 (2)
Y2—S3xv2.8652 (6)O1—Y2vii2.530 (2)
Y2—Si1xiii3.1303 (10)O2—Y2vi2.3884 (15)
Y2—Si1xii3.1303 (10)O2—Y2vii2.3884 (15)
Y2—Y1xii3.7117 (5)O3—Si1xix1.621 (2)
S1—Y1xvi2.7714 (8)
O2—Y1—O1i74.24 (7)O1xi—Y2—S3xv72.79 (6)
O2—Y1—O1ii74.24 (7)O2xii—Y2—S3xv73.89 (6)
O1i—Y1—O1ii84.81 (11)O2xiii—Y2—S3xv73.89 (6)
O2—Y1—S1iii141.68 (2)O1xii—Y2—S3xv116.11 (5)
O1i—Y1—S1iii126.41 (5)O1xiv—Y2—S3xv116.11 (5)
O1ii—Y1—S1iii76.13 (5)S1xii—Y2—S3xv138.038 (9)
O2—Y1—S1iv141.68 (2)S1x—Y2—S3xv138.038 (9)
O1i—Y1—S1iv76.13 (5)Y1xvi—S1—Y1xvii103.68 (4)
O1ii—Y1—S1iv126.41 (5)Y1xvi—S1—Y2xviii154.823 (15)
S1iii—Y1—S1iv76.32 (4)Y1xvii—S1—Y2xviii90.389 (13)
O2—Y1—S299.13 (7)Y1xvi—S1—Y2vii90.389 (13)
O1i—Y1—S2136.14 (5)Y1xvii—S1—Y2vii154.823 (15)
O1ii—Y1—S2136.14 (5)Y2xviii—S1—Y2vii84.90 (3)
S1iii—Y1—S285.841 (11)Y1x—S2—Y1xviii160.421 (18)
S1iv—Y1—S285.841 (11)Y1x—S2—Y1xix91.657 (3)
O1x—Y2—O1xi145.57 (11)Y1xviii—S2—Y1xix91.657 (3)
O1x—Y2—O2xii73.66 (8)Y1x—S2—Y191.657 (3)
O1xi—Y2—O2xii96.72 (8)Y1xviii—S2—Y191.657 (3)
O1x—Y2—O2xiii96.72 (8)Y1xix—S2—Y1160.420 (18)
O1xi—Y2—O2xiii73.66 (8)Y2xii—S3—Y2xv180.0
O2xii—Y2—O2xiii147.78 (12)Y2xii—S3—Y2xx90.0
O1x—Y2—O1xii127.80 (7)Y2xv—S3—Y2xx90.0
O1xi—Y2—O1xii69.36 (8)Y2xii—S3—Y2xxi90.0
O2xii—Y2—O1xii62.05 (8)Y2xv—S3—Y2xxi90.0
O2xiii—Y2—O1xii135.47 (8)Y2xx—S3—Y2xxi180.0
O1x—Y2—O1xiv69.36 (8)O3—Si1—O1107.56 (10)
O1xi—Y2—O1xiv127.80 (7)O3—Si1—O1xxii107.56 (10)
O2xii—Y2—O1xiv135.47 (8)O1—Si1—O1xxii123.34 (16)
O2xiii—Y2—O1xiv62.05 (8)O3—Si1—O2114.39 (18)
O1xii—Y2—O1xiv127.78 (9)O1—Si1—O2102.07 (10)
O1x—Y2—S1xii140.43 (6)O1xxii—Si1—O2102.07 (10)
O1xi—Y2—S1xii70.68 (5)Si1—O1—Y2xviii132.95 (12)
O2xii—Y2—S1xii130.09 (7)Si1—O1—Y1xxiii113.44 (11)
O2xiii—Y2—S1xii76.63 (6)Y2xviii—O1—Y1xxiii101.79 (7)
O1xii—Y2—S1xii68.44 (5)Si1—O1—Y2vii95.33 (10)
O1xiv—Y2—S1xii73.32 (5)Y2xviii—O1—Y2vii103.46 (8)
O1x—Y2—S1x70.68 (5)Y1xxiii—O1—Y2vii106.88 (8)
O1xi—Y2—S1x140.43 (6)Si1—O2—Y1130.32 (16)
O2xii—Y2—S1x76.63 (6)Si1—O2—Y2vi100.30 (9)
O2xiii—Y2—S1x130.09 (7)Y1—O2—Y2vi105.32 (8)
O1xii—Y2—S1x73.32 (5)Si1—O2—Y2vii100.30 (9)
O1xiv—Y2—S1x68.44 (5)Y1—O2—Y2vii105.32 (8)
S1xii—Y2—S1x83.925 (17)Y2vi—O2—Y2vii116.05 (12)
O1x—Y2—S3xv72.79 (6)Si1xix—O3—Si1128.1 (3)
Symmetry codes: (i) y1/4, x1/4, z+1/4; (ii) y+1/4, x1/4, z+1/4; (iii) x+1/2, y, z+1/2; (iv) x1/2, y, z+1/2; (v) y1/4, x1/4, z+1/4; (vi) y+1/4, x1/4, z3/4; (vii) x, y1/2, z+1; (viii) x1/2, y1/2, z1/2; (ix) y+3/4, x1/4, z+5/4; (x) y+1/4, x+1/4, z+3/4; (xi) x, y+1/2, z+1; (xii) x, y+1/2, z+1; (xiii) y+1/4, x+1/4, z+3/4; (xiv) y+1/4, x+1/4, z+3/4; (xv) x, y+1, z+1; (xvi) x+1/2, y, z+1/2; (xvii) x+1/2, y, z1/2; (xviii) y1/4, x+1/4, z+3/4; (xix) x, y+1/2, z; (xx) y1/4, x+3/4, z3/4; (xxi) y+1/4, x+3/4, z3/4; (xxii) x, y, z; (xxiii) y+1/4, x+1/4, z1/4; (xxiv) y1/4, x+1/4, z1/4.

Experimental details

Crystal data
Chemical formulaY4S3(Si2O7)
Mr620.00
Crystal system, space groupTetragonal, I41/amd
Temperature (K)100
a, c (Å)11.6706 (16), 13.5873 (19)
V3)1850.6 (4)
Z8
Radiation typeMo Kα
µ (mm1)25.78
Crystal size (mm)0.10 × 0.08 × 0.08
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionNumerical
[face-indexed using SADABS (Sheldrick, 2008a)]
Tmin, Tmax0.191, 0.238
No. of measured, independent and
observed [I > 2σ(I)] reflections
10831, 668, 587
Rint0.066
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.020, 0.045, 1.25
No. of reflections668
No. of parameters47
Δρmax, Δρmin (e Å3)0.61, 0.77

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008b), SHELXL97 (Sheldrick, 2008b), CrystalMaker (Palmer, 2009), SHELXL97(Sheldrick, 2008b).

Selected geometric parameters (Å, º) top
Y1—O22.279 (3)Y2—O1iv2.530 (2)
Y1—O1i2.428 (2)Y2—S1iv2.8419 (9)
Y1—S1ii2.7714 (8)Y2—S3v2.8652 (6)
Y1—S22.7874 (6)Si1—O31.621 (2)
Y2—O1iii2.355 (2)Si1—O11.623 (2)
Y2—O2iv2.3884 (15)Si1—O21.641 (3)
Y1vi—S1—Y2vii90.389 (13)Si1x—O3—Si1128.1 (3)
Y1viii—O1—Y2ix106.88 (8)
Symmetry codes: (i) y1/4, x1/4, z+1/4; (ii) x+1/2, y, z+1/2; (iii) y+1/4, x+1/4, z+3/4; (iv) x, y+1/2, z+1; (v) x, y+1, z+1; (vi) x+1/2, y, z1/2; (vii) y1/4, x+1/4, z+3/4; (viii) y+1/4, x+1/4, z1/4; (ix) x, y1/2, z+1; (x) x, y+1/2, z.
 

Acknowledgements

This research was supported by the US Department of Energy, Basic Energy Sciences, Chemical Sciences, Biosciences, and Geosciences Division and Division of Materials Sciences and Engineering Grant ER-15522.

References

First citationBruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDeudon, C., Meerschaut, A. & Rouxel, J. (1993). J. Solid State Chem. 104, 282–288.  CrossRef CAS Web of Science Google Scholar
First citationGelato, L. M. & Parthé, E. (1987). J. Appl. Cryst. 20, 139–143.  CrossRef Web of Science IUCr Journals Google Scholar
First citationGrupe, M., Lissner, F., Schleid, T. & Urland, T. (1992). Z. Anorg. Allg. Chem. 616, 53–60.  CrossRef CAS Web of Science Google Scholar
First citationGrupe, M. & Urland, W. (1989). Naturwissenschaften, 76, 327–329.  CrossRef CAS Web of Science Google Scholar
First citationHartenbach, I. & Schleid, T. (2002). Z. Kristallogr. New Cryst. Struct. 217, 175–176.  CAS Google Scholar
First citationLarroque, R. C. & Beauvy, M. (1986). J. Less-Common Met. 121, 487–496.  CAS Google Scholar
First citationPalmer, D. (2009). CrystalMaker. CrystalMaker Software Ltd, Oxford, England.  Google Scholar
First citationRange, K.-J., Andratschke, M. & Gietl, A. (1996). Z. Kristallogr. 211, 816.  CrossRef Web of Science Google Scholar
First citationShannon, R. D. (1976). Acta Cryst. A32, 751–767.  CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieke, C., Hartenbach, I. & Schleid, T. (2002). Z. Naturforsch. Teil B, 57, 1427–1432.  CAS Google Scholar
First citationSieke, C. & Schleid, T. (1999). Z. Anorg. Allg. Chem. 625, 131–136.  CrossRef CAS Google Scholar
First citationSieke, C. & Schleid, T. (2000). Z. Anorg. Allg. Chem. 626, 196–201.  CrossRef CAS Google Scholar
First citationZeng, H.-Y., Mao, J.-G. & Huang, J.-S. (1999). J. Alloys Compd, 291, 89–93.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds