organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-{5-[(E)-(2-Fluoro­phen­yl)diazen­yl]-2-hy­dr­oxy­phen­yl}ethanone

aDepartment of Physics, Faculty of Arts and Sciences, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey, bSinop Faculty of Education, Sinop University, TR-57000 Sinop, Turkey, and cDepartment of Chemistry, Ondokuz Mayıs University, TR-55139 Kurupelit–Samsun, Turkey
*Correspondence e-mail: yserap@omu.edu.tr

(Received 20 January 2011; accepted 9 February 2011; online 16 February 2011)

Theere are two independent mol­ecules in the asymmetric unit of the title compound, C14H11FN2O2, each with a trans configuration with respect to the azo double bond. The dihedral angle between the aromatic rings is 17.21 (2)° in one mol­ecule and 19.06 (2)° in the other. Each of the independent mol­ecules has an intra­molecular O—H⋯O hydrogen bond. In the crystal, mol­ecules are stacked along [100].

Related literature

For general background to azo compounds, see: Catino & Farris (1985[Catino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, edited by D. H. Othmer, pp. 142-144. New York: John Wiley & Sons.]); Gregory (1991[Gregory, P. (1991). Colorants for High Technology. Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Open, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]); Deveci et al. (2005[Deveci, O., Işık, S., Albayrak, C. & Ağar, E. (2005). Acta Cryst. E61, o2878-o2879.]); Özdemir et al. (2006[Özdemir, G., Işık, S. I., Albayrak, C. & Ağar, E. (2006). Acta Cryst. E62, o342-o343.]); Albayrak et al. (2009[Albayrak, Ç., Gümrükçüoğlu, İ., Odabaşoğlu, M., İskeleli, N. O. & Ağar, E. (2009). J. Mol. Struct. 932, 43-54.]); Karabıyık et al. (2009[Karabıyık, H., Petek, H., İskeleli, N. O. & Albayrak, Ç. (2009). Struct. Chem. 20, 903-910.]); Yazıcı et al. (2011[Yazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2011). J. Mol. Struct. 985, 292-298.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11FN2O2

  • Mr = 258.25

  • Triclinic, [P \overline 1]

  • a = 6.7632 (3) Å

  • b = 12.5906 (6) Å

  • c = 13.8769 (6) Å

  • α = 85.641 (4)°

  • β = 89.337 (3)°

  • γ = 84.254 (4)°

  • V = 1172.31 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 150 K

  • 0.64 × 0.40 × 0.12 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED32; Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.941, Tmax = 0.987

  • 20279 measured reflections

  • 4870 independent reflections

  • 3825 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.104

  • S = 1.04

  • 4870 reflections

  • 351 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.26 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1A—H1A⋯O2A 0.91 (2) 1.68 (2) 2.5437 (12) 157 (2)
O1B—H1B⋯O2B 0.90 (2) 1.72 (2) 2.5395 (13) 150 (2)

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Azo dyes have been most widely used class of dyes due to its versatile applications in various fields, such as dyeing textile fibres, colouring different materials, plastics, biological-medical studies, electro-optical devices and ink-jet printers in high technology areas (Catino & Farris, 1985; Gregory, 1991).

The molecule of the title compound, with the atom numbering scheme, is shown in Fig. 1. The asymmetric unit contains two independent molecules (labelled A and B) with no significant differences in their structures. The conformations of the two molecules in the asymmetric unit are trans with respect to azo bridge. The dihedral angles between the aromatic rings are 17.21 (2)° for molecule A and 19.06 (2)° for molecule B. All bond lengths are in agreement with those reported for other azo compounds (Allen et al., 1987; Deveci et al., 2005; Özdemir et al., 2006; Albayrak et al., 2009; Karabıyık et al., 2009; Yazıcı et al., 2011). Each of the independent molecules has a strong intra-molecular O—H···O hydrogen bond which generates an S(6) ring motif. The crystal packing is stabilized by weak van der Waals interactions and molecules are stacked along crystallographic [100] direction.

Related literature top

For general background to azo compounds, see: Catino & Farris (1985); Gregory (1991). For bond-length data, see: Allen et al. (1987); Deveci et al. (2005); Özdemir et al. (2006); Albayrak et al. (2009); Karabıyık et al. (2009); Yazıcı et al. (2011).

Experimental top

A mixture of 2-fluoroaniline (0.86 g, 7.8 mmol), water (20 ml) and concentrated hydrochloric acid (1.97 ml, 23.4 mmol) was stirred until a clear solution was obtained. This solution was cooled down to 0–5 °C and a solution of sodium nitrite (0.75 g, 7.8 mmol) in water was added dropwise while the temperature was maintained below 5 °C. The resulting mixture was stirred for 30 min in an ice bath. 2-Hydroxyacetophenone (1.067 g, 7.8 mmol) solution (pH 9) was gradually added to a cooled solution of 2-fluorobenzenediazonium chloride, prepared as described above, and the resulting mixture was stirred at 0–5 °C for 2 h in an ice bath. The product was recrystallized from acetic acid to obtain solid (E)-2-acetyl-4-(2-fluorophenyldiazenyl)phenol. Crystals were obtained after one day by slow evaporation from benzene (yield 84%, m.p.= 414–416 K).

Refinement top

All C-bonded H atoms were placed in calculated positions and constrained to ride on their parents atoms, with C—H = 0.93–0.96 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C). Hydroxyl H atoms were found in a difference map and refined freely (coordinates and isotropic displacement parameters).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the asymmetric unit of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
1-{5-[(E)-(2-fluorophenyl)diazenyl]-2-hydroxyphenyl}ethanone top
Crystal data top
C14H11FN2O2Z = 4
Mr = 258.25F(000) = 536
Triclinic, P1Dx = 1.463 Mg m3
Hall symbol: -P 1Melting point: 414 K
a = 6.7632 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5906 (6) ÅCell parameters from 26377 reflections
c = 13.8769 (6) Åθ = 2.1–28.0°
α = 85.641 (4)°µ = 0.11 mm1
β = 89.337 (3)°T = 150 K
γ = 84.254 (4)°Prism, yellow
V = 1172.31 (9) Å30.64 × 0.40 × 0.12 mm
Data collection top
Stoe IPDS II
diffractometer
4870 independent reflections
Radiation source: fine-focus sealed tube3825 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
rotation method scansθmax = 26.5°, θmin = 2.1°
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
h = 88
Tmin = 0.941, Tmax = 0.987k = 1515
20279 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.063P)2 + 0.1104P]
where P = (Fo2 + 2Fc2)/3
4870 reflections(Δ/σ)max < 0.001
351 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
0 constraints
Crystal data top
C14H11FN2O2γ = 84.254 (4)°
Mr = 258.25V = 1172.31 (9) Å3
Triclinic, P1Z = 4
a = 6.7632 (3) ÅMo Kα radiation
b = 12.5906 (6) ŵ = 0.11 mm1
c = 13.8769 (6) ÅT = 150 K
α = 85.641 (4)°0.64 × 0.40 × 0.12 mm
β = 89.337 (3)°
Data collection top
Stoe IPDS II
diffractometer
4870 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
3825 reflections with I > 2σ(I)
Tmin = 0.941, Tmax = 0.987Rint = 0.034
20279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.20 e Å3
4870 reflectionsΔρmin = 0.26 e Å3
351 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C7B0.29323 (18)0.16314 (9)0.29768 (8)0.0257 (3)
C8B0.3302 (2)0.12570 (10)0.19883 (9)0.0330 (3)
H8G0.35810.04920.20330.049*
H8H0.44170.15790.17010.049*
H8I0.21460.14600.15960.049*
F1B0.19877 (12)0.84085 (6)0.20031 (5)0.0356 (2)
O1B0.23372 (14)0.24319 (8)0.48420 (6)0.0301 (2)
O2B0.30636 (15)0.09721 (7)0.36845 (6)0.0377 (2)
C1B0.18273 (16)0.46248 (9)0.24684 (8)0.0211 (2)
C2B0.15586 (17)0.49461 (9)0.34147 (8)0.0228 (2)
H2B0.12560.56670.35130.027*
C3B0.17401 (17)0.42033 (10)0.41916 (8)0.0248 (2)
H3B0.15730.44240.48150.030*
C4B0.21747 (17)0.31175 (9)0.40529 (8)0.0230 (2)
C5B0.24380 (16)0.27757 (9)0.31097 (8)0.0220 (2)
C6B0.22510 (16)0.35533 (9)0.23235 (8)0.0213 (2)
H6B0.24150.33420.16970.026*
C9B0.15918 (16)0.70366 (9)0.09673 (8)0.0207 (2)
C10B0.13857 (17)0.67548 (9)0.00216 (8)0.0232 (2)
H10B0.11980.60530.00890.028*
C11B0.14587 (18)0.75119 (10)0.07505 (8)0.0258 (3)
H11B0.13400.73130.13780.031*
C12B0.17078 (18)0.85670 (10)0.05954 (8)0.0264 (3)
H12B0.17640.90700.11190.032*
C13B0.18720 (18)0.88725 (9)0.03347 (9)0.0269 (3)
H13B0.20220.95790.04450.032*
C14B0.18075 (17)0.81039 (9)0.10957 (8)0.0241 (2)
N1B0.17444 (14)0.53478 (8)0.16294 (7)0.0216 (2)
N2B0.16196 (14)0.63179 (8)0.18110 (7)0.0223 (2)
H1A0.666 (3)0.8198 (18)0.0400 (15)0.068 (6)*
H1B0.264 (3)0.1779 (18)0.4624 (15)0.067 (6)*
C1A0.67173 (16)0.53945 (9)0.25268 (8)0.0211 (2)
C2A0.65490 (17)0.50686 (9)0.15876 (8)0.0231 (2)
H2A0.64720.43500.14960.028*
C3A0.64973 (17)0.58043 (10)0.08049 (8)0.0241 (2)
H3A0.63960.55810.01850.029*
C4A0.65968 (16)0.68882 (9)0.09347 (8)0.0224 (2)
C5A0.67659 (16)0.72345 (9)0.18736 (8)0.0219 (2)
C6A0.68203 (16)0.64637 (9)0.26628 (8)0.0212 (2)
H6A0.69270.66760.32860.025*
C7A0.69267 (17)0.83745 (9)0.19921 (8)0.0249 (3)
C8A0.7238 (2)0.87475 (10)0.29742 (9)0.0336 (3)
H8D0.73100.95070.29220.050*
H8E0.84550.83940.32410.050*
H8F0.61480.85800.33890.050*
C9A0.71928 (16)0.29896 (9)0.40370 (8)0.0209 (2)
C10A0.69207 (17)0.32845 (9)0.49868 (8)0.0239 (2)
H10A0.65580.39970.50990.029*
C11A0.71875 (18)0.25244 (10)0.57564 (8)0.0268 (3)
H11A0.70330.27310.63840.032*
C12A0.76851 (19)0.14535 (10)0.56014 (9)0.0282 (3)
H12A0.78630.09470.61250.034*
C13A0.79162 (19)0.11398 (10)0.46700 (9)0.0289 (3)
H13A0.82290.04230.45590.035*
C14A0.76734 (18)0.19117 (9)0.39089 (8)0.0256 (3)
F1A0.79319 (13)0.16003 (6)0.29986 (5)0.0370 (2)
N1A0.68463 (14)0.46776 (8)0.33713 (7)0.0217 (2)
N2A0.70257 (14)0.37066 (8)0.31933 (7)0.0220 (2)
O1A0.65338 (13)0.75669 (7)0.01410 (6)0.0286 (2)
O2A0.68122 (14)0.90317 (7)0.12833 (6)0.0340 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C7B0.0285 (6)0.0206 (6)0.0279 (6)0.0049 (4)0.0044 (5)0.0035 (5)
C8B0.0463 (8)0.0207 (6)0.0305 (6)0.0038 (5)0.0045 (5)0.0012 (5)
F1B0.0615 (5)0.0232 (4)0.0223 (4)0.0040 (3)0.0014 (3)0.0036 (3)
O1B0.0421 (5)0.0268 (5)0.0208 (4)0.0070 (4)0.0022 (3)0.0075 (3)
O2B0.0598 (7)0.0212 (5)0.0309 (5)0.0048 (4)0.0045 (4)0.0072 (4)
C1B0.0206 (5)0.0213 (6)0.0211 (5)0.0039 (4)0.0013 (4)0.0026 (4)
C2B0.0258 (6)0.0199 (5)0.0228 (5)0.0034 (4)0.0003 (4)0.0009 (4)
C3B0.0261 (6)0.0282 (6)0.0204 (5)0.0047 (5)0.0015 (4)0.0018 (4)
C4B0.0224 (6)0.0255 (6)0.0209 (5)0.0069 (4)0.0022 (4)0.0058 (4)
C5B0.0227 (6)0.0199 (6)0.0233 (5)0.0046 (4)0.0019 (4)0.0019 (4)
C6B0.0235 (6)0.0216 (6)0.0190 (5)0.0045 (4)0.0011 (4)0.0004 (4)
C9B0.0195 (5)0.0197 (6)0.0216 (5)0.0007 (4)0.0020 (4)0.0023 (4)
C10B0.0262 (6)0.0191 (5)0.0239 (5)0.0005 (4)0.0000 (4)0.0002 (4)
C11B0.0291 (6)0.0262 (6)0.0211 (5)0.0002 (5)0.0005 (4)0.0003 (4)
C12B0.0291 (6)0.0223 (6)0.0257 (6)0.0006 (5)0.0015 (4)0.0068 (4)
C13B0.0331 (7)0.0169 (6)0.0300 (6)0.0010 (4)0.0004 (5)0.0014 (5)
C14B0.0288 (6)0.0213 (6)0.0216 (5)0.0012 (4)0.0001 (4)0.0020 (4)
N1B0.0242 (5)0.0182 (5)0.0219 (5)0.0011 (4)0.0000 (4)0.0013 (4)
N2B0.0236 (5)0.0197 (5)0.0229 (5)0.0012 (4)0.0009 (4)0.0016 (4)
C1A0.0206 (5)0.0207 (5)0.0211 (5)0.0009 (4)0.0009 (4)0.0025 (4)
C2A0.0251 (6)0.0190 (5)0.0248 (6)0.0012 (4)0.0000 (4)0.0008 (4)
C3A0.0255 (6)0.0264 (6)0.0198 (5)0.0001 (4)0.0003 (4)0.0015 (4)
C4A0.0192 (6)0.0246 (6)0.0216 (5)0.0008 (4)0.0013 (4)0.0057 (4)
C5A0.0213 (6)0.0194 (6)0.0240 (5)0.0003 (4)0.0014 (4)0.0018 (4)
C6A0.0228 (6)0.0208 (6)0.0196 (5)0.0008 (4)0.0012 (4)0.0004 (4)
C7A0.0256 (6)0.0208 (6)0.0274 (6)0.0016 (4)0.0020 (4)0.0030 (5)
C8A0.0492 (8)0.0218 (6)0.0306 (7)0.0081 (5)0.0015 (5)0.0002 (5)
C9A0.0219 (6)0.0198 (5)0.0211 (5)0.0053 (4)0.0023 (4)0.0023 (4)
C10A0.0282 (6)0.0191 (6)0.0246 (6)0.0041 (4)0.0006 (4)0.0003 (4)
C11A0.0334 (7)0.0263 (6)0.0212 (5)0.0073 (5)0.0000 (5)0.0001 (5)
C12A0.0359 (7)0.0233 (6)0.0249 (6)0.0072 (5)0.0049 (5)0.0073 (5)
C13A0.0404 (7)0.0171 (6)0.0291 (6)0.0041 (5)0.0042 (5)0.0012 (5)
C14A0.0338 (7)0.0220 (6)0.0217 (6)0.0064 (5)0.0016 (4)0.0017 (4)
F1A0.0663 (6)0.0224 (4)0.0221 (4)0.0024 (3)0.0016 (3)0.0040 (3)
N1A0.0239 (5)0.0192 (5)0.0217 (5)0.0027 (4)0.0002 (4)0.0015 (4)
N2A0.0245 (5)0.0191 (5)0.0221 (5)0.0034 (4)0.0011 (4)0.0016 (4)
O1A0.0372 (5)0.0261 (5)0.0208 (4)0.0005 (4)0.0009 (3)0.0064 (3)
O2A0.0500 (6)0.0209 (4)0.0298 (5)0.0046 (4)0.0003 (4)0.0071 (4)
Geometric parameters (Å, º) top
C7B—O2B1.2348 (14)C1A—C6A1.3822 (16)
C7B—C5B1.4711 (16)C1A—C2A1.4051 (16)
C7B—C8B1.4944 (17)C1A—N1A1.4217 (14)
C8B—H8G0.9600C2A—C3A1.3712 (16)
C8B—H8H0.9600C2A—H2A0.9300
C8B—H8I0.9600C3A—C4A1.3984 (17)
F1B—C14B1.3542 (13)C3A—H3A0.9300
O1B—C4B1.3403 (13)C4A—O1A1.3400 (13)
O1B—H1B0.90 (2)C4A—C5A1.4144 (16)
C1B—C6B1.3802 (16)C5A—C6A1.4054 (15)
C1B—C2B1.4076 (15)C5A—C7A1.4719 (16)
C1B—N1B1.4203 (14)C6A—H6A0.9300
C2B—C3B1.3707 (16)C7A—O2A1.2341 (14)
C2B—H2B0.9300C7A—C8A1.4986 (17)
C3B—C4B1.3966 (17)C8A—H8D0.9600
C3B—H3B0.9300C8A—H8E0.9600
C4B—C5B1.4125 (16)C8A—H8F0.9600
C5B—C6B1.4074 (15)C9A—C14A1.3879 (16)
C6B—H6B0.9300C9A—C10A1.4015 (16)
C9B—C14B1.3911 (16)C9A—N2A1.4214 (14)
C9B—C10B1.3974 (15)C10A—C11A1.3796 (16)
C9B—N2B1.4234 (14)C10A—H10A0.9300
C10B—C11B1.3827 (16)C11A—C12A1.3889 (17)
C10B—H10B0.9300C11A—H11A0.9300
C11B—C12B1.3887 (17)C12A—C13A1.3825 (17)
C11B—H11B0.9300C12A—H12A0.9300
C12B—C13B1.3833 (17)C13A—C14A1.3795 (16)
C12B—H12B0.9300C13A—H13A0.9300
C13B—C14B1.3804 (16)C14A—F1A1.3551 (13)
C13B—H13B0.9300N1A—N2A1.2593 (14)
N1B—N2B1.2603 (14)O1A—H1A0.91 (2)
O2B—C7B—C5B120.13 (11)C6A—C1A—C2A119.80 (10)
O2B—C7B—C8B119.40 (11)C6A—C1A—N1A116.42 (10)
C5B—C7B—C8B120.47 (10)C2A—C1A—N1A123.76 (10)
C7B—C8B—H8G109.5C3A—C2A—C1A120.38 (11)
C7B—C8B—H8H109.5C3A—C2A—H2A119.8
H8G—C8B—H8H109.5C1A—C2A—H2A119.8
C7B—C8B—H8I109.5C2A—C3A—C4A120.28 (10)
H8G—C8B—H8I109.5C2A—C3A—H3A119.9
H8H—C8B—H8I109.5C4A—C3A—H3A119.9
C4B—O1B—H1B105.8 (13)O1A—C4A—C3A117.37 (10)
C6B—C1B—C2B119.67 (10)O1A—C4A—C5A122.32 (11)
C6B—C1B—N1B116.49 (10)C3A—C4A—C5A120.32 (10)
C2B—C1B—N1B123.81 (10)C6A—C5A—C4A118.24 (10)
C3B—C2B—C1B120.40 (11)C6A—C5A—C7A122.30 (10)
C3B—C2B—H2B119.8C4A—C5A—C7A119.44 (10)
C1B—C2B—H2B119.8C1A—C6A—C5A120.98 (10)
C2B—C3B—C4B120.37 (11)C1A—C6A—H6A119.5
C2B—C3B—H3B119.8C5A—C6A—H6A119.5
C4B—C3B—H3B119.8O2A—C7A—C5A120.32 (11)
O1B—C4B—C3B117.47 (10)O2A—C7A—C8A119.38 (11)
O1B—C4B—C5B122.31 (11)C5A—C7A—C8A120.30 (10)
C3B—C4B—C5B120.22 (10)C7A—C8A—H8D109.5
C6B—C5B—C4B118.39 (10)C7A—C8A—H8E109.5
C6B—C5B—C7B122.06 (10)H8D—C8A—H8E109.5
C4B—C5B—C7B119.54 (10)C7A—C8A—H8F109.5
C1B—C6B—C5B120.95 (10)H8D—C8A—H8F109.5
C1B—C6B—H6B119.5H8E—C8A—H8F109.5
C5B—C6B—H6B119.5C14A—C9A—C10A117.45 (10)
C14B—C9B—C10B117.45 (10)C14A—C9A—N2A117.30 (10)
C14B—C9B—N2B117.23 (10)C10A—C9A—N2A125.26 (10)
C10B—C9B—N2B125.31 (10)C11A—C10A—C9A120.39 (11)
C11B—C10B—C9B120.50 (11)C11A—C10A—H10A119.8
C11B—C10B—H10B119.7C9A—C10A—H10A119.8
C9B—C10B—H10B119.7C10A—C11A—C12A120.57 (11)
C10B—C11B—C12B120.42 (11)C10A—C11A—H11A119.7
C10B—C11B—H11B119.8C12A—C11A—H11A119.7
C12B—C11B—H11B119.8C13A—C12A—C11A120.07 (11)
C13B—C12B—C11B120.26 (11)C13A—C12A—H12A120.0
C13B—C12B—H12B119.9C11A—C12A—H12A120.0
C11B—C12B—H12B119.9C14A—C13A—C12A118.64 (11)
C14B—C13B—C12B118.46 (11)C14A—C13A—H13A120.7
C14B—C13B—H13B120.8C12A—C13A—H13A120.7
C12B—C13B—H13B120.8F1A—C14A—C13A118.30 (11)
F1B—C14B—C13B118.04 (11)F1A—C14A—C9A118.85 (10)
F1B—C14B—C9B119.08 (10)C13A—C14A—C9A122.85 (11)
C13B—C14B—C9B122.87 (11)N2A—N1A—C1A113.45 (9)
N2B—N1B—C1B113.68 (9)N1A—N2A—C9A113.47 (9)
N1B—N2B—C9B113.37 (9)C4A—O1A—H1A101.3 (13)
C6B—C1B—C2B—C3B0.82 (17)C6A—C1A—C2A—C3A0.36 (17)
N1B—C1B—C2B—C3B177.35 (10)N1A—C1A—C2A—C3A177.85 (10)
C1B—C2B—C3B—C4B0.62 (17)C1A—C2A—C3A—C4A0.48 (17)
C2B—C3B—C4B—O1B179.85 (10)C2A—C3A—C4A—O1A179.82 (10)
C2B—C3B—C4B—C5B0.22 (17)C2A—C3A—C4A—C5A0.46 (17)
O1B—C4B—C5B—C6B179.62 (10)O1A—C4A—C5A—C6A179.99 (10)
C3B—C4B—C5B—C6B0.01 (17)C3A—C4A—C5A—C6A0.30 (16)
O1B—C4B—C5B—C7B0.76 (17)O1A—C4A—C5A—C7A1.47 (16)
C3B—C4B—C5B—C7B178.86 (10)C3A—C4A—C5A—C7A178.24 (10)
O2B—C7B—C5B—C6B179.27 (11)C2A—C1A—C6A—C5A0.21 (17)
C8B—C7B—C5B—C6B1.43 (17)N1A—C1A—C6A—C5A178.13 (10)
O2B—C7B—C5B—C4B1.91 (17)C4A—C5A—C6A—C1A0.18 (16)
C8B—C7B—C5B—C4B177.39 (11)C7A—C5A—C6A—C1A178.31 (10)
C2B—C1B—C6B—C5B0.62 (17)C6A—C5A—C7A—O2A177.81 (11)
N1B—C1B—C6B—C5B177.68 (10)C4A—C5A—C7A—O2A3.72 (17)
C4B—C5B—C6B—C1B0.21 (17)C6A—C5A—C7A—C8A2.39 (17)
C7B—C5B—C6B—C1B178.62 (10)C4A—C5A—C7A—C8A176.08 (11)
C14B—C9B—C10B—C11B1.95 (16)C14A—C9A—C10A—C11A1.94 (17)
N2B—C9B—C10B—C11B177.37 (10)N2A—C9A—C10A—C11A177.74 (10)
C9B—C10B—C11B—C12B0.98 (17)C9A—C10A—C11A—C12A1.46 (18)
C10B—C11B—C12B—C13B0.44 (18)C10A—C11A—C12A—C13A0.06 (19)
C11B—C12B—C13B—C14B0.81 (18)C11A—C12A—C13A—C14A1.01 (19)
C12B—C13B—C14B—F1B179.40 (10)C12A—C13A—C14A—F1A179.01 (11)
C12B—C13B—C14B—C9B0.23 (18)C12A—C13A—C14A—C9A0.48 (19)
C10B—C9B—C14B—F1B179.24 (10)C10A—C9A—C14A—F1A179.53 (10)
N2B—C9B—C14B—F1B1.38 (16)N2A—C9A—C14A—F1A0.77 (16)
C10B—C9B—C14B—C13B1.59 (17)C10A—C9A—C14A—C13A0.98 (18)
N2B—C9B—C14B—C13B177.78 (11)N2A—C9A—C14A—C13A178.72 (11)
C6B—C1B—N1B—N2B170.98 (10)C6A—C1A—N1A—N2A170.56 (10)
C2B—C1B—N1B—N2B7.24 (16)C2A—C1A—N1A—N2A7.71 (16)
C1B—N1B—N2B—C9B178.39 (9)C1A—N1A—N2A—C9A178.87 (9)
C14B—C9B—N2B—N1B169.03 (10)C14A—C9A—N2A—N1A171.20 (10)
C10B—C9B—N2B—N1B10.29 (16)C10A—C9A—N2A—N1A8.47 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2A0.91 (2)1.68 (2)2.5437 (12)157 (2)
O1B—H1B···O2B0.90 (2)1.72 (2)2.5395 (13)150 (2)

Experimental details

Crystal data
Chemical formulaC14H11FN2O2
Mr258.25
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)6.7632 (3), 12.5906 (6), 13.8769 (6)
α, β, γ (°)85.641 (4), 89.337 (3), 84.254 (4)
V3)1172.31 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.64 × 0.40 × 0.12
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.941, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
20279, 4870, 3825
Rint0.034
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.104, 1.04
No. of reflections4870
No. of parameters351
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.26

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1A—H1A···O2A0.91 (2)1.68 (2)2.5437 (12)157 (2)
O1B—H1B···O2B0.90 (2)1.72 (2)2.5395 (13)150 (2)
 

Acknowledgements

The authors thank Professor Magnus Rueping of RWTH Aachen University, Germany, for helpful discussions. They also acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant F.279 of the University Research Fund).

References

First citationAlbayrak, Ç., Gümrükçüoğlu, İ., Odabaşoğlu, M., İskeleli, N. O. & Ağar, E. (2009). J. Mol. Struct. 932, 43–54.  Web of Science CSD CrossRef CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Open, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Google Scholar
First citationCatino, S. C. & Farris, R. E. (1985). Concise Encyclopedia of Chemical Technology, edited by D. H. Othmer, pp. 142–144. New York: John Wiley & Sons.  Google Scholar
First citationDeveci, O., Işık, S., Albayrak, C. & Ağar, E. (2005). Acta Cryst. E61, o2878–o2879.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGregory, P. (1991). Colorants for High Technology. Colour Chemistry: The Design and Synthesis of Organic Dyes and Pigments, edited by A. T. Peters & H. S. Freeman. London, New York: Elsevier.  Google Scholar
First citationKarabıyık, H., Petek, H., İskeleli, N. O. & Albayrak, Ç. (2009). Struct. Chem. 20, 903–910.  Google Scholar
First citationÖzdemir, G., Işık, S. I., Albayrak, C. & Ağar, E. (2006). Acta Cryst. E62, o342–o343.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2002). X-RED32 and X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationYazıcı, S., Albayrak, Ç., Gümrükçüoğlu, İ., Şenel, İ. & Büyükgüngör, O. (2011). J. Mol. Struct. 985, 292–298.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds