organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[(1R,3S)-6,7-Dimeth­­oxy-1-phenyl-1,2,3,4-tetra­hydro­isoquinolin-3-yl]methanol 2.33-hydrate

aSchool of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa, and bSchool of Pharmacy and Pharmacology, University of KwaZulu-Natal, Durban, South Africa
*Correspondence e-mail: maguireg@ukzn.ac.za

(Received 27 January 2011; accepted 17 February 2011; online 23 February 2011)

The title compound, C18H21NO3·2.33H2O, is the fourth reported member in a series of (1R,3S)-6,7-dimeth­oxy-1-phenyl-1,2,3,4-tetra­hydro­isoquinoline derivatives used in catalysis as ligands (or their precursors). The N-heterocycle in the structure adopts a half-chair conformation. The dihedral angle between the benzene rings is 77.29 (13)°. There are three ill-resolved water molecules of crystallization in the structure (one of them rotationally disordered about a threefold axis) involved in short contacts probably due to hydrogen bonding.

Related literature

For the synthesis of the ligand, see: Chakka et al. (2009[Chakka, S. K., Andersson, P. G., Maguire, G. E. M., Hendrik, G. & Govender, T. (2009). Eur. J. Org. Chem. pp. 972-980.]). For the Henry reaction, see: Kawthekar et al. (2010[Kawthekar, R. B., Chakka, S. K., Francis, V., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 846-852.]). For similar structures, see: Naicker et al. (2009[Naicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278.], 2010a[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010a). Acta Cryst. E66, o638.],b[Naicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010b). Acta Cryst. E66, o3105.]); Chakka et al. (2010[Chakka, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o1818.]).

[Scheme 1]

Experimental

Crystal data
  • C18H21NO3·2.33H2O

  • Mr = 341.39

  • Trigonal, R 3

  • a = 27.950 (2) Å

  • c = 5.8035 (5) Å

  • V = 3926 (2) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.13 × 0.12 × 0.09 mm

Data collection
  • Bruker Kappa DUO APEXII CCD diffractometer

  • 10224 measured reflections

  • 4340 independent reflections

  • 3707 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.162

  • S = 1.06

  • 4340 reflections

  • 226 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.60 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O1W 0.99 (4) 1.95 (4) 2.917 (6) 164 (5)

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Heterocyclic rings play key roles in a number of areas of organic and inorganic chemistry. As part of an ongoing study employing (1R,3S)-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline based metal complexes as catalysts in asymmetric hydride transfer reactions (Chakka et al., 2009) and the Henry reaction (Kawthekar et al., 2010) we synthesized the title compound. The absolute sterochemistry of the diastereomer was confirmed by NMR studies as R,S at C1 and C9. The primary alcohol group displays hydrogen bonding (O3—H3O···O1W)(2.917 (6) A) (Fig 1.).

The first (1R,3S)-6,7-dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinoline structure we reported (Naicker et al., 2009) had an ester functionality at the C9 position and its N-heterocycle revealed a half boat conformation. For the title compound the N-heterocycle adopts a half chair conformation, as it does in the remaining two related structures that we have communicated (Naicker et al., 2010a; Naicker et al., 2010b).

There are in the structure of the title compound a number of short O···O contacts involving the crystal water molecules (one of them, O1W, rotationally disordered on a three fold axis), probably due to hydrogen bonding but which could not be considered in detail because of the impossibility to find the water H atoms.

Related literature top

For the synthesis of the ligand, see: Chakka et al. (2009). For the Henry reaction, see: Kawthekar et al. (2010). For similar structures, see: Naicker et al. (2009, 2010a,b); Chakka et al. (2010).

Experimental top

A solution of amino ester (0.5 g, 1.5 mmol) in dry THF (20 ml) (Chakka et al., 2009) was added dropwise to a suspension of LiAlH4 (0.18, 4.5 mmol) in dry THF (20 ml) under N2 atmosphere at 0 °C. The mixture was stirred at 0 °C for 2 h, and the reaction was monitored with TLC in hexane/ethyl acetate (50/50, Rf = 1/2). Excess lithium aluminium hydride was quenched with saturated sodium sulfate solution at 0 °C. The reaction mixture was filtered and the solid was washed with THF (20 ml). The solvent was evaporated to dryness, ethyl acetate (20 ml) was added, washed with water (2 × 5 ml), the organic layer was separated and dried over anhydrous MgSO4 to afford the crude amino alcohol. This was purified by gradient column chromatography; solvent A: 10:90 saturated ammonia in MeOH:DCM and solvent B: 2:98 MeOH:DCM to yield 0.33 g (70% yield) of the pale yellow target compound. m.p.= 388–390 K Crystals apt for x-ray diffraction were grown in methanol, at room temperature. The water molecules in the crystal were probably due to contamination of the solvent.

Refinement top

There is one main molecule and two and one-third water molecules in the asymmetric unit. Water molecule O1W is disordered on a site of higher rotational (threefold) symmetry than its own (twofold). It has accordingly a high temperature factor (Uiso = 0.0959), for what it was refined isotropically. All hydrogen atoms attached to carbon were positioned geometrically with C—H = 0.95 - 1.00 Å and refined as riding on their parent atoms. The hydrogen atoms H3O and H1N were located in a difference electron density map and refined with simple bond length constraints. In all cases Uiso (H) = 1.2 - 1.5 Ueq (Host). In spite of the low temperature data, the hydrogen atoms on the three water molecules could not be found and therefore were excluded from the final model.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing numbering scheme. All non-hydrogen atoms except O1W are shown as ellipsoids with probability level of 30%.
[(1R,3S)-6,7-Dimethoxy-1-phenyl-1,2,3,4-tetrahydroisoquinolin- 3-yl]methanol 2.33-hydrate top
Crystal data top
C18H21NO3·2.33H2ODx = 1.299 Mg m3
Mr = 341.39Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 10224 reflections
Hall symbol: R 3θ = 2.5–28.3°
a = 27.950 (2) ŵ = 0.10 mm1
c = 5.8035 (5) ÅT = 173 K
V = 3926 (2) Å3Needle, colourless
Z = 90.13 × 0.12 × 0.09 mm
F(000) = 1650
Data collection top
Bruker Kappa DUO APEXII CCD
diffractometer
3707 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.022
Graphite monochromatorθmax = 28.3°, θmin = 2.5°
0.5° ϕ scans and ωh = 3737
10224 measured reflectionsk = 3137
4340 independent reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0985P)2 + 2.1271P]
where P = (Fo2 + 2Fc2)/3
4340 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.60 e Å3
3 restraintsΔρmin = 0.30 e Å3
Crystal data top
C18H21NO3·2.33H2OZ = 9
Mr = 341.39Mo Kα radiation
Trigonal, R3µ = 0.10 mm1
a = 27.950 (2) ÅT = 173 K
c = 5.8035 (5) Å0.13 × 0.12 × 0.09 mm
V = 3926 (2) Å3
Data collection top
Bruker Kappa DUO APEXII CCD
diffractometer
3707 reflections with I > 2σ(I)
10224 measured reflectionsRint = 0.022
4340 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0563 restraints
wR(F2) = 0.162H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.60 e Å3
4340 reflectionsΔρmin = 0.30 e Å3
226 parameters
Special details top

Experimental. Half sphere of data collected using SAINT strategy (Bruker, 2006). Crystal to detector distance = 50 mm; combination of ϕ and ω scans of 0.5°, 60 s per °, 2 iterations.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.91196 (8)0.15356 (9)0.2897 (4)0.0468 (5)
O20.95248 (8)0.22297 (9)0.6202 (3)0.0484 (5)
O30.67745 (12)0.27007 (15)0.4378 (6)0.0809 (9)
H3O0.675 (2)0.287 (2)0.291 (5)0.097*
O1W0.66670.33330.0620 (11)0.0959 (17)*
O2W0.82161 (9)0.36012 (8)0.0053 (3)0.0477 (5)
O3W0.76609 (13)0.41438 (12)0.0962 (6)0.0806 (8)
N10.75539 (10)0.24710 (8)0.1792 (4)0.0370 (5)
H1N0.7216 (8)0.2411 (13)0.108 (5)0.043*
C10.76741 (9)0.20211 (9)0.1292 (4)0.0285 (4)
H10.77850.20590.03660.034*
C20.81654 (9)0.20906 (9)0.2690 (4)0.0299 (4)
C30.84111 (9)0.17779 (10)0.2090 (4)0.0327 (5)
H30.82700.15290.08250.039*
C40.88544 (10)0.18267 (10)0.3311 (4)0.0348 (5)
C50.90748 (11)0.22030 (11)0.5167 (4)0.0369 (5)
C60.88280 (12)0.25024 (10)0.5776 (4)0.0375 (5)
H60.89690.27490.70450.045*
C70.83662 (10)0.24501 (9)0.4548 (4)0.0314 (5)
C80.81126 (12)0.27861 (10)0.5265 (4)0.0399 (6)
H8A0.83460.31710.47220.048*
H8B0.80960.27930.69680.048*
C90.75403 (13)0.25544 (11)0.4300 (4)0.0411 (6)
H90.72870.21930.50580.049*
C100.73288 (16)0.29565 (15)0.4714 (7)0.0594 (8)
H10A0.74170.31000.63100.071*
H10B0.75160.32740.36460.071*
C110.71644 (9)0.14513 (9)0.1564 (4)0.0280 (4)
C120.70780 (10)0.11199 (10)0.3506 (4)0.0337 (5)
H120.73430.12520.47150.040*
C130.66148 (12)0.06060 (11)0.3683 (5)0.0433 (6)
H130.65620.03870.50130.052*
C140.62243 (11)0.04056 (11)0.1934 (6)0.0463 (7)
H140.59090.00470.20510.056*
C150.62937 (11)0.07295 (11)0.0015 (5)0.0451 (6)
H150.60240.05970.11750.054*
C160.67646 (10)0.12540 (10)0.0156 (4)0.0374 (5)
H160.68110.14780.14640.045*
C170.88839 (12)0.11055 (14)0.1231 (6)0.0509 (7)
H17A0.91120.09310.10980.076*
H17B0.88680.12600.02640.076*
H17C0.85100.08290.17110.076*
C180.97424 (13)0.25805 (14)0.8174 (5)0.0533 (8)
H18A1.00640.25660.87590.080*
H18B0.94580.24550.93750.080*
H18C0.98540.29610.77380.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0351 (10)0.0572 (12)0.0562 (11)0.0292 (9)0.0095 (8)0.0163 (9)
O20.0420 (10)0.0542 (12)0.0480 (11)0.0233 (9)0.0183 (8)0.0117 (9)
O30.0626 (17)0.092 (2)0.095 (2)0.0430 (15)0.0005 (15)0.0043 (17)
O2W0.0541 (12)0.0409 (10)0.0489 (11)0.0243 (9)0.0054 (9)0.0036 (8)
O3W0.0695 (17)0.0625 (16)0.115 (2)0.0372 (14)0.0191 (16)0.0032 (15)
N10.0478 (12)0.0286 (10)0.0405 (11)0.0235 (9)0.0004 (9)0.0020 (8)
C10.0311 (11)0.0278 (10)0.0258 (9)0.0141 (9)0.0038 (8)0.0054 (8)
C20.0331 (11)0.0253 (10)0.0273 (10)0.0117 (9)0.0072 (8)0.0055 (8)
C30.0296 (11)0.0341 (11)0.0305 (11)0.0130 (9)0.0028 (8)0.0035 (8)
C40.0294 (11)0.0373 (12)0.0332 (11)0.0131 (10)0.0024 (9)0.0009 (9)
C50.0372 (12)0.0357 (12)0.0328 (11)0.0143 (10)0.0036 (9)0.0022 (9)
C60.0500 (14)0.0312 (11)0.0271 (10)0.0170 (11)0.0019 (10)0.0004 (9)
C70.0410 (12)0.0218 (10)0.0298 (10)0.0145 (9)0.0017 (9)0.0031 (8)
C80.0631 (17)0.0325 (12)0.0303 (11)0.0284 (12)0.0007 (11)0.0016 (9)
C90.0557 (16)0.0351 (12)0.0414 (13)0.0295 (12)0.0118 (11)0.0061 (10)
C100.063 (2)0.0548 (18)0.072 (2)0.0387 (17)0.0177 (16)0.0012 (15)
C110.0309 (11)0.0252 (10)0.0307 (10)0.0162 (9)0.0070 (8)0.0024 (8)
C120.0377 (12)0.0328 (11)0.0374 (12)0.0227 (10)0.0091 (9)0.0091 (9)
C130.0474 (14)0.0320 (12)0.0557 (15)0.0237 (11)0.0239 (12)0.0150 (11)
C140.0347 (13)0.0298 (12)0.0675 (18)0.0108 (10)0.0190 (13)0.0014 (11)
C150.0336 (12)0.0370 (13)0.0546 (16)0.0101 (11)0.0033 (11)0.0077 (11)
C160.0375 (12)0.0350 (12)0.0374 (12)0.0165 (10)0.0038 (10)0.0016 (10)
C170.0382 (14)0.0600 (17)0.0640 (19)0.0317 (14)0.0060 (12)0.0230 (14)
C180.0462 (16)0.0548 (17)0.0419 (14)0.0126 (13)0.0158 (12)0.0037 (12)
Geometric parameters (Å, º) top
O1—C41.368 (3)C8—H8B0.9900
O1—C171.422 (3)C9—C101.528 (4)
O2—C51.362 (3)C9—H91.0000
O2—C181.430 (3)C10—H10A0.9900
O3—C101.357 (5)C10—H10B0.9900
O3—H3O0.99 (4)C11—C161.390 (3)
N1—C91.477 (3)C11—C121.401 (3)
N1—C11.484 (3)C12—C131.375 (4)
N1—H1N0.97 (3)C12—H120.9500
C1—C21.521 (3)C13—C141.387 (5)
C1—C111.524 (3)C13—H130.9500
C1—H11.0000C14—C151.386 (4)
C2—C71.387 (3)C14—H140.9500
C2—C31.399 (3)C15—C161.401 (4)
C3—C41.374 (3)C15—H150.9500
C3—H30.9500C16—H160.9500
C4—C51.414 (3)C17—H17A0.9800
C5—C61.370 (4)C17—H17B0.9800
C6—C71.417 (4)C17—H17C0.9800
C6—H60.9500C18—H18A0.9800
C7—C81.491 (3)C18—H18B0.9800
C8—C91.502 (4)C18—H18C0.9800
C8—H8A0.9900
C4—O1—C17117.5 (2)N1—C9—H9109.6
C5—O2—C18117.1 (2)C8—C9—H9109.6
C10—O3—H3O102 (3)C10—C9—H9109.6
C9—N1—C1111.16 (18)O3—C10—C9110.5 (3)
C9—N1—H1N110 (2)O3—C10—H10A109.6
C1—N1—H1N112.6 (19)C9—C10—H10A109.6
N1—C1—C2111.10 (19)O3—C10—H10B109.6
N1—C1—C11112.09 (18)C9—C10—H10B109.6
C2—C1—C11113.00 (17)H10A—C10—H10B108.1
N1—C1—H1106.7C16—C11—C12118.5 (2)
C2—C1—H1106.7C16—C11—C1119.09 (19)
C11—C1—H1106.7C12—C11—C1122.4 (2)
C7—C2—C3119.9 (2)C13—C12—C11120.8 (3)
C7—C2—C1121.3 (2)C13—C12—H12119.6
C3—C2—C1118.74 (19)C11—C12—H12119.6
C4—C3—C2120.6 (2)C12—C13—C14120.5 (2)
C4—C3—H3119.7C12—C13—H13119.8
C2—C3—H3119.7C14—C13—H13119.8
O1—C4—C3125.5 (2)C15—C14—C13120.0 (2)
O1—C4—C5114.3 (2)C15—C14—H14120.0
C3—C4—C5120.2 (2)C13—C14—H14120.0
O2—C5—C6125.9 (2)C14—C15—C16119.5 (3)
O2—C5—C4115.1 (2)C14—C15—H15120.3
C6—C5—C4119.1 (2)C16—C15—H15120.3
C5—C6—C7121.2 (2)C11—C16—C15120.8 (2)
C5—C6—H6119.4C11—C16—H16119.6
C7—C6—H6119.4C15—C16—H16119.6
C2—C7—C6118.9 (2)O1—C17—H17A109.5
C2—C7—C8121.7 (2)O1—C17—H17B109.5
C6—C7—C8119.4 (2)H17A—C17—H17B109.5
C7—C8—C9111.3 (2)O1—C17—H17C109.5
C7—C8—H8A109.4H17A—C17—H17C109.5
C9—C8—H8A109.4H17B—C17—H17C109.5
C7—C8—H8B109.4O2—C18—H18A109.5
C9—C8—H8B109.4O2—C18—H18B109.5
H8A—C8—H8B108.0H18A—C18—H18B109.5
N1—C9—C8109.2 (2)O2—C18—H18C109.5
N1—C9—C10108.7 (2)H18A—C18—H18C109.5
C8—C9—C10110.2 (2)H18B—C18—H18C109.5
C9—N1—C1—C248.0 (3)C1—C2—C7—C80.1 (3)
C9—N1—C1—C1179.5 (3)C5—C6—C7—C20.4 (3)
N1—C1—C2—C714.4 (3)C5—C6—C7—C8179.7 (2)
C11—C1—C2—C7112.6 (2)C2—C7—C8—C918.5 (3)
N1—C1—C2—C3166.43 (19)C6—C7—C8—C9162.2 (2)
C11—C1—C2—C366.6 (3)C1—N1—C9—C868.4 (2)
C7—C2—C3—C40.6 (3)C1—N1—C9—C10171.4 (2)
C1—C2—C3—C4179.8 (2)C7—C8—C9—N151.1 (3)
C17—O1—C4—C37.1 (4)C7—C8—C9—C10170.5 (2)
C17—O1—C4—C5173.1 (3)N1—C9—C10—O375.4 (3)
C2—C3—C4—O1178.9 (2)C8—C9—C10—O3165.0 (3)
C2—C3—C4—C51.2 (4)N1—C1—C11—C1676.9 (3)
C18—O2—C5—C63.4 (4)C2—C1—C11—C16156.7 (2)
C18—O2—C5—C4176.4 (2)N1—C1—C11—C12102.1 (2)
O1—C4—C5—O22.0 (3)C2—C1—C11—C1224.3 (3)
C3—C4—C5—O2177.9 (2)C16—C11—C12—C131.5 (3)
O1—C4—C5—C6177.9 (2)C1—C11—C12—C13179.5 (2)
C3—C4—C5—C62.3 (4)C11—C12—C13—C140.1 (4)
O2—C5—C6—C7178.7 (2)C12—C13—C14—C151.5 (4)
C4—C5—C6—C71.5 (4)C13—C14—C15—C161.2 (4)
C3—C2—C7—C61.4 (3)C12—C11—C16—C151.8 (4)
C1—C2—C7—C6179.4 (2)C1—C11—C16—C15179.2 (2)
C3—C2—C7—C8179.2 (2)C14—C15—C16—C110.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1W0.99 (4)1.95 (4)2.917 (6)164 (5)

Experimental details

Crystal data
Chemical formulaC18H21NO3·2.33H2O
Mr341.39
Crystal system, space groupTrigonal, R3
Temperature (K)173
a, c (Å)27.950 (2), 5.8035 (5)
V3)3926 (2)
Z9
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.13 × 0.12 × 0.09
Data collection
DiffractometerBruker Kappa DUO APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10224, 4340, 3707
Rint0.022
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 1.06
No. of reflections4340
No. of parameters226
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.60, 0.30

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O1W0.99 (4)1.95 (4)2.917 (6)164 (5)
 

Acknowledgements

The authors would like to thank Dr Hong Su (University of Capetown) for the data collection and structure refinement.

References

First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakka, S. K., Andersson, P. G., Maguire, G. E. M., Hendrik, G. & Govender, T. (2009). Eur. J. Org. Chem. pp. 972–980.  Google Scholar
First citationChakka, S. K., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010). Acta Cryst. E66, o1818.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationKawthekar, R. B., Chakka, S. K., Francis, V., Andersson, P. G., Maguire, G. E. M., Kruger, H. G. & Govender, T. (2010). Tetrahedron Asymmetry, 21, 846–852.  Web of Science CrossRef CAS Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010a). Acta Cryst. E66, o638.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2010b). Acta Cryst. E66, o3105.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNaicker, T., McKay, M., Govender, T., Kruger, H. G. & Maguire, G. E. M. (2009). Acta Cryst. E65, o3278.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds