organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o505-o506

(4-Cyano­phenolato)(subphthalocyaninato)boron

aDepartment of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5, and bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: tim.bender@utoronto.ca

(Received 29 October 2010; accepted 6 January 2011; online 29 January 2011)

The crystal structure of the title compound, C31H16BN7O, (CNPhO-BsubPc) is characterized by pairs of ππ stacking inter­actions between the concave faces of inversion-related BsubPc fragments with a centroid–centroid distance of 3.600 (1) Å. In addition, these pairs of mol­ecules are linked into chains along [101] through further weak ππ stacking inter­actions with a centroid–centroid distance of 3.8587 (9) Å. There are also weak C—H⋯π(arene) inter­actions within the chains.

Related literature

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002[Claessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev. 102, 835-853.]). For the synthesis of boronsubphthalocyanine and its derivatives, see: Zyskowski & Kennedy (2000[Zyskowski, C. D. & Kennedy, V. O. (2000). J. Porphyrins Phthalocyanins, pp. 707-712.]); Claessens et al. (2003[Claessens, C. G., González-Rodríguez, D., del Rey, B., Torres, T., Mark, G., Schuchmann, H.-P., von Sonntag, C., MacDonald, J. G. & Nohr, R. S. (2003). Eur. J. Org. Chem. pp. 2547-2551.]); Paton et al. (2011b[Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2011b). CrystEngComm, 13, 914-919.]). For the application of BsubPcs in organic electronic devices, see: Morse et al. (2010[Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). Appl. Mater. Inter. 2, 1934-1944.]) and references cited therein; Gommans et al. (2009)[Gommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Funct. Mater. 19, 3435-3439.]. For related crystal structures of non-halogenated boronsubphthalocyanine derivatives, see: Potz et al. (2000[Potz, R., Goldner, M., Huckstadt, H., Cornelissen, U., Tutass, A. & Homborg, H. (2000). Z. Anorg. Allg. Chem. 626, 588-596.]); Paton et al. (2010[Paton, A. S., Lough, A. J. & Bender, T. P. (2010). Acta Cryst. E66, o3246.], 2011a[Paton, A. S., Lough, A. J. & Bender, T. P. (2011a). Acta Cryst. E67, o57.],b[Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2011b). CrystEngComm, 13, 914-919.]). For the treatment of disordered solvent mol­ecules, see: Athimoolam et al. (2005[Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014-m2017.]); Cox et al. (2003[Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975-o977.]); Mohamed et al. (2003[Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84-m86.]); Stähler et al. (2001[Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26-27.]).

[Scheme 1]

Experimental

Crystal data
  • C31H16BN7O

  • Mr = 513.32

  • Monoclinic, C 2/c

  • a = 16.2310 (3) Å

  • b = 27.5129 (7) Å

  • c = 13.4385 (2) Å

  • β = 119.4050 (12)°

  • V = 5228.00 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 150 K

  • 0.40 × 0.30 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.711, Tmax = 0.994

  • 21404 measured reflections

  • 5914 independent reflections

  • 4290 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.141

  • S = 1.06

  • 5914 reflections

  • 361 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1, Cg2 and Cg3 are the centroids of the C25–C30, N1/C1/C2/C7/C8 and N3/C9/C10/C15/C19 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C3—H3ACg1i 0.95 2.70 3.499 (3) 143
C20—H20ACg2ii 0.95 2.59 3.254 (4) 127
C21—H21ACg3ii 0.95 2.70 3.238 (4) 116
Symmetry codes: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

We report the crystal structure of 4-cyanophenoxy-boronsubphthalocyanine (CNPhO-BsubPc), which possesses an electron withdrawing group in the para position of the phenoxy molecular fragment. We have recently reported a study of the crystal structures of a series of para-substituted phenoxy-BsubPc wherein most of the substituents were electron-donating alkyl groups (Paton et al., 2011b). Contained within that study was 4-fluorophenoxy-BsubPc (FPhO-BsubPc). While fluorine is moderately electron withdrawing we did not observe any difference in its crystal structure compared to the baseline phenoxy-BsubPc structure which contains pairs of molecules associated through π-stacking via the concave faces of two BsubPc molecules related by inversion centers. We have also have reported two BsubPc derivatives with electron-withdrawing groups in the para position, 4-acetylphenoxy-BsubPc (Paton et al., 2010) and 4-nitrophenoxy-BsubPc (Paton et al., 2011a). Both of these compounds are similar in structure to the FPhO-BsubPc, which typifies the substituted phenoxy-BsubPc packing motif.

The molecular structure of the title compound is shown in Fig. 1. The molecule shows the expected bowl shape of the BsubPc ligand. The B—O—C angle is 128.89 (11)°; however, both experimental and computational gas-phase values of B—O—C angles for phenoxy-derivatized BsubPc compounds have been shown to be significantly smaller, at 115.2 (2)° for the typical FPhO-BsubPc, and around 115° for the computationally determined gas-phase value (Paton et al., 2011b). The torsion angle between the boron, oxygen, and the first two carbon atoms on the phenoxy substituent (B—O—C—C) is -1.9 (3)° while in FPhO-BsubPc it is -91.0 (2)°.

In the crystal structure, there are π···π interactions between the concave faces of pairs of molecules at a distance of 3.6002 (10) Å across an inversion centre (for rings N5/C17/C18/C23/C24 and C18—C23 related by 1/2-x, 1/2-y, 1-z). These types of π···π stacking interactions are common to other BsubPc derivatives mentioned above. In the crystal structure the title compound, additional weaker π···π-stacking interactions between inversion related pairs at a distance of 3.8587 (9) Å involving rings C18—C23 and C18—C23 related by 1-x, y, 3/2-z, form one-dimensional chains along [101].

Solvent voids are present in the structure (see experimental). The channel-like voids in which the solvent resides extend along the c axis (see Fig. 3) and are bordered by the convex-faces of the BsubPc fragment and the cyanophenoxy units. Diffusing heptane into a solution of the title compound in acetone, instead of heptane into a benzene solution as in the current experiment, gave the same crystal structure in terms of unit-cell parameters, cell volume, and solvent cavity volume.

Related literature top

For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002). For the synthesis of boronsubphthalocyanine and its derivatives, see: Zyskowski & Kennedy (2000); Claessens et al. (2003); Paton et al. (2011b). For the application of BsubPcs in organic electronic devices, see: Morse et al. (2010) and references cited therein; Gommans et al. (2009). For related crystal structures of non-halogenated boronsubphthalocyanine derivatives, see: Potz et al. (2000); Paton et al. (1010, 2011a,b). For the treatment of disordered solvent molecules, see: Athimoolam et al. (2005); Cox et al. (2003); Mohamed et al. (2003); Stähler et al. (2001).

Experimental top

Cl-BsubPc was synthesized by a procedure adapted from Zyskowski and Kennedy (2000). The title compound was synthesized using a method adapted from Claessens et al. (2003) and Paton et al. (2011b): 4-Cyanophenoxyboronsubphthalocyanine. Cl-BsubPc (0.510 g, 0.0012 mol) was mixed with 4-cyanophenol (0.714 g, 0.0060 mol) in toluene (10 ml) in a cylindrical vessel fitted with a reflux condenser and argon inlet. The mixture was stirred and heated at reflux under a constant pressure of argon for 17 h. Reaction was determined complete via HPLC by the absence of Cl-BsubPc. The solvent was evaporated under rotary evaporation. The crude product was purified on a Kauffman column using standard basic alumina (300 mesh) as the adsorbent and dichloromethane as the eluent. The product eluted from the Kauffman column while the excess phenol remained adsorbed. The dichloromethane was then removed under reduced pressure yielding a dark pink/magenta powder of the title compound (0.236 g, 40%).

Refinement top

All H atoms were placed in calculated positions and included in the refinment with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). During the refinement of the structure, electron density peaks (the largest being 2.38 e/Å3) were located that were believed to be highly disordered solvent molecules, possibly heptane and/or benzene. Attempts made to model the solvent molecule were not successful. The SQUEEZE option in PLATON (Spek, 2009) indicated there was a solvent cavity of volume 296 Å3 containing approximately 43 electrons per unit cell. We are not able to say with any certainty which of the two crystallization solvents used are present in the lattice. There was no observed streaking or satellite peaks on the exposed images to suggest that this might be a modulated srtructure. Therefore, in the final cycles of refinement, this contribution to the electron density was removed from the observed data. The density, the F(000) value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option PLATON (Spek, 2009). Similar treatments of disordered solvent molecules were carried out by Stähler et al. (2001), Cox et al. (2003), Mohamed et al. (2003) and Athimoolam et al. (2005).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The labelled molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms were omitted for clarity.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound showing the ππ-stacking and C—H···π interactions as dotted lines.
[Figure 3] Fig. 3. Part of the crystal structure of the title comound with the channel-like solvent voids (see experimental) CNPhO-BsubPc shown in orange.
(4-cyanophenolato)(1,2,3,4,8,9,10,11,15,16,17,18-dodecafluoro-7,12:14,19- diimino-21,5-nitrilo-5H- tribenzo[c,h,m][1,6,11]triazacyclopentadecinato)boron top
Crystal data top
C31H16BN7OF(000) = 2112
Mr = 513.32Dx = 1.304 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 21404 reflections
a = 16.2310 (3) Åθ = 2.6–27.5°
b = 27.5129 (7) ŵ = 0.08 mm1
c = 13.4385 (2) ÅT = 150 K
β = 119.4050 (12)°Plate, purple
V = 5228.00 (18) Å30.40 × 0.30 × 0.12 mm
Z = 8
Data collection top
Nonius KappaCCD
diffractometer
5914 independent reflections
Radiation source: fine-focus sealed tube4290 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
Detector resolution: 9 pixels mm-1θmax = 27.5°, θmin = 2.7°
ϕ scans and ω scans with κ offsetsh = 2118
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 3535
Tmin = 0.711, Tmax = 0.994l = 1717
21404 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0863P)2]
where P = (Fo2 + 2Fc2)/3
5914 reflections(Δ/σ)max < 0.001
361 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C31H16BN7OV = 5228.00 (18) Å3
Mr = 513.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.2310 (3) ŵ = 0.08 mm1
b = 27.5129 (7) ÅT = 150 K
c = 13.4385 (2) Å0.40 × 0.30 × 0.12 mm
β = 119.4050 (12)°
Data collection top
Nonius KappaCCD
diffractometer
5914 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
4290 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.994Rint = 0.087
21404 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.06Δρmax = 0.23 e Å3
5914 reflectionsΔρmin = 0.26 e Å3
361 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.45381 (6)0.13599 (4)0.37150 (8)0.0282 (3)
N10.29842 (7)0.16745 (5)0.25275 (9)0.0239 (3)
N20.20587 (8)0.09502 (5)0.20043 (10)0.0279 (3)
N30.31564 (8)0.11128 (5)0.39600 (10)0.0250 (3)
N40.34779 (8)0.14317 (5)0.57623 (10)0.0269 (3)
N50.37213 (7)0.19169 (5)0.44565 (9)0.0234 (3)
N60.32295 (8)0.25170 (5)0.30000 (10)0.0256 (3)
N70.89695 (9)0.09629 (6)0.79845 (12)0.0423 (4)
C10.28553 (9)0.21531 (6)0.22298 (12)0.0244 (3)
C20.20815 (9)0.21704 (6)0.10579 (11)0.0246 (3)
C30.16247 (10)0.25605 (6)0.03201 (12)0.0276 (3)
H3A0.18620.28830.05150.033*
C40.08163 (11)0.24607 (6)0.07024 (12)0.0319 (4)
H4A0.05030.27180.12250.038*
C50.04511 (10)0.19906 (6)0.09831 (12)0.0324 (4)
H5A0.01140.19370.16850.039*
C60.08894 (10)0.16012 (6)0.02685 (12)0.0285 (3)
H6A0.06370.12820.04670.034*
C70.17179 (9)0.16932 (6)0.07568 (11)0.0249 (3)
C80.22770 (9)0.13839 (6)0.17416 (11)0.0245 (3)
C90.24642 (10)0.08345 (6)0.31192 (12)0.0266 (3)
C100.21193 (10)0.05125 (6)0.36928 (12)0.0295 (3)
C110.14170 (11)0.01560 (6)0.32724 (14)0.0343 (4)
H11A0.11110.00630.24910.041*
C120.11801 (12)0.00584 (6)0.40292 (15)0.0401 (4)
H12A0.07170.03080.37650.048*
C130.16061 (13)0.00841 (7)0.51697 (15)0.0411 (4)
H13A0.14270.00700.56670.049*
C140.22856 (12)0.04466 (6)0.55934 (14)0.0371 (4)
H14A0.25660.05460.63690.044*
C150.25479 (10)0.06624 (6)0.48518 (12)0.0294 (4)
C160.31566 (10)0.10753 (6)0.49800 (12)0.0272 (3)
C170.36934 (9)0.18587 (6)0.54540 (11)0.0250 (3)
C180.37682 (9)0.23457 (6)0.59076 (11)0.0256 (3)
C190.38193 (9)0.25146 (6)0.69168 (12)0.0290 (4)
H19A0.38100.22960.74590.035*
C200.38842 (10)0.30100 (6)0.70979 (13)0.0320 (4)
H20A0.39380.31330.77880.038*
C210.38732 (10)0.33359 (6)0.62963 (13)0.0333 (4)
H21A0.39330.36740.64590.040*
C220.37760 (9)0.31749 (6)0.52658 (13)0.0309 (4)
H22A0.37410.33980.47070.037*
C230.37317 (9)0.26767 (6)0.50768 (11)0.0257 (3)
C240.36076 (9)0.23903 (6)0.41071 (12)0.0244 (3)
C250.54079 (9)0.12725 (6)0.46227 (12)0.0252 (3)
C260.61048 (10)0.11309 (6)0.43571 (12)0.0280 (3)
H26A0.59520.10960.35820.034*
C270.70191 (10)0.10419 (6)0.52242 (12)0.0286 (3)
H27A0.74870.09370.50420.034*
C280.72545 (10)0.11047 (6)0.63614 (12)0.0275 (3)
C290.65582 (11)0.12432 (6)0.66259 (13)0.0316 (4)
H29A0.67150.12850.74010.038*
C300.56400 (10)0.13197 (6)0.57646 (12)0.0306 (4)
H30A0.51650.14050.59510.037*
C310.82104 (11)0.10284 (6)0.72633 (13)0.0308 (4)
B10.36726 (11)0.15027 (7)0.37081 (13)0.0256 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0217 (5)0.0396 (7)0.0226 (5)0.0049 (4)0.0102 (4)0.0000 (4)
N10.0231 (6)0.0279 (8)0.0215 (6)0.0008 (5)0.0115 (5)0.0012 (5)
N20.0302 (6)0.0288 (8)0.0261 (6)0.0013 (5)0.0150 (5)0.0032 (5)
N30.0261 (6)0.0270 (7)0.0226 (6)0.0028 (5)0.0124 (5)0.0001 (5)
N40.0241 (6)0.0323 (8)0.0236 (6)0.0010 (5)0.0111 (5)0.0002 (5)
N50.0199 (5)0.0293 (8)0.0206 (6)0.0001 (5)0.0096 (5)0.0011 (5)
N60.0215 (6)0.0315 (8)0.0245 (6)0.0016 (5)0.0118 (5)0.0011 (5)
N70.0293 (7)0.0455 (10)0.0408 (8)0.0011 (6)0.0085 (7)0.0024 (7)
C10.0202 (7)0.0311 (9)0.0247 (7)0.0004 (6)0.0132 (6)0.0009 (6)
C20.0210 (7)0.0342 (9)0.0207 (7)0.0003 (6)0.0118 (6)0.0003 (6)
C30.0263 (7)0.0321 (9)0.0267 (7)0.0005 (6)0.0148 (6)0.0001 (6)
C40.0284 (8)0.0426 (11)0.0246 (7)0.0067 (7)0.0130 (6)0.0051 (7)
C50.0241 (7)0.0480 (11)0.0218 (7)0.0025 (7)0.0086 (6)0.0022 (7)
C60.0259 (7)0.0362 (10)0.0240 (7)0.0006 (6)0.0126 (6)0.0041 (6)
C70.0238 (7)0.0320 (9)0.0223 (7)0.0020 (6)0.0139 (6)0.0027 (6)
C80.0235 (7)0.0296 (9)0.0225 (7)0.0006 (6)0.0130 (6)0.0045 (6)
C90.0290 (7)0.0254 (9)0.0270 (7)0.0025 (6)0.0151 (6)0.0027 (6)
C100.0334 (8)0.0272 (9)0.0311 (8)0.0034 (6)0.0183 (7)0.0004 (6)
C110.0360 (8)0.0312 (10)0.0364 (9)0.0013 (7)0.0183 (7)0.0005 (7)
C120.0448 (10)0.0310 (10)0.0494 (10)0.0049 (7)0.0270 (8)0.0001 (8)
C130.0520 (10)0.0345 (11)0.0458 (10)0.0010 (8)0.0310 (9)0.0073 (8)
C140.0452 (9)0.0367 (11)0.0341 (8)0.0003 (8)0.0231 (8)0.0027 (7)
C150.0309 (8)0.0292 (9)0.0297 (8)0.0038 (6)0.0160 (7)0.0020 (6)
C160.0264 (7)0.0329 (9)0.0229 (7)0.0037 (6)0.0127 (6)0.0013 (6)
C170.0183 (6)0.0356 (10)0.0204 (7)0.0022 (6)0.0089 (6)0.0005 (6)
C180.0168 (6)0.0345 (9)0.0246 (7)0.0004 (6)0.0096 (6)0.0032 (6)
C190.0198 (7)0.0419 (10)0.0267 (8)0.0002 (6)0.0124 (6)0.0041 (7)
C200.0217 (7)0.0444 (11)0.0312 (8)0.0017 (6)0.0141 (6)0.0102 (7)
C210.0233 (7)0.0345 (10)0.0379 (9)0.0020 (6)0.0117 (7)0.0099 (7)
C220.0227 (7)0.0337 (10)0.0321 (8)0.0013 (6)0.0103 (6)0.0024 (7)
C230.0173 (6)0.0329 (9)0.0246 (7)0.0006 (6)0.0084 (6)0.0041 (6)
C240.0173 (6)0.0306 (9)0.0248 (7)0.0006 (6)0.0100 (6)0.0011 (6)
C250.0218 (7)0.0288 (9)0.0246 (7)0.0022 (6)0.0111 (6)0.0031 (6)
C260.0278 (7)0.0336 (10)0.0255 (7)0.0010 (6)0.0152 (6)0.0004 (6)
C270.0242 (7)0.0338 (10)0.0311 (8)0.0006 (6)0.0160 (6)0.0013 (6)
C280.0237 (7)0.0283 (9)0.0277 (8)0.0012 (6)0.0104 (6)0.0015 (6)
C290.0319 (8)0.0380 (10)0.0238 (8)0.0063 (7)0.0128 (7)0.0005 (6)
C300.0269 (7)0.0419 (10)0.0253 (8)0.0082 (7)0.0146 (6)0.0024 (7)
C310.0292 (8)0.0309 (10)0.0299 (8)0.0009 (6)0.0127 (7)0.0023 (7)
B10.0237 (8)0.0300 (10)0.0233 (8)0.0033 (7)0.0117 (7)0.0013 (7)
Geometric parameters (Å, º) top
O1—C251.3593 (16)C11—C121.384 (2)
O1—B11.4544 (18)C11—H11A0.9500
N1—C11.362 (2)C12—C131.393 (2)
N1—C81.3718 (18)C12—H12A0.9500
N1—B11.4995 (19)C13—C141.385 (2)
N2—C81.340 (2)C13—H13A0.9500
N2—C91.3458 (18)C14—C151.394 (2)
N3—C91.3706 (18)C14—H14A0.9500
N3—C161.3744 (18)C15—C161.459 (2)
N3—B11.499 (2)C17—C181.452 (2)
N4—C161.342 (2)C18—C191.397 (2)
N4—C171.348 (2)C18—C231.419 (2)
N5—C241.3658 (19)C19—C201.379 (2)
N5—C171.3726 (18)C19—H19A0.9500
N5—B11.496 (2)C20—C211.395 (2)
N6—C241.3473 (18)C20—H20A0.9500
N6—C11.3510 (19)C21—C221.387 (2)
N7—C311.1476 (19)C21—H21A0.9500
C1—C21.4553 (18)C22—C231.389 (2)
C2—C31.401 (2)C22—H22A0.9500
C2—C71.415 (2)C23—C241.450 (2)
C3—C41.384 (2)C25—C301.395 (2)
C3—H3A0.9500C25—C261.398 (2)
C4—C51.395 (2)C26—C271.386 (2)
C4—H4A0.9500C26—H26A0.9500
C5—C61.380 (2)C27—C281.392 (2)
C5—H5A0.9500C27—H27A0.9500
C6—C71.3969 (19)C28—C291.394 (2)
C6—H6A0.9500C28—C311.440 (2)
C7—C81.456 (2)C29—C301.382 (2)
C9—C101.455 (2)C29—H29A0.9500
C10—C111.396 (2)C30—H30A0.9500
C10—C151.420 (2)
C25—O1—B1128.89 (11)C14—C15—C10120.23 (14)
C1—N1—C8112.80 (11)C14—C15—C16132.36 (15)
C1—N1—B1122.86 (12)C10—C15—C16107.11 (13)
C8—N1—B1122.55 (13)N4—C16—N3122.43 (14)
C8—N2—C9117.12 (12)N4—C16—C15129.92 (14)
C9—N3—C16112.27 (12)N3—C16—C15105.78 (13)
C9—N3—B1122.45 (12)N4—C17—N5122.68 (13)
C16—N3—B1123.54 (12)N4—C17—C18130.99 (13)
C16—N4—C17117.12 (13)N5—C17—C18105.44 (13)
C24—N5—C17112.54 (12)C19—C18—C23120.65 (15)
C24—N5—B1122.79 (12)C19—C18—C17131.87 (15)
C17—N5—B1123.46 (13)C23—C18—C17107.41 (12)
C24—N6—C1116.35 (13)C20—C19—C18117.58 (15)
N6—C1—N1123.02 (12)C20—C19—H19A121.2
N6—C1—C2129.00 (14)C18—C19—H19A121.2
N1—C1—C2106.01 (12)C19—C20—C21121.86 (14)
C3—C2—C7120.47 (13)C19—C20—H20A119.1
C3—C2—C1131.80 (14)C21—C20—H20A119.1
C7—C2—C1107.24 (13)C22—C21—C20121.19 (16)
C4—C3—C2117.71 (15)C22—C21—H21A119.4
C4—C3—H3A121.1C20—C21—H21A119.4
C2—C3—H3A121.1C21—C22—C23117.89 (15)
C3—C4—C5121.48 (15)C21—C22—H22A121.1
C3—C4—H4A119.3C23—C22—H22A121.1
C5—C4—H4A119.3C22—C23—C18120.72 (13)
C6—C5—C4121.73 (14)C22—C23—C24132.25 (14)
C6—C5—H5A119.1C18—C23—C24106.98 (14)
C4—C5—H5A119.1N6—C24—N5122.53 (13)
C5—C6—C7117.60 (15)N6—C24—C23129.70 (14)
C5—C6—H6A121.2N5—C24—C23105.88 (12)
C7—C6—H6A121.2O1—C25—C30124.84 (13)
C6—C7—C2120.97 (13)O1—C25—C26115.73 (12)
C6—C7—C8131.24 (15)C30—C25—C26119.42 (13)
C2—C7—C8107.23 (12)C27—C26—C25120.06 (13)
N2—C8—N1123.06 (13)C27—C26—H26A120.0
N2—C8—C7129.22 (13)C25—C26—H26A120.0
N1—C8—C7105.76 (13)C26—C27—C28120.29 (14)
N2—C9—N3122.72 (14)C26—C27—H27A119.9
N2—C9—C10128.97 (13)C28—C27—H27A119.9
N3—C9—C10106.04 (12)C27—C28—C29119.60 (13)
C11—C10—C15120.73 (14)C27—C28—C31120.48 (13)
C11—C10—C9131.58 (14)C29—C28—C31119.91 (14)
C15—C10—C9107.20 (13)C30—C29—C28120.25 (14)
C12—C11—C10117.94 (15)C30—C29—H29A119.9
C12—C11—H11A121.0C28—C29—H29A119.9
C10—C11—H11A121.0C29—C30—C25120.32 (14)
C11—C12—C13121.46 (16)C29—C30—H30A119.8
C11—C12—H12A119.3C25—C30—H30A119.8
C13—C12—H12A119.3N7—C31—C28179.29 (19)
C14—C13—C12121.33 (16)O1—B1—N5117.99 (12)
C14—C13—H13A119.3O1—B1—N3116.79 (13)
C12—C13—H13A119.3N5—B1—N3104.14 (12)
C13—C14—C15118.27 (15)O1—B1—N1107.91 (12)
C13—C14—H14A120.9N5—B1—N1103.72 (12)
C15—C14—H14A120.9N3—B1—N1104.83 (12)
Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C25–C30, N1/C1/C2/C7/C8 and N3/C9/C10/C15/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.952.703.499 (3)143
C20—H20A···Cg2ii0.952.593.254 (4)127
C21—H21A···Cg3ii0.952.703.238 (4)116
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC31H16BN7O
Mr513.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)150
a, b, c (Å)16.2310 (3), 27.5129 (7), 13.4385 (2)
β (°) 119.4050 (12)
V3)5228.00 (18)
Z8
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.40 × 0.30 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.711, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
21404, 5914, 4290
Rint0.087
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.141, 1.06
No. of reflections5914
No. of parameters361
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.26

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).

Hydrogen-bond geometry (Å, º) top
Cg1, Cg2 and Cg3 are the centroids of the C25–C30, N1/C1/C2/C7/C8 and N3/C9/C10/C15/C19 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C3—H3A···Cg1i0.952.703.499 (3)143
C20—H20A···Cg2ii0.952.593.254 (4)127
C21—H21A···Cg3ii0.952.703.238 (4)116
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1/2, y+1/2, z+1.
 

Footnotes

Electron-withdrawing groups in the para position of the phen­oxy mol­ecular fragment. Part 3. For Part 1, see: Paton et al. (2010b); for Part 2, see: Paton et al. (2011).

Acknowledgements

We wish to acknowledge funding for this research from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAthimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationClaessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev. 102, 835–853.  Web of Science CrossRef PubMed CAS Google Scholar
First citationClaessens, C. G., González-Rodríguez, D., del Rey, B., Torres, T., Mark, G., Schuchmann, H.-P., von Sonntag, C., MacDonald, J. G. & Nohr, R. S. (2003). Eur. J. Org. Chem. pp. 2547–2551.  Web of Science CrossRef Google Scholar
First citationCox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975–o977.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Funct. Mater. 19, 3435–3439.  Web of Science CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84–m86.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMorse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). Appl. Mater. Inter. 2, 1934–1944.  Web of Science CSD CrossRef CAS Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaton, A. S., Lough, A. J. & Bender, T. P. (2010). Acta Cryst. E66, o3246.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPaton, A. S., Lough, A. J. & Bender, T. P. (2011a). Acta Cryst. E67, o57.  Web of Science CrossRef IUCr Journals Google Scholar
First citationPaton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2011b). CrystEngComm, 13, 914–919.  Web of Science CSD CrossRef CAS Google Scholar
First citationPotz, R., Goldner, M., Huckstadt, H., Cornelissen, U., Tutass, A. & Homborg, H. (2000). Z. Anorg. Allg. Chem. 626, 588–596.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZyskowski, C. D. & Kennedy, V. O. (2000). J. Porphyrins Phthalocyanins, pp. 707–712.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 67| Part 2| February 2011| Pages o505-o506
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds