metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

[N-((E)-2-{[2-(Di­methyl­amino)­eth­yl]imino­meth­yl}phen­yl)-N-(2,6-di­methyl­phen­yl)anilinido-κ3N,N′,N′′]ethyl­zinc

aState Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun 130012, People's Republic of China
*Correspondence e-mail: gw@jlu.edu.cn, ymu@jlu.edu.cn

(Received 26 January 2011; accepted 15 February 2011; online 23 February 2011)

The title eth­yl–zinc complex, [Zn(C2H5)(C19H24N3)], bears a tridentate anilinide–aldimine ligand and features one long Zn—N(amine) bond length, attributable to the crowded environment of the coordinated metal, arising from the dimethyl­phenyl group. The ZnII ion adopts a distorted tetra­hedral geometry, the dihedral angle between the two benzene rings being 86.05 (16)°.

Related literature

For the synthesis, luminescent properties and applications in catalysis of complexes bearing anilido–aldimine ligands, see: Liu et al. (2005[Liu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614-1619.], 2006[Liu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem. pp. 1216-1222.]); Ren et al. (2007[Ren, Y., Liu, X.-M., Gao, W., Xia, H., Ye, L. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp. 1808-1814.]); Su et al. (2007[Su, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp. 4168-4175.]); Yao et al. (2008[Yao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486-2491.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C2H5)(C19H24N3)]

  • Mr = 388.84

  • Monoclinic, P 21 /c

  • a = 7.3664 (15) Å

  • b = 13.849 (3) Å

  • c = 20.296 (4) Å

  • β = 99.26 (3)°

  • V = 2043.5 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.21 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.19 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.768, Tmax = 0.803

  • 18874 measured reflections

  • 4571 independent reflections

  • 2619 reflections with I > 2σ(I)

  • Rint = 0.116

Refinement
  • R[F2 > 2σ(F2)] = 0.071

  • wR(F2) = 0.189

  • S = 0.96

  • 4571 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.63 e Å−3

Table 1
Selected bond lengths (Å)

Zn1—C20 1.991 (5)
Zn1—N1 2.009 (3)
Zn1—N2 2.487 (4)
Zn1—N3 2.004 (4)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Complexes bearing chelating anilido-aldimine ligands have recently attracted attention because such ligands have similar framework and combine the steric and electronic characteristics of β-diketiminate and salicyaldiminato ligands, which have been extensively researched in coordination chemistry and catalysis. We have recently reported the luminescent properties of a series of Al(III) (Liu et al., 2005, 2006), ZnII (Su et al., 2007) and B(III) (Ren et al., 2007) complexes with chelating anilido-aldimine ligands, and catalytic properties of Al(III) complexes (Yao et al., 2008) for the polymerization of ε-caprolactone. Good results have been obtained. As a part of our study, the preparation and crystal structure of the title ethyl zinc complex bearing N,N',N''-tridentate anilido-aldimine ligand is reported.

In the complex (Fig. 1), the C7N1 [1.292 (6) Å] bond length is comparable to those found in similar anilido-imine compounds (Su et al., 2007). The bond distances Zn—N1 [2.009 (3) Å] and Zn—N3 [2.004 (4) Å] are similar to those in other anilido-aldimine zinc complexes. The pendant arm bond length Zn—N2 [2.487 (4) Å], in contrast, is longer than equivalent bonds found in other N,N',O-tridentate Schiff base Zn complexes. This may be due to the crowded environment in the metal center arising from the aryl group bonded to N3. The dihedral angle between the central benzene ring (C1···C6) and the benzene ring (C12···C17) is 86.05 (16)°.

Related literature top

For the synthesis, luminescent properties and applications in catalysis of complexes bearing anilido–aldimine ligands, see: Liu et al. (2005, 2006); Ren et al. (2007); Su et al. (2007); Yao et al. (2008).

Experimental top

The complex was synthesized according to the literature method (Su et al., 2007). A solution of ZnEt2 (1.0 mol/L, 2.0 mmol) was added to a solution of the ligand (0.59 g, 2.0 mmol) in toluene (30 ml) at 273 K. After stirring for 24 h, the solution was evaporated to dryness and the resulting yellow powder was washed with hexane (Yield: 0.65 g, 90%). Anal. Calcd. for C21H29N3Zn (388.87): C 64.86, H 7.52, N 10.81%; Found: C 64.62, H 7.44, N 10.65%.

Refinement top

The C-bound H atoms were positioned geometrically with C—H = 0.93 (aromatic and imine carbon), 0.97 (methylene) and 0.96 Å (methyl), and allowed to ride on their parent atoms with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex, with displacement ellipsoids drawn at the 30% probability level.
[N-((E)-2-{[2-(Dimethylamino)ethyl]iminomethyl}phenyl)- N-(2,6-dimethylphenyl)anilinido- κ3N,N',N'']ethylzinc top
Crystal data top
[Zn(C2H5)(C19H24N3)]F(000) = 824
Mr = 388.84Dx = 1.264 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10491 reflections
a = 7.3664 (15) Åθ = 6.2–54.9°
b = 13.849 (3) ŵ = 1.21 mm1
c = 20.296 (4) ÅT = 293 K
β = 99.26 (3)°Block, yellow
V = 2043.5 (7) Å30.23 × 0.21 × 0.19 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4571 independent reflections
Radiation source: fine-focus sealed tube2619 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.116
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.768, Tmax = 0.803k = 1617
18874 measured reflectionsl = 2426
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.189H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.097P)2]
where P = (Fo2 + 2Fc2)/3
4571 reflections(Δ/σ)max = 0.023
231 parametersΔρmax = 0.98 e Å3
0 restraintsΔρmin = 0.63 e Å3
0 constraints
Crystal data top
[Zn(C2H5)(C19H24N3)]V = 2043.5 (7) Å3
Mr = 388.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.3664 (15) ŵ = 1.21 mm1
b = 13.849 (3) ÅT = 293 K
c = 20.296 (4) Å0.23 × 0.21 × 0.19 mm
β = 99.26 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4571 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2619 reflections with I > 2σ(I)
Tmin = 0.768, Tmax = 0.803Rint = 0.116
18874 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.189H-atom parameters constrained
S = 0.96Δρmax = 0.98 e Å3
4571 reflectionsΔρmin = 0.63 e Å3
231 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7787 (7)0.8763 (3)0.8847 (2)0.0497 (10)
C20.7141 (7)0.8858 (3)0.8154 (2)0.0558 (11)
H20.74000.83730.78660.067*
C30.6141 (8)0.9649 (4)0.7893 (3)0.0672 (14)
H30.57400.96830.74350.081*
C40.5719 (8)1.0393 (4)0.8297 (3)0.0671 (14)
H40.50681.09310.81150.080*
C50.6275 (7)1.0321 (3)0.8964 (3)0.0580 (12)
H50.59441.08080.92370.070*
C60.7337 (6)0.9537 (3)0.9266 (2)0.0483 (10)
C70.7748 (7)0.9542 (3)0.9974 (2)0.0512 (11)
H70.71751.00171.01900.061*
C80.8819 (8)0.8962 (3)1.1069 (2)0.0581 (12)
H8A0.81220.95081.11940.070*
H8B1.00660.90051.13100.070*
C90.7926 (8)0.8012 (3)1.1237 (2)0.0594 (12)
H9A0.79670.79651.17160.071*
H9B0.66460.80031.10270.071*
C100.7658 (10)0.6345 (4)1.0890 (3)0.090 (2)
H10A0.83100.58051.07450.135*
H10B0.66270.64991.05540.135*
H10C0.72290.61831.12990.135*
C111.0496 (9)0.6923 (4)1.1502 (3)0.0737 (16)
H11A1.00890.67371.19100.111*
H11B1.13060.74681.15840.111*
H11C1.11380.63931.13390.111*
C120.9206 (7)0.7257 (3)0.8645 (2)0.0505 (10)
C130.8071 (8)0.6443 (3)0.8554 (2)0.0580 (12)
C140.8532 (8)0.5707 (3)0.8151 (2)0.0662 (14)
H140.77620.51740.80680.079*
C151.0110 (9)0.5750 (3)0.7871 (3)0.0701 (16)
H151.04350.52330.76210.084*
C161.1190 (9)0.6548 (4)0.7958 (2)0.0667 (14)
H161.22340.65770.77550.080*
C171.0774 (8)0.7330 (3)0.8347 (2)0.0579 (12)
C181.1964 (9)0.8214 (4)0.8426 (3)0.0718 (15)
H18A1.12360.87700.82750.108*
H18B1.29340.81440.81650.108*
H18C1.24860.82940.88870.108*
C190.6367 (9)0.6368 (4)0.8876 (3)0.0818 (17)
H19A0.57040.57920.87240.123*
H19B0.55980.69210.87580.123*
H19C0.67140.63420.93530.123*
C201.2613 (7)0.7185 (3)1.0170 (3)0.0611 (12)
H20A1.34060.75020.98980.073*
H20B1.31750.72521.06340.073*
C211.2474 (9)0.6109 (3)0.9989 (3)0.0777 (16)
H21A1.17140.57881.02630.117*
H21B1.36800.58271.00620.117*
H21C1.19410.60380.95280.117*
N10.8827 (6)0.8962 (2)1.03518 (17)0.0499 (9)
N20.8894 (6)0.7183 (2)1.10019 (19)0.0564 (10)
N30.8810 (6)0.8002 (2)0.91016 (18)0.0520 (9)
Zn11.01743 (8)0.78379 (3)1.00320 (2)0.0531 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.040 (3)0.051 (2)0.058 (3)0.0013 (17)0.007 (2)0.0038 (17)
C20.052 (3)0.063 (2)0.053 (3)0.007 (2)0.010 (2)0.0040 (19)
C30.055 (4)0.080 (3)0.066 (3)0.017 (3)0.008 (3)0.021 (2)
C40.052 (4)0.068 (3)0.083 (4)0.021 (2)0.018 (3)0.023 (2)
C50.045 (3)0.052 (2)0.079 (3)0.0110 (19)0.015 (2)0.009 (2)
C60.039 (3)0.043 (2)0.064 (3)0.0028 (16)0.011 (2)0.0048 (17)
C70.046 (3)0.043 (2)0.066 (3)0.0022 (17)0.012 (2)0.0009 (18)
C80.060 (4)0.059 (3)0.055 (3)0.003 (2)0.008 (2)0.0090 (19)
C90.060 (4)0.064 (3)0.056 (3)0.006 (2)0.015 (2)0.002 (2)
C100.100 (6)0.065 (3)0.106 (5)0.013 (3)0.016 (4)0.008 (3)
C110.076 (5)0.084 (3)0.058 (3)0.022 (3)0.001 (3)0.006 (2)
C120.051 (3)0.050 (2)0.048 (2)0.0102 (18)0.002 (2)0.0017 (17)
C130.057 (4)0.057 (2)0.056 (3)0.010 (2)0.001 (2)0.0015 (19)
C140.067 (4)0.055 (3)0.069 (3)0.003 (2)0.011 (3)0.003 (2)
C150.093 (5)0.055 (3)0.059 (3)0.020 (3)0.002 (3)0.010 (2)
C160.074 (4)0.072 (3)0.056 (3)0.025 (3)0.015 (3)0.002 (2)
C170.064 (4)0.058 (3)0.050 (3)0.010 (2)0.004 (2)0.0031 (18)
C180.065 (4)0.073 (3)0.078 (4)0.002 (3)0.016 (3)0.000 (2)
C190.065 (5)0.081 (3)0.096 (4)0.004 (3)0.003 (3)0.001 (3)
C200.051 (3)0.069 (3)0.061 (3)0.014 (2)0.002 (2)0.004 (2)
C210.073 (5)0.066 (3)0.089 (4)0.018 (3)0.001 (3)0.003 (2)
N10.050 (3)0.0491 (18)0.050 (2)0.0020 (15)0.0082 (17)0.0017 (14)
N20.056 (3)0.056 (2)0.056 (2)0.0045 (17)0.0019 (19)0.0002 (16)
N30.055 (3)0.0526 (18)0.047 (2)0.0103 (16)0.0023 (17)0.0017 (14)
Zn10.0500 (4)0.0525 (3)0.0541 (3)0.0111 (2)0.0003 (2)0.0051 (2)
Geometric parameters (Å, º) top
C1—N31.349 (5)C12—C171.391 (7)
C1—C21.417 (6)C12—C131.398 (7)
C1—C61.441 (6)C12—N31.447 (5)
C2—C31.376 (6)C13—C141.383 (6)
C2—H20.9300C13—C191.510 (8)
C3—C41.384 (8)C14—C151.375 (8)
C3—H30.9300C14—H140.9300
C4—C51.353 (7)C15—C161.356 (8)
C4—H40.9300C15—H150.9300
C5—C61.418 (6)C16—C171.404 (6)
C5—H50.9300C16—H160.9300
C6—C71.419 (6)C17—C181.499 (7)
C7—N11.292 (6)C18—H18A0.9600
C7—H70.9300C18—H18B0.9600
C8—N11.457 (5)C18—H18C0.9600
C8—C91.533 (6)C19—H19A0.9600
C8—H8A0.9700C19—H19B0.9600
C8—H8B0.9700C19—H19C0.9600
C9—N21.471 (6)C20—C211.534 (6)
C9—H9A0.9700Zn1—C201.991 (5)
C9—H9B0.9700C20—H20A0.9700
C10—N21.470 (7)C20—H20B0.9700
C10—H10A0.9600C21—H21A0.9600
C10—H10B0.9600C21—H21B0.9600
C10—H10C0.9600C21—H21C0.9600
C11—N21.472 (7)Zn1—N12.009 (3)
C11—H11A0.9600Zn1—N22.487 (4)
C11—H11B0.9600Zn1—N32.004 (4)
C11—H11C0.9600
N3—C1—C2122.1 (4)C13—C14—H14119.4
N3—C1—C6121.5 (4)C16—C15—C14119.9 (4)
C2—C1—C6116.4 (4)C16—C15—H15120.0
C3—C2—C1122.0 (4)C14—C15—H15120.0
C3—C2—H2119.0C15—C16—C17121.7 (5)
C1—C2—H2119.0C15—C16—H16119.1
C2—C3—C4121.5 (5)C17—C16—H16119.1
C2—C3—H3119.3C12—C17—C16117.4 (5)
C4—C3—H3119.3C12—C17—C18121.7 (4)
C5—C4—C3118.5 (4)C16—C17—C18120.9 (5)
C5—C4—H4120.8C17—C18—H18A109.5
C3—C4—H4120.8C17—C18—H18B109.5
C4—C5—C6123.1 (4)H18A—C18—H18B109.5
C4—C5—H5118.5C17—C18—H18C109.5
C6—C5—H5118.5H18A—C18—H18C109.5
C5—C6—C7116.6 (4)H18B—C18—H18C109.5
C5—C6—C1118.6 (4)C13—C19—H19A109.5
C7—C6—C1124.7 (4)C13—C19—H19B109.5
N1—C7—C6127.6 (4)H19A—C19—H19B109.5
N1—C7—H7116.2C13—C19—H19C109.5
C6—C7—H7116.2H19A—C19—H19C109.5
N1—C8—C9107.1 (4)H19B—C19—H19C109.5
N1—C8—H8A110.3C21—C20—Zn1112.5 (4)
C9—C8—H8A110.3C21—C20—H20A109.1
N1—C8—H8B110.3Zn1—C20—H20A109.1
C9—C8—H8B110.3C21—C20—H20B109.1
H8A—C8—H8B108.6Zn1—C20—H20B109.1
N2—C9—C8110.5 (4)H20A—C20—H20B107.8
N2—C9—H9A109.6C20—C21—H21A109.5
C8—C9—H9A109.6C20—C21—H21B109.5
N2—C9—H9B109.6H21A—C21—H21B109.5
C8—C9—H9B109.6C20—C21—H21C109.5
H9A—C9—H9B108.1H21A—C21—H21C109.5
N2—C10—H10A109.5H21B—C21—H21C109.5
N2—C10—H10B109.5C7—N1—C8119.6 (4)
H10A—C10—H10B109.5C7—N1—Zn1125.3 (3)
N2—C10—H10C109.5C8—N1—Zn1113.8 (3)
H10A—C10—H10C109.5C10—N2—C9110.2 (4)
H10B—C10—H10C109.5C10—N2—C11108.7 (4)
N2—C11—H11A109.5C9—N2—C11110.1 (4)
N2—C11—H11B109.5C10—N2—Zn1118.1 (3)
H11A—C11—H11B109.5C9—N2—Zn1103.7 (2)
N2—C11—H11C109.5C11—N2—Zn1105.7 (3)
H11A—C11—H11C109.5C1—N3—C12118.0 (4)
H11B—C11—H11C109.5C1—N3—Zn1127.9 (3)
C17—C12—C13121.4 (4)C12—N3—Zn1113.6 (3)
C17—C12—N3119.6 (4)C20—Zn1—N3119.23 (18)
C13—C12—N3118.8 (4)C20—Zn1—N1142.01 (18)
C14—C13—C12118.3 (5)N3—Zn1—N191.01 (14)
C14—C13—C19120.3 (5)C20—Zn1—N299.88 (18)
C12—C13—C19121.3 (4)N3—Zn1—N2126.21 (16)
C15—C14—C13121.1 (5)N1—Zn1—N275.94 (13)
C15—C14—H14119.4

Experimental details

Crystal data
Chemical formula[Zn(C2H5)(C19H24N3)]
Mr388.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)7.3664 (15), 13.849 (3), 20.296 (4)
β (°) 99.26 (3)
V3)2043.5 (7)
Z4
Radiation typeMo Kα
µ (mm1)1.21
Crystal size (mm)0.23 × 0.21 × 0.19
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.768, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
18874, 4571, 2619
Rint0.116
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.189, 0.96
No. of reflections4571
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.98, 0.63

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—C201.991 (5)Zn1—N22.487 (4)
Zn1—N12.009 (3)Zn1—N32.004 (4)
 

Acknowledgements

We thank the National Natural Science Foundation of China (grant Nos. 20772044 and 20674024). IMM is also grateful for support from Jilin University.

References

First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLiu, X.-M., Gao, W., Mu, Y., Li, G.-H., Ye, L., Xia, H., Ren, Y. & Feng, S. (2005). Organometallics, 24, 1614–1619.  Web of Science CSD CrossRef CAS Google Scholar
First citationLiu, X.-M., Xia, H., Gao, W., Ye, L., Mu, Y., Su, Q. & Ren, Y. (2006). Eur. J. Inorg. Chem. pp. 1216–1222.  Web of Science CSD CrossRef Google Scholar
First citationRen, Y., Liu, X.-M., Gao, W., Xia, H., Ye, L. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp. 1808–1814.  Web of Science CSD CrossRef Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Q., Gao, W., Wu, Q.-L., Ye, L., Li, G.-H. & Mu, Y. (2007). Eur. J. Inorg. Chem. pp. 4168–4175.  Web of Science CSD CrossRef Google Scholar
First citationYao, W., Mu, Y., Gao, A.-H., Su, Q., Liu, Y.-J. & Zhang, Y.-Y. (2008). Polymer, 49, 2486–2491.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds