organic compounds
(4-Cyanophenolato)(subphthalocyaninato)boron†
aDepartment of Chemical Engineering & Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario, Canada M5S 3E5, and bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: tim.bender@utoronto.ca
The 31H16BN7O, (CNPhO-BsubPc) is characterized by pairs of π–π stacking interactions between the concave faces of inversion-related BsubPc fragments with a centroid–centroid distance of 3.600 (1) Å. In addition, these pairs of molecules are linked into chains along [101] through further weak π–π stacking interactions with a centroid–centroid distance of 3.8587 (9) Å. There are also weak C—H⋯π(arene) interactions within the chains.
of the title compound, CRelated literature
For a general review of boronsubphthalocyanine compounds (BsubPcs), see: Claessens et al. (2002). For the synthesis of boronsubphthalocyanine and its derivatives, see: Zyskowski & Kennedy (2000); Claessens et al. (2003); Paton et al. (2011b). For the application of BsubPcs in organic electronic devices, see: Morse et al. (2010) and references cited therein; Gommans et al. (2009). For related crystal structures of non-halogenated boronsubphthalocyanine derivatives, see: Potz et al. (2000); Paton et al. (2010, 2011a,b). For the treatment of disordered solvent molecules, see: Athimoolam et al. (2005); Cox et al. (2003); Mohamed et al. (2003); Stähler et al. (2001).
Experimental
Crystal data
|
Refinement
|
Data collection: COLLECT (Nonius, 2002); cell DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536811000869/zl2323sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811000869/zl2323Isup2.hkl
Cl-BsubPc was synthesized by a procedure adapted from Zyskowski and Kennedy (2000). The title compound was synthesized using a method adapted from Claessens et al. (2003) and Paton et al. (2011b): 4-Cyanophenoxyboronsubphthalocyanine. Cl-BsubPc (0.510 g, 0.0012 mol) was mixed with 4-cyanophenol (0.714 g, 0.0060 mol) in toluene (10 ml) in a cylindrical vessel fitted with a reflux condenser and argon inlet. The mixture was stirred and heated at reflux under a constant pressure of argon for 17 h. Reaction was determined complete via HPLC by the absence of Cl-BsubPc. The solvent was evaporated under rotary evaporation. The crude product was purified on a Kauffman column using standard basic alumina (300 mesh) as the adsorbent and dichloromethane as the
The product eluted from the Kauffman column while the excess phenol remained adsorbed. The dichloromethane was then removed under reduced pressure yielding a dark pink/magenta powder of the title compound (0.236 g, 40%).All H atoms were placed in calculated positions and included in the refinment with C—H = 0.95Å and Uiso(H) = 1.2Ueq(C). During the
of the structure, electron density peaks (the largest being 2.38 e/Å3) were located that were believed to be highly disordered solvent molecules, possibly heptane and/or benzene. Attempts made to model the solvent molecule were not successful. The SQUEEZE option in PLATON (Spek, 2009) indicated there was a solvent cavity of volume 296 Å3 containing approximately 43 electrons per We are not able to say with any certainty which of the two crystallization solvents used are present in the lattice. There was no observed streaking or satellite peaks on the exposed images to suggest that this might be a modulated srtructure. Therefore, in the final cycles of this contribution to the electron density was removed from the observed data. The density, the value, the molecular weight and the formula are given without taking into account the results obtained with the SQUEEZE option PLATON (Spek, 2009). Similar treatments of disordered solvent molecules were carried out by Stähler et al. (2001), Cox et al. (2003), Mohamed et al. (2003) and Athimoolam et al. (2005).Data collection: COLLECT (Nonius, 2002); cell
DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).C31H16BN7O | F(000) = 2112 |
Mr = 513.32 | Dx = 1.304 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 21404 reflections |
a = 16.2310 (3) Å | θ = 2.6–27.5° |
b = 27.5129 (7) Å | µ = 0.08 mm−1 |
c = 13.4385 (2) Å | T = 150 K |
β = 119.4050 (12)° | Plate, purple |
V = 5228.00 (18) Å3 | 0.40 × 0.30 × 0.12 mm |
Z = 8 |
Nonius KappaCCD diffractometer | 5914 independent reflections |
Radiation source: fine-focus sealed tube | 4290 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.087 |
Detector resolution: 9 pixels mm-1 | θmax = 27.5°, θmin = 2.7° |
ϕ scans and ω scans with κ offsets | h = −21→18 |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | k = −35→35 |
Tmin = 0.711, Tmax = 0.994 | l = −17→17 |
21404 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.049 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0863P)2] where P = (Fo2 + 2Fc2)/3 |
5914 reflections | (Δ/σ)max < 0.001 |
361 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
C31H16BN7O | V = 5228.00 (18) Å3 |
Mr = 513.32 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.2310 (3) Å | µ = 0.08 mm−1 |
b = 27.5129 (7) Å | T = 150 K |
c = 13.4385 (2) Å | 0.40 × 0.30 × 0.12 mm |
β = 119.4050 (12)° |
Nonius KappaCCD diffractometer | 5914 independent reflections |
Absorption correction: multi-scan (SORTAV; Blessing, 1995) | 4290 reflections with I > 2σ(I) |
Tmin = 0.711, Tmax = 0.994 | Rint = 0.087 |
21404 measured reflections |
R[F2 > 2σ(F2)] = 0.049 | 0 restraints |
wR(F2) = 0.141 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.23 e Å−3 |
5914 reflections | Δρmin = −0.26 e Å−3 |
361 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.45381 (6) | 0.13599 (4) | 0.37150 (8) | 0.0282 (3) | |
N1 | 0.29842 (7) | 0.16745 (5) | 0.25275 (9) | 0.0239 (3) | |
N2 | 0.20587 (8) | 0.09502 (5) | 0.20043 (10) | 0.0279 (3) | |
N3 | 0.31564 (8) | 0.11128 (5) | 0.39600 (10) | 0.0250 (3) | |
N4 | 0.34779 (8) | 0.14317 (5) | 0.57623 (10) | 0.0269 (3) | |
N5 | 0.37213 (7) | 0.19169 (5) | 0.44565 (9) | 0.0234 (3) | |
N6 | 0.32295 (8) | 0.25170 (5) | 0.30000 (10) | 0.0256 (3) | |
N7 | 0.89695 (9) | 0.09629 (6) | 0.79845 (12) | 0.0423 (4) | |
C1 | 0.28553 (9) | 0.21531 (6) | 0.22298 (12) | 0.0244 (3) | |
C2 | 0.20815 (9) | 0.21704 (6) | 0.10579 (11) | 0.0246 (3) | |
C3 | 0.16247 (10) | 0.25605 (6) | 0.03201 (12) | 0.0276 (3) | |
H3A | 0.1862 | 0.2883 | 0.0515 | 0.033* | |
C4 | 0.08163 (11) | 0.24607 (6) | −0.07024 (12) | 0.0319 (4) | |
H4A | 0.0503 | 0.2718 | −0.1225 | 0.038* | |
C5 | 0.04511 (10) | 0.19906 (6) | −0.09831 (12) | 0.0324 (4) | |
H5A | −0.0114 | 0.1937 | −0.1685 | 0.039* | |
C6 | 0.08894 (10) | 0.16012 (6) | −0.02685 (12) | 0.0285 (3) | |
H6A | 0.0637 | 0.1282 | −0.0467 | 0.034* | |
C7 | 0.17179 (9) | 0.16932 (6) | 0.07568 (11) | 0.0249 (3) | |
C8 | 0.22770 (9) | 0.13839 (6) | 0.17416 (11) | 0.0245 (3) | |
C9 | 0.24642 (10) | 0.08345 (6) | 0.31192 (12) | 0.0266 (3) | |
C10 | 0.21193 (10) | 0.05125 (6) | 0.36928 (12) | 0.0295 (3) | |
C11 | 0.14170 (11) | 0.01560 (6) | 0.32724 (14) | 0.0343 (4) | |
H11A | 0.1111 | 0.0063 | 0.2491 | 0.041* | |
C12 | 0.11801 (12) | −0.00584 (6) | 0.40292 (15) | 0.0401 (4) | |
H12A | 0.0717 | −0.0308 | 0.3765 | 0.048* | |
C13 | 0.16061 (13) | 0.00841 (7) | 0.51697 (15) | 0.0411 (4) | |
H13A | 0.1427 | −0.0070 | 0.5667 | 0.049* | |
C14 | 0.22856 (12) | 0.04466 (6) | 0.55934 (14) | 0.0371 (4) | |
H14A | 0.2566 | 0.0546 | 0.6369 | 0.044* | |
C15 | 0.25479 (10) | 0.06624 (6) | 0.48518 (12) | 0.0294 (4) | |
C16 | 0.31566 (10) | 0.10753 (6) | 0.49800 (12) | 0.0272 (3) | |
C17 | 0.36934 (9) | 0.18587 (6) | 0.54540 (11) | 0.0250 (3) | |
C18 | 0.37682 (9) | 0.23457 (6) | 0.59076 (11) | 0.0256 (3) | |
C19 | 0.38193 (9) | 0.25146 (6) | 0.69168 (12) | 0.0290 (4) | |
H19A | 0.3810 | 0.2296 | 0.7459 | 0.035* | |
C20 | 0.38842 (10) | 0.30100 (6) | 0.70979 (13) | 0.0320 (4) | |
H20A | 0.3938 | 0.3133 | 0.7788 | 0.038* | |
C21 | 0.38732 (10) | 0.33359 (6) | 0.62963 (13) | 0.0333 (4) | |
H21A | 0.3933 | 0.3674 | 0.6459 | 0.040* | |
C22 | 0.37760 (9) | 0.31749 (6) | 0.52658 (13) | 0.0309 (4) | |
H22A | 0.3741 | 0.3398 | 0.4707 | 0.037* | |
C23 | 0.37317 (9) | 0.26767 (6) | 0.50768 (11) | 0.0257 (3) | |
C24 | 0.36076 (9) | 0.23903 (6) | 0.41071 (12) | 0.0244 (3) | |
C25 | 0.54079 (9) | 0.12725 (6) | 0.46227 (12) | 0.0252 (3) | |
C26 | 0.61048 (10) | 0.11309 (6) | 0.43571 (12) | 0.0280 (3) | |
H26A | 0.5952 | 0.1096 | 0.3582 | 0.034* | |
C27 | 0.70191 (10) | 0.10419 (6) | 0.52242 (12) | 0.0286 (3) | |
H27A | 0.7487 | 0.0937 | 0.5042 | 0.034* | |
C28 | 0.72545 (10) | 0.11047 (6) | 0.63614 (12) | 0.0275 (3) | |
C29 | 0.65582 (11) | 0.12432 (6) | 0.66259 (13) | 0.0316 (4) | |
H29A | 0.6715 | 0.1285 | 0.7401 | 0.038* | |
C30 | 0.56400 (10) | 0.13197 (6) | 0.57646 (12) | 0.0306 (4) | |
H30A | 0.5165 | 0.1405 | 0.5951 | 0.037* | |
C31 | 0.82104 (11) | 0.10284 (6) | 0.72633 (13) | 0.0308 (4) | |
B1 | 0.36726 (11) | 0.15027 (7) | 0.37081 (13) | 0.0256 (4) |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0217 (5) | 0.0396 (7) | 0.0226 (5) | 0.0049 (4) | 0.0102 (4) | 0.0000 (4) |
N1 | 0.0231 (6) | 0.0279 (8) | 0.0215 (6) | 0.0008 (5) | 0.0115 (5) | −0.0012 (5) |
N2 | 0.0302 (6) | 0.0288 (8) | 0.0261 (6) | 0.0013 (5) | 0.0150 (5) | −0.0032 (5) |
N3 | 0.0261 (6) | 0.0270 (7) | 0.0226 (6) | 0.0028 (5) | 0.0124 (5) | −0.0001 (5) |
N4 | 0.0241 (6) | 0.0323 (8) | 0.0236 (6) | 0.0010 (5) | 0.0111 (5) | −0.0002 (5) |
N5 | 0.0199 (5) | 0.0293 (8) | 0.0206 (6) | 0.0001 (5) | 0.0096 (5) | −0.0011 (5) |
N6 | 0.0215 (6) | 0.0315 (8) | 0.0245 (6) | −0.0016 (5) | 0.0118 (5) | −0.0011 (5) |
N7 | 0.0293 (7) | 0.0455 (10) | 0.0408 (8) | 0.0011 (6) | 0.0085 (7) | −0.0024 (7) |
C1 | 0.0202 (7) | 0.0311 (9) | 0.0247 (7) | 0.0004 (6) | 0.0132 (6) | 0.0009 (6) |
C2 | 0.0210 (7) | 0.0342 (9) | 0.0207 (7) | 0.0003 (6) | 0.0118 (6) | −0.0003 (6) |
C3 | 0.0263 (7) | 0.0321 (9) | 0.0267 (7) | 0.0005 (6) | 0.0148 (6) | 0.0001 (6) |
C4 | 0.0284 (8) | 0.0426 (11) | 0.0246 (7) | 0.0067 (7) | 0.0130 (6) | 0.0051 (7) |
C5 | 0.0241 (7) | 0.0480 (11) | 0.0218 (7) | 0.0025 (7) | 0.0086 (6) | −0.0022 (7) |
C6 | 0.0259 (7) | 0.0362 (10) | 0.0240 (7) | 0.0006 (6) | 0.0126 (6) | −0.0041 (6) |
C7 | 0.0238 (7) | 0.0320 (9) | 0.0223 (7) | 0.0020 (6) | 0.0139 (6) | −0.0027 (6) |
C8 | 0.0235 (7) | 0.0296 (9) | 0.0225 (7) | 0.0006 (6) | 0.0130 (6) | −0.0045 (6) |
C9 | 0.0290 (7) | 0.0254 (9) | 0.0270 (7) | 0.0025 (6) | 0.0151 (6) | −0.0027 (6) |
C10 | 0.0334 (8) | 0.0272 (9) | 0.0311 (8) | 0.0034 (6) | 0.0183 (7) | −0.0004 (6) |
C11 | 0.0360 (8) | 0.0312 (10) | 0.0364 (9) | 0.0013 (7) | 0.0183 (7) | −0.0005 (7) |
C12 | 0.0448 (10) | 0.0310 (10) | 0.0494 (10) | −0.0049 (7) | 0.0270 (8) | 0.0001 (8) |
C13 | 0.0520 (10) | 0.0345 (11) | 0.0458 (10) | −0.0010 (8) | 0.0310 (9) | 0.0073 (8) |
C14 | 0.0452 (9) | 0.0367 (11) | 0.0341 (8) | −0.0003 (8) | 0.0231 (8) | 0.0027 (7) |
C15 | 0.0309 (8) | 0.0292 (9) | 0.0297 (8) | 0.0038 (6) | 0.0160 (7) | 0.0020 (6) |
C16 | 0.0264 (7) | 0.0329 (9) | 0.0229 (7) | 0.0037 (6) | 0.0127 (6) | 0.0013 (6) |
C17 | 0.0183 (6) | 0.0356 (10) | 0.0204 (7) | 0.0022 (6) | 0.0089 (6) | −0.0005 (6) |
C18 | 0.0168 (6) | 0.0345 (9) | 0.0246 (7) | 0.0004 (6) | 0.0096 (6) | −0.0032 (6) |
C19 | 0.0198 (7) | 0.0419 (10) | 0.0267 (8) | 0.0002 (6) | 0.0124 (6) | −0.0041 (7) |
C20 | 0.0217 (7) | 0.0444 (11) | 0.0312 (8) | 0.0017 (6) | 0.0141 (6) | −0.0102 (7) |
C21 | 0.0233 (7) | 0.0345 (10) | 0.0379 (9) | 0.0020 (6) | 0.0117 (7) | −0.0099 (7) |
C22 | 0.0227 (7) | 0.0337 (10) | 0.0321 (8) | 0.0013 (6) | 0.0103 (6) | −0.0024 (7) |
C23 | 0.0173 (6) | 0.0329 (9) | 0.0246 (7) | −0.0006 (6) | 0.0084 (6) | −0.0041 (6) |
C24 | 0.0173 (6) | 0.0306 (9) | 0.0248 (7) | −0.0006 (6) | 0.0100 (6) | −0.0011 (6) |
C25 | 0.0218 (7) | 0.0288 (9) | 0.0246 (7) | 0.0022 (6) | 0.0111 (6) | 0.0031 (6) |
C26 | 0.0278 (7) | 0.0336 (10) | 0.0255 (7) | 0.0010 (6) | 0.0152 (6) | 0.0004 (6) |
C27 | 0.0242 (7) | 0.0338 (10) | 0.0311 (8) | 0.0006 (6) | 0.0160 (6) | 0.0013 (6) |
C28 | 0.0237 (7) | 0.0283 (9) | 0.0277 (8) | 0.0012 (6) | 0.0104 (6) | 0.0015 (6) |
C29 | 0.0319 (8) | 0.0380 (10) | 0.0238 (8) | 0.0063 (7) | 0.0128 (7) | 0.0005 (6) |
C30 | 0.0269 (7) | 0.0419 (10) | 0.0253 (8) | 0.0082 (7) | 0.0146 (6) | 0.0024 (7) |
C31 | 0.0292 (8) | 0.0309 (10) | 0.0299 (8) | −0.0009 (6) | 0.0127 (7) | −0.0023 (7) |
B1 | 0.0237 (8) | 0.0300 (10) | 0.0233 (8) | 0.0033 (7) | 0.0117 (7) | −0.0013 (7) |
O1—C25 | 1.3593 (16) | C11—C12 | 1.384 (2) |
O1—B1 | 1.4544 (18) | C11—H11A | 0.9500 |
N1—C1 | 1.362 (2) | C12—C13 | 1.393 (2) |
N1—C8 | 1.3718 (18) | C12—H12A | 0.9500 |
N1—B1 | 1.4995 (19) | C13—C14 | 1.385 (2) |
N2—C8 | 1.340 (2) | C13—H13A | 0.9500 |
N2—C9 | 1.3458 (18) | C14—C15 | 1.394 (2) |
N3—C9 | 1.3706 (18) | C14—H14A | 0.9500 |
N3—C16 | 1.3744 (18) | C15—C16 | 1.459 (2) |
N3—B1 | 1.499 (2) | C17—C18 | 1.452 (2) |
N4—C16 | 1.342 (2) | C18—C19 | 1.397 (2) |
N4—C17 | 1.348 (2) | C18—C23 | 1.419 (2) |
N5—C24 | 1.3658 (19) | C19—C20 | 1.379 (2) |
N5—C17 | 1.3726 (18) | C19—H19A | 0.9500 |
N5—B1 | 1.496 (2) | C20—C21 | 1.395 (2) |
N6—C24 | 1.3473 (18) | C20—H20A | 0.9500 |
N6—C1 | 1.3510 (19) | C21—C22 | 1.387 (2) |
N7—C31 | 1.1476 (19) | C21—H21A | 0.9500 |
C1—C2 | 1.4553 (18) | C22—C23 | 1.389 (2) |
C2—C3 | 1.401 (2) | C22—H22A | 0.9500 |
C2—C7 | 1.415 (2) | C23—C24 | 1.450 (2) |
C3—C4 | 1.384 (2) | C25—C30 | 1.395 (2) |
C3—H3A | 0.9500 | C25—C26 | 1.398 (2) |
C4—C5 | 1.395 (2) | C26—C27 | 1.386 (2) |
C4—H4A | 0.9500 | C26—H26A | 0.9500 |
C5—C6 | 1.380 (2) | C27—C28 | 1.392 (2) |
C5—H5A | 0.9500 | C27—H27A | 0.9500 |
C6—C7 | 1.3969 (19) | C28—C29 | 1.394 (2) |
C6—H6A | 0.9500 | C28—C31 | 1.440 (2) |
C7—C8 | 1.456 (2) | C29—C30 | 1.382 (2) |
C9—C10 | 1.455 (2) | C29—H29A | 0.9500 |
C10—C11 | 1.396 (2) | C30—H30A | 0.9500 |
C10—C15 | 1.420 (2) | ||
C25—O1—B1 | 128.89 (11) | C14—C15—C10 | 120.23 (14) |
C1—N1—C8 | 112.80 (11) | C14—C15—C16 | 132.36 (15) |
C1—N1—B1 | 122.86 (12) | C10—C15—C16 | 107.11 (13) |
C8—N1—B1 | 122.55 (13) | N4—C16—N3 | 122.43 (14) |
C8—N2—C9 | 117.12 (12) | N4—C16—C15 | 129.92 (14) |
C9—N3—C16 | 112.27 (12) | N3—C16—C15 | 105.78 (13) |
C9—N3—B1 | 122.45 (12) | N4—C17—N5 | 122.68 (13) |
C16—N3—B1 | 123.54 (12) | N4—C17—C18 | 130.99 (13) |
C16—N4—C17 | 117.12 (13) | N5—C17—C18 | 105.44 (13) |
C24—N5—C17 | 112.54 (12) | C19—C18—C23 | 120.65 (15) |
C24—N5—B1 | 122.79 (12) | C19—C18—C17 | 131.87 (15) |
C17—N5—B1 | 123.46 (13) | C23—C18—C17 | 107.41 (12) |
C24—N6—C1 | 116.35 (13) | C20—C19—C18 | 117.58 (15) |
N6—C1—N1 | 123.02 (12) | C20—C19—H19A | 121.2 |
N6—C1—C2 | 129.00 (14) | C18—C19—H19A | 121.2 |
N1—C1—C2 | 106.01 (12) | C19—C20—C21 | 121.86 (14) |
C3—C2—C7 | 120.47 (13) | C19—C20—H20A | 119.1 |
C3—C2—C1 | 131.80 (14) | C21—C20—H20A | 119.1 |
C7—C2—C1 | 107.24 (13) | C22—C21—C20 | 121.19 (16) |
C4—C3—C2 | 117.71 (15) | C22—C21—H21A | 119.4 |
C4—C3—H3A | 121.1 | C20—C21—H21A | 119.4 |
C2—C3—H3A | 121.1 | C21—C22—C23 | 117.89 (15) |
C3—C4—C5 | 121.48 (15) | C21—C22—H22A | 121.1 |
C3—C4—H4A | 119.3 | C23—C22—H22A | 121.1 |
C5—C4—H4A | 119.3 | C22—C23—C18 | 120.72 (13) |
C6—C5—C4 | 121.73 (14) | C22—C23—C24 | 132.25 (14) |
C6—C5—H5A | 119.1 | C18—C23—C24 | 106.98 (14) |
C4—C5—H5A | 119.1 | N6—C24—N5 | 122.53 (13) |
C5—C6—C7 | 117.60 (15) | N6—C24—C23 | 129.70 (14) |
C5—C6—H6A | 121.2 | N5—C24—C23 | 105.88 (12) |
C7—C6—H6A | 121.2 | O1—C25—C30 | 124.84 (13) |
C6—C7—C2 | 120.97 (13) | O1—C25—C26 | 115.73 (12) |
C6—C7—C8 | 131.24 (15) | C30—C25—C26 | 119.42 (13) |
C2—C7—C8 | 107.23 (12) | C27—C26—C25 | 120.06 (13) |
N2—C8—N1 | 123.06 (13) | C27—C26—H26A | 120.0 |
N2—C8—C7 | 129.22 (13) | C25—C26—H26A | 120.0 |
N1—C8—C7 | 105.76 (13) | C26—C27—C28 | 120.29 (14) |
N2—C9—N3 | 122.72 (14) | C26—C27—H27A | 119.9 |
N2—C9—C10 | 128.97 (13) | C28—C27—H27A | 119.9 |
N3—C9—C10 | 106.04 (12) | C27—C28—C29 | 119.60 (13) |
C11—C10—C15 | 120.73 (14) | C27—C28—C31 | 120.48 (13) |
C11—C10—C9 | 131.58 (14) | C29—C28—C31 | 119.91 (14) |
C15—C10—C9 | 107.20 (13) | C30—C29—C28 | 120.25 (14) |
C12—C11—C10 | 117.94 (15) | C30—C29—H29A | 119.9 |
C12—C11—H11A | 121.0 | C28—C29—H29A | 119.9 |
C10—C11—H11A | 121.0 | C29—C30—C25 | 120.32 (14) |
C11—C12—C13 | 121.46 (16) | C29—C30—H30A | 119.8 |
C11—C12—H12A | 119.3 | C25—C30—H30A | 119.8 |
C13—C12—H12A | 119.3 | N7—C31—C28 | 179.29 (19) |
C14—C13—C12 | 121.33 (16) | O1—B1—N5 | 117.99 (12) |
C14—C13—H13A | 119.3 | O1—B1—N3 | 116.79 (13) |
C12—C13—H13A | 119.3 | N5—B1—N3 | 104.14 (12) |
C13—C14—C15 | 118.27 (15) | O1—B1—N1 | 107.91 (12) |
C13—C14—H14A | 120.9 | N5—B1—N1 | 103.72 (12) |
C15—C14—H14A | 120.9 | N3—B1—N1 | 104.83 (12) |
Cg1, Cg2 and Cg3 are the centroids of the C25–C30, N1/C1/C2/C7/C8 and N3/C9/C10/C15/C19 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cg1i | 0.95 | 2.70 | 3.499 (3) | 143 |
C20—H20A···Cg2ii | 0.95 | 2.59 | 3.254 (4) | 127 |
C21—H21A···Cg3ii | 0.95 | 2.70 | 3.238 (4) | 116 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, −y+1/2, −z+1. |
Experimental details
Crystal data | |
Chemical formula | C31H16BN7O |
Mr | 513.32 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 150 |
a, b, c (Å) | 16.2310 (3), 27.5129 (7), 13.4385 (2) |
β (°) | 119.4050 (12) |
V (Å3) | 5228.00 (18) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.08 |
Crystal size (mm) | 0.40 × 0.30 × 0.12 |
Data collection | |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | Multi-scan (SORTAV; Blessing, 1995) |
Tmin, Tmax | 0.711, 0.994 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 21404, 5914, 4290 |
Rint | 0.087 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.049, 0.141, 1.06 |
No. of reflections | 5914 |
No. of parameters | 361 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.26 |
Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and Mercury (Macrae et al., 2008).
Cg1, Cg2 and Cg3 are the centroids of the C25–C30, N1/C1/C2/C7/C8 and N3/C9/C10/C15/C19 rings, respectively. |
D—H···A | D—H | H···A | D···A | D—H···A |
C3—H3A···Cg1i | 0.95 | 2.70 | 3.499 (3) | 143 |
C20—H20A···Cg2ii | 0.95 | 2.59 | 3.254 (4) | 127 |
C21—H21A···Cg3ii | 0.95 | 2.70 | 3.238 (4) | 116 |
Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1/2, −y+1/2, −z+1. |
Footnotes
†Electron-withdrawing groups in the para position of the phenoxy molecular fragment. Part 3. For Part 1, see: Paton et al. (2010b); for Part 2, see: Paton et al. (2011).
Acknowledgements
We wish to acknowledge funding for this research from the Natural Sciences and Engineering Research Council (NSERC) of Canada.
References
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435. CrossRef Web of Science IUCr Journals Google Scholar
Athimoolam, S., Kumar, J., Ramakrishnan, V. & Rajaram, R. K. (2005). Acta Cryst. E61, m2014–m2017. Web of Science CSD CrossRef IUCr Journals Google Scholar
Blessing, R. H. (1995). Acta Cryst. A51, 33–38. CrossRef CAS Web of Science IUCr Journals Google Scholar
Claessens, C. G., González-Rodríguez, D., del Rey, B. & Torres, T. (2002). Chem. Rev. 102, 835–853. Web of Science CrossRef PubMed CAS Google Scholar
Claessens, C. G., González-Rodríguez, D., del Rey, B., Torres, T., Mark, G., Schuchmann, H.-P., von Sonntag, C., MacDonald, J. G. & Nohr, R. S. (2003). Eur. J. Org. Chem. pp. 2547–2551. Web of Science CrossRef Google Scholar
Cox, P. J., Kumarasamy, Y., Nahar, L., Sarker, S. D. & Shoeb, M. (2003). Acta Cryst. E59, o975–o977. Web of Science CSD CrossRef IUCr Journals Google Scholar
Gommans, H., Aernouts, T., Verreet, B., Heremans, P., Medina, A., Claessens, C. G. & Torres, T. (2009). Adv. Funct. Mater. 19, 3435–3439. Web of Science CrossRef CAS Google Scholar
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470. Web of Science CrossRef CAS IUCr Journals Google Scholar
Mohamed, A. A., Krause Bauer, J. A., Bruce, A. E. & Bruce, M. R. M. (2003). Acta Cryst. C59, m84–m86. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
Morse, G. E., Helander, M. G., Maka, J. F., Lu, Z. H. & Bender, T. P. (2010). Appl. Mater. Inter. 2, 1934–1944. Web of Science CSD CrossRef CAS Google Scholar
Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands. Google Scholar
Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press. Google Scholar
Paton, A. S., Lough, A. J. & Bender, T. P. (2010). Acta Cryst. E66, o3246. Web of Science CSD CrossRef IUCr Journals Google Scholar
Paton, A. S., Lough, A. J. & Bender, T. P. (2011a). Acta Cryst. E67, o57. Web of Science CrossRef IUCr Journals Google Scholar
Paton, A. S., Morse, G. E., Lough, A. J. & Bender, T. P. (2011b). CrystEngComm, 13, 914–919. Web of Science CSD CrossRef CAS Google Scholar
Potz, R., Goldner, M., Huckstadt, H., Cornelissen, U., Tutass, A. & Homborg, H. (2000). Z. Anorg. Allg. Chem. 626, 588–596. CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Stähler, R., Näther, C. & Bensch, W. (2001). Acta Cryst. C57, 26–27. Web of Science CSD CrossRef IUCr Journals Google Scholar
Zyskowski, C. D. & Kennedy, V. O. (2000). J. Porphyrins Phthalocyanins, pp. 707–712. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
We report the crystal structure of 4-cyanophenoxy-boronsubphthalocyanine (CNPhO-BsubPc), which possesses an electron withdrawing group in the para position of the phenoxy molecular fragment. We have recently reported a study of the crystal structures of a series of para-substituted phenoxy-BsubPc wherein most of the substituents were electron-donating alkyl groups (Paton et al., 2011b). Contained within that study was 4-fluorophenoxy-BsubPc (FPhO-BsubPc). While fluorine is moderately electron withdrawing we did not observe any difference in its crystal structure compared to the baseline phenoxy-BsubPc structure which contains pairs of molecules associated through π-stacking via the concave faces of two BsubPc molecules related by inversion centers. We have also have reported two BsubPc derivatives with electron-withdrawing groups in the para position, 4-acetylphenoxy-BsubPc (Paton et al., 2010) and 4-nitrophenoxy-BsubPc (Paton et al., 2011a). Both of these compounds are similar in structure to the FPhO-BsubPc, which typifies the substituted phenoxy-BsubPc packing motif.
The molecular structure of the title compound is shown in Fig. 1. The molecule shows the expected bowl shape of the BsubPc ligand. The B—O—C angle is 128.89 (11)°; however, both experimental and computational gas-phase values of B—O—C angles for phenoxy-derivatized BsubPc compounds have been shown to be significantly smaller, at 115.2 (2)° for the typical FPhO-BsubPc, and around 115° for the computationally determined gas-phase value (Paton et al., 2011b). The torsion angle between the boron, oxygen, and the first two carbon atoms on the phenoxy substituent (B—O—C—C) is -1.9 (3)° while in FPhO-BsubPc it is -91.0 (2)°.
In the crystal structure, there are π···π interactions between the concave faces of pairs of molecules at a distance of 3.6002 (10) Å across an inversion centre (for rings N5/C17/C18/C23/C24 and C18—C23 related by 1/2-x, 1/2-y, 1-z). These types of π···π stacking interactions are common to other BsubPc derivatives mentioned above. In the crystal structure the title compound, additional weaker π···π-stacking interactions between inversion related pairs at a distance of 3.8587 (9) Å involving rings C18—C23 and C18—C23 related by 1-x, y, 3/2-z, form one-dimensional chains along [101].
Solvent voids are present in the structure (see experimental). The channel-like voids in which the solvent resides extend along the c axis (see Fig. 3) and are bordered by the convex-faces of the BsubPc fragment and the cyanophenoxy units. Diffusing heptane into a solution of the title compound in acetone, instead of heptane into a benzene solution as in the current experiment, gave the same crystal structure in terms of unit-cell parameters, cell volume, and solvent cavity volume.