organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-Benzaldehyde (2,4,6-tri­chloro­phen­yl)hydrazone

aCollege of Chemical Engineering and Materials Science, Zhejiang University of Technology, People's Republic of China
*Correspondence e-mail: shanshang@mail.hz.zj.cn

(Received 22 January 2011; accepted 25 January 2011; online 29 January 2011)

The title compound, C13H9Cl3N2, was obtained from a condensation reaction of benzaldehyde and 2,4,6-trichloro­phenyl­hydrazine. The mol­ecule assumes an E configuration with the phenyl ring and trichloro­phenyl ring located on opposite sides of the C=N bond. The phenyl ring is oriented at a dihedral angle of 42.58 (12)° with respect to the tricholorophenyl ring. In the crystal, the mol­ecules are linked via N—H⋯N hydrogen bonds, forming supra­molecular chains running along the c axis. ππ stacking is present between parallel trichloro­phenyl rings of adjacent mol­ecules, the face-to-face and centroid–centroid distances being 3.369 (14) and 3.724 (2) Å, respectively.

Related literature

For the biological activity of phenyl­hydrazone derivatives, see: Okabe et al. (1993[Okabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678-1680.]). For related structures, see: Shan et al. (2003[Shan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135-o136.]); Fan et al. (2005[Fan, Z., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o2758-o2760.]); Bolte & Dill (1998[Bolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.]).

[Scheme 1]

Experimental

Crystal data
  • C13H9Cl3N2

  • Mr = 299.57

  • Monoclinic, P 21 /c

  • a = 13.913 (6) Å

  • b = 12.867 (5) Å

  • c = 7.652 (3) Å

  • β = 98.739 (5)°

  • V = 1353.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.66 mm−1

  • T = 295 K

  • 0.36 × 0.30 × 0.26 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.86, Tmax = 0.92

  • 11730 measured reflections

  • 2436 independent reflections

  • 1936 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.105

  • S = 1.06

  • 2436 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.32 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯N2i 0.95 2.44 3.183 (3) 134
Symmetry code: (i) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As some phenylhydrazone derivatives have been shown to be potential DNA-damaging or mutagenic agents (Okabe et al., 1993), a series of phenylhydrazone derivatives has been synthesized in our laboratory in order to investigate the structure/bioactivity relationship (Shan et al. 2003; Fan et al. 2005).

The title molecule crystallizes in an E conformation, with the C1-phenyl ring and C8-benzene ring on opposite sides of the C7N2 double bond. This agrees with the configuration commonly found in phenylhydrazone derivatives (Bolte & Dill, 1998). In the molecule, the phenyl ring is oriented with respect to the tricholorophenyl ring at a dihedral angle of 42.58 (12)°. In the crystal structure, the molecules are linked via N—H···N hydrogen bonds to form the supra-molecular chains running along the c axis. π-π stacking is present between parallel tricholorophenyl rings of adjacent molecules, the face-to-face distance being 3.369 (14) Å.

Related literature top

For the biological activity of phenylhydrazone derivatives, see: Okabe et al. (1993). For related compounds, see: Shan et al. (2003); Fan et al. (2005); Bolte & Dill (1998).

Experimental top

2,4,6-Trichlorophenylhydrazine (0.21 g,1 mmol) was dissolved in ethanol (18 ml) and acetic acid (0.3 ml) was added slowly with stirring. The solution was heated at about 333 K for several minutes until it became clear. Benzaldehyde (0.11 g, 1 mmol) was added dropwise with continuous stirring, and the mixture solution was refluxed for 2 h. When the solution cooled to room temperature, microcrystals appeared. The microcrystals were separated from the solution and washed with cold water three times. Recrystallization was performed twice with an absolute ethanol to obtain single crystals of the title compound.

Refinement top

Imino H atom was located a difference Fourier map and refined as riding in as-found relative position. Other H atoms were placed in calculated positions with C—H = 0.93 Å. Uiso(H) = 1.2Ueq(N,C).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of (I) with 50% probability displacement ellipsoids.
(E)-Benzaldehyde (2,4,6-trichlorophenyl)hydrazone top
Crystal data top
C13H9Cl3N2F(000) = 608
Mr = 299.57Dx = 1.470 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4171 reflections
a = 13.913 (6) Åθ = 2.8–26.3°
b = 12.867 (5) ŵ = 0.66 mm1
c = 7.652 (3) ÅT = 295 K
β = 98.739 (5)°Prism, colorless
V = 1353.9 (9) Å30.36 × 0.30 × 0.26 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2436 independent reflections
Radiation source: fine-focus sealed tube1936 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
Detector resolution: 10.0 pixels mm-1θmax = 25.2°, θmin = 3.0°
ω scansh = 1616
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 1515
Tmin = 0.86, Tmax = 0.92l = 99
11730 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0449P)2 + 0.4002P]
where P = (Fo2 + 2Fc2)/3
2436 reflections(Δ/σ)max = 0.001
163 parametersΔρmax = 0.18 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C13H9Cl3N2V = 1353.9 (9) Å3
Mr = 299.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.913 (6) ŵ = 0.66 mm1
b = 12.867 (5) ÅT = 295 K
c = 7.652 (3) Å0.36 × 0.30 × 0.26 mm
β = 98.739 (5)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2436 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1936 reflections with I > 2σ(I)
Tmin = 0.86, Tmax = 0.92Rint = 0.028
11730 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.18 e Å3
2436 reflectionsΔρmin = 0.32 e Å3
163 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.82868 (5)0.03185 (5)0.52523 (10)0.0786 (2)
Cl21.16441 (5)0.21670 (7)0.78646 (11)0.0897 (3)
Cl30.85826 (6)0.45120 (5)0.53336 (10)0.0877 (3)
N10.75114 (15)0.24687 (17)0.4714 (3)0.0746 (6)
H1N0.72710.19620.38490.089*
N20.69094 (13)0.30372 (14)0.5622 (2)0.0566 (5)
C10.84849 (16)0.24097 (18)0.5442 (3)0.0557 (6)
C20.89458 (15)0.14534 (18)0.5762 (3)0.0548 (5)
C30.99117 (16)0.13659 (19)0.6484 (3)0.0595 (6)
H31.02030.07170.66740.071*
C41.04329 (16)0.2259 (2)0.6915 (3)0.0612 (6)
C51.00210 (17)0.3222 (2)0.6597 (3)0.0638 (6)
H51.03860.38210.68830.077*
C60.90617 (18)0.32876 (19)0.5850 (3)0.0603 (6)
C70.59985 (17)0.29350 (17)0.5147 (3)0.0582 (6)
H70.57690.24640.42580.070*
C80.53090 (15)0.35459 (18)0.5976 (3)0.0535 (5)
C90.56026 (17)0.44135 (18)0.6979 (3)0.0561 (5)
H90.62540.46080.71460.067*
C100.4942 (2)0.4996 (2)0.7737 (3)0.0760 (7)
H100.51510.55780.84110.091*
C110.3983 (2)0.4720 (3)0.7501 (4)0.0934 (10)
H110.35390.51150.80110.112*
C120.3676 (2)0.3869 (3)0.6520 (5)0.0952 (10)
H120.30220.36830.63690.114*
C130.43269 (18)0.3272 (2)0.5741 (4)0.0758 (7)
H130.41100.26940.50660.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0633 (4)0.0709 (4)0.1004 (5)0.0018 (3)0.0087 (4)0.0148 (3)
Cl20.0506 (4)0.1110 (6)0.1040 (6)0.0073 (3)0.0007 (3)0.0177 (4)
Cl30.0985 (5)0.0642 (4)0.0989 (5)0.0182 (4)0.0100 (4)0.0040 (4)
N10.0620 (12)0.0951 (16)0.0601 (12)0.0270 (11)0.0114 (10)0.0335 (11)
N20.0565 (11)0.0629 (11)0.0472 (10)0.0140 (9)0.0023 (9)0.0060 (8)
C10.0581 (13)0.0691 (15)0.0397 (11)0.0130 (11)0.0065 (10)0.0078 (10)
C20.0520 (12)0.0631 (14)0.0509 (12)0.0030 (10)0.0124 (10)0.0055 (10)
C30.0505 (13)0.0658 (14)0.0639 (14)0.0065 (11)0.0144 (11)0.0089 (11)
C40.0470 (12)0.0816 (17)0.0564 (13)0.0007 (11)0.0131 (11)0.0108 (12)
C50.0634 (15)0.0684 (15)0.0606 (14)0.0047 (12)0.0130 (12)0.0005 (12)
C60.0697 (15)0.0612 (14)0.0501 (12)0.0092 (12)0.0093 (11)0.0009 (11)
C70.0608 (14)0.0596 (13)0.0492 (12)0.0031 (11)0.0081 (11)0.0046 (10)
C80.0478 (12)0.0649 (14)0.0455 (11)0.0044 (10)0.0002 (9)0.0120 (10)
C90.0554 (13)0.0670 (14)0.0447 (11)0.0102 (11)0.0039 (10)0.0081 (11)
C100.0832 (19)0.0897 (18)0.0567 (15)0.0249 (15)0.0159 (14)0.0066 (13)
C110.077 (2)0.130 (3)0.081 (2)0.030 (2)0.0352 (17)0.023 (2)
C120.0486 (15)0.136 (3)0.104 (2)0.0061 (17)0.0195 (16)0.042 (2)
C130.0581 (15)0.0892 (19)0.0758 (17)0.0089 (14)0.0034 (13)0.0176 (14)
Geometric parameters (Å, º) top
Cl1—C21.737 (2)C5—H50.9300
Cl2—C41.735 (2)C7—C81.458 (3)
Cl3—C61.733 (2)C7—H70.9300
N1—N21.377 (3)C8—C91.381 (3)
N1—C11.386 (3)C8—C131.396 (3)
N1—H1N0.9526C9—C101.380 (3)
N2—C71.271 (3)C9—H90.9300
C1—C21.392 (3)C10—C111.367 (4)
C1—C61.393 (3)C10—H100.9300
C2—C31.378 (3)C11—C121.359 (5)
C3—C41.372 (3)C11—H110.9300
C3—H30.9300C12—C131.389 (4)
C4—C51.372 (3)C12—H120.9300
C5—C61.372 (3)C13—H130.9300
N2—N1—C1117.26 (18)N2—C7—C8120.9 (2)
N2—N1—H1N122.5N2—C7—H7119.6
C1—N1—H1N117.4C8—C7—H7119.6
C7—N2—N1117.19 (19)C9—C8—C13118.5 (2)
N1—C1—C2121.0 (2)C9—C8—C7121.3 (2)
N1—C1—C6122.7 (2)C13—C8—C7120.3 (2)
C2—C1—C6116.3 (2)C10—C9—C8120.9 (2)
C3—C2—C1122.5 (2)C10—C9—H9119.6
C3—C2—Cl1118.09 (18)C8—C9—H9119.6
C1—C2—Cl1119.38 (18)C11—C10—C9120.2 (3)
C4—C3—C2118.4 (2)C11—C10—H10119.9
C4—C3—H3120.8C9—C10—H10119.9
C2—C3—H3120.8C12—C11—C10120.1 (3)
C3—C4—C5121.5 (2)C12—C11—H11120.0
C3—C4—Cl2119.22 (19)C10—C11—H11120.0
C5—C4—Cl2119.3 (2)C11—C12—C13120.8 (3)
C4—C5—C6118.9 (2)C11—C12—H12119.6
C4—C5—H5120.6C13—C12—H12119.6
C6—C5—H5120.6C12—C13—C8119.7 (3)
C5—C6—C1122.3 (2)C12—C13—H13120.2
C5—C6—Cl3117.8 (2)C8—C13—H13120.2
C1—C6—Cl3119.84 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.952.443.183 (3)134
Symmetry code: (i) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC13H9Cl3N2
Mr299.57
Crystal system, space groupMonoclinic, P21/c
Temperature (K)295
a, b, c (Å)13.913 (6), 12.867 (5), 7.652 (3)
β (°) 98.739 (5)
V3)1353.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.66
Crystal size (mm)0.36 × 0.30 × 0.26
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.86, 0.92
No. of measured, independent and
observed [I > 2σ(I)] reflections
11730, 2436, 1936
Rint0.028
(sin θ/λ)max1)0.599
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.105, 1.06
No. of reflections2436
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.18, 0.32

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···N2i0.952.443.183 (3)134
Symmetry code: (i) x, y+1/2, z1/2.
 

Acknowledgements

The work was supported by the Natural Science Foundation of Zhejiang Province of China (No. M203027).

References

First citationBolte, M. & Dill, M. (1998). Acta Cryst. C54, IUC9800065.  CrossRef IUCr Journals Google Scholar
First citationFan, Z., Shan, S. & Xu, D.-J. (2005). Acta Cryst. E61, o2758–o2760.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOkabe, N., Nakamura, T. & Fukuda, H. (1993). Acta Cryst. C49, 1678–1680.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationShan, S., Xu, D.-J., Hung, C.-H., Wu, J.-Y. & Chiang, M. Y. (2003). Acta Cryst. C59, o135–o136.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds