organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(2-Methyl-6-phenyl-1-propyl-1,4-di­hydro­pyridin-4-yl­­idene)propane­di­nitrile

aSchool of Applied Chemical Engineering, Chonnam National University, Gwangju 500-757, Republic of Korea, and bDepartment of Chemistry, Sunchon National University, 315 Maegok Dong, Sunchon, Jeonnam 540-742, Republic of Korea
*Correspondence e-mail: hyungkim@chonnam.ac.kr, chkwak@sunchon.ac.kr

(Received 1 February 2011; accepted 15 February 2011; online 19 February 2011)

In the title compound, C18H17N3, the dihedral angle between the dihydropyridine and phenyl rings is 72.57 (5)° and that between the dihydropyridine ring and malononitrile plane is 5.19 (20)°. The C—C bond lengths in the pyridine ring are considerably shorter than those of normal single bonds, indicating that electrons on the dihydropyridine ring, including the non-bonding electrons of the N atom, are delocalized on the ring.

Related literature

For the synthesis of the starting material, see: Tolmachev et al. (2006[Tolmachev, A. I., Kachkovskii, A. D., Kudinova, M. A., Kurdiukov, V. V., Ksenzov, S. & Schrader, S. (2006). Dyes Pigm. 74, 348-356.]). For a related structure, see: Ha et al. (2009[Ha, K., Heo, J. & Kim, H. J. (2009). Acta Cryst. E65, o3131.]).

[Scheme 1]

Experimental

Crystal data
  • C18H17N3

  • Mr = 275.35

  • Monoclinic, P 21 /c

  • a = 11.5580 (7) Å

  • b = 9.9179 (6) Å

  • c = 13.9268 (7) Å

  • β = 105.707 (2)°

  • V = 1536.83 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 100 K

  • 0.5 × 0.4 × 0.2 mm

Data collection
  • Rigaku R-AXIS RAPID II-S diffractometer

  • Absorption correction: multi-scan (RAPID-AUTO; Rigaku, 2008[Rigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.966, Tmax = 0.986

  • 13505 measured reflections

  • 3185 independent reflections

  • 2321 reflections with I > 2σ(I)

  • Rint = 0.077

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.134

  • S = 1.07

  • 3185 reflections

  • 193 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2008[Rigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Recently we have reported the structure of 2-(1-propyl-2,6-distyryl-1,4-pyridin-4-ylidene)malononitrile as a fluorescent dye (Ha et al., 2009). Continuing our study on the (1,4-pyridin-4-ylidene)malononitrile derivatives, the title compound was synthesized and its structure was confirmed by 1H NMR and X-ray crystal analysis.

In the title compound, C18H17N3, the dihedral angles between the central pyridine and phenyl ring is 72.57 (5)° and that between the pyridine ring and malonitrile plane (N2 C13 C12 C14 N3 plane) is 5.19 (20)°. The bond distances of C—C bonds in the pyridine ring are considerably shorter than those of normal single bonds (D(C1—C2) = D(C1—C5) = 1.413 (3) Å). These results suggest that the electrons on the pyridine ring including non-bonding electrons of N1 are delocalized on the ring (Fig. 1).

Related literature top

For the synthesis of the starting material, see: Tolmachev et al. (2006). For a related structure, see: Ha et al. (2009).

Experimental top

A mixture of 2-(2-methyl-6-phenyl-4H-pyran-4-ylidene)malononitrile (1.5 g, 6.4 mmol) and n-propylamine (20 ml) was heated at 150 °C for 3 h. The mixture was cooled and concentrated under vacuum. Crude product was recrystallized from MeOH to give crystals suitable for X-ray analysis (1.20 g, 68%). Mp 166–167 °C. 1H NMR (300 MHz, CDCl3) δ 7.52–7.26 (m, 5H, Ph), 6.79 (d, 1H, J = 2.5 Hz, C—CH=C—N), 6.70 (d, 1H, J = 2.5 Hz), 3.75 (t, 2H, J = 8.1 Hz, NCH2CH2CH3), 2.50 (s, 3H, CH3), 1.52 (m, 2H, NCH2CH2CH3), 0.70 (t, 3H, J = 7.4 Hz, NCH2CH2CH3)

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 (CH, sp2), 0.96 (CH3), 0.97Å (CH2), respectively and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2008); cell refinement: RAPID-AUTO (Rigaku, 2008); data reduction: RAPID-AUTO (Rigaku, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with displacement ellipsoids drawn at the 50% probability level for non-H atoms.
2-(2-Methyl-6-phenyl-1-propyl-1,4-dihydropyridin-4-ylidene)propanedinitrile top
Crystal data top
C18H17N3F(000) = 584
Mr = 275.35Z = 4
Monoclinic, P21/cDx = 1.190 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 11.5580 (7) ÅCell parameters from 15051 reflections
b = 9.9179 (6) Åθ = 27.5–3.0°
c = 13.9268 (7) ŵ = 0.07 mm1
β = 105.707 (2)°T = 100 K
V = 1536.83 (15) Å3Block, yellow
Z = 40.5 × 0.4 × 0.2 mm
Data collection top
Rigaku R-AXIS RAPID II-S
diffractometer
3185 independent reflections
Radiation source: fine-focus sealed tube2321 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ω scansθmax = 26.5°, θmin = 3.0°
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2008)
h = 1414
Tmin = 0.966, Tmax = 0.986k = 1212
13505 measured reflectionsl = 1617
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.134 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.3213P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3185 reflectionsΔρmax = 0.22 e Å3
193 parametersΔρmin = 0.20 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (3)
Crystal data top
C18H17N3V = 1536.83 (15) Å3
Mr = 275.35Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.5580 (7) ŵ = 0.07 mm1
b = 9.9179 (6) ÅT = 100 K
c = 13.9268 (7) Å0.5 × 0.4 × 0.2 mm
β = 105.707 (2)°
Data collection top
Rigaku R-AXIS RAPID II-S
diffractometer
3185 independent reflections
Absorption correction: multi-scan
(RAPID-AUTO; Rigaku, 2008)
2321 reflections with I > 2σ(I)
Tmin = 0.966, Tmax = 0.986Rint = 0.077
13505 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.134H-atom parameters constrained
S = 1.07Δρmax = 0.22 e Å3
3185 reflectionsΔρmin = 0.20 e Å3
193 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.86513 (14)0.37654 (15)0.41005 (10)0.0322 (4)
C20.94627 (14)0.43142 (16)0.36078 (11)0.0350 (4)
H21.02770.41200.38510.042*
C30.90918 (14)0.51234 (16)0.27834 (11)0.0345 (4)
C40.70719 (14)0.49082 (15)0.28609 (10)0.0311 (4)
C50.74344 (14)0.41302 (16)0.36931 (11)0.0332 (4)
H50.68640.38290.40040.040*
C60.57636 (14)0.51915 (15)0.24329 (11)0.0325 (4)
C70.51068 (15)0.45459 (18)0.15657 (12)0.0402 (4)
H70.54980.39930.12140.048*
C80.38795 (16)0.4724 (2)0.12290 (13)0.0466 (4)
H80.34430.42810.06570.056*
C90.32989 (16)0.55609 (19)0.17404 (13)0.0467 (5)
H90.24730.56860.15060.056*
C100.39303 (17)0.62090 (19)0.25902 (14)0.0478 (5)
H100.35340.67730.29310.057*
C110.51660 (15)0.60193 (18)0.29407 (12)0.0409 (4)
H110.55940.64520.35210.049*
C120.90262 (14)0.28936 (16)0.49335 (11)0.0357 (4)
C130.82087 (16)0.24072 (17)0.54461 (12)0.0399 (4)
C141.02361 (17)0.24658 (18)0.52802 (12)0.0436 (4)
C150.74831 (15)0.63071 (16)0.15180 (11)0.0366 (4)
H15A0.67040.59970.11220.044*
H15B0.80410.62350.11100.044*
C160.73834 (19)0.77697 (18)0.17897 (12)0.0481 (5)
H16A0.81740.81150.21290.058*
H16B0.68770.78440.22410.058*
C170.6847 (2)0.8605 (2)0.08532 (15)0.0669 (6)
H17A0.68260.95370.10320.100*
H17B0.60450.82980.05420.100*
H17C0.73330.85030.03970.100*
C180.99893 (17)0.5697 (2)0.22903 (14)0.0500 (5)
H18A0.98840.66550.22240.075*
H18B0.98690.53000.16420.075*
H18C1.07880.55000.26900.075*
N10.78979 (11)0.54168 (13)0.24021 (9)0.0320 (3)
N20.75433 (16)0.20179 (18)0.58685 (12)0.0569 (5)
N31.12223 (16)0.2122 (2)0.55469 (12)0.0672 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0369 (9)0.0294 (8)0.0286 (7)0.0009 (7)0.0057 (6)0.0046 (6)
C20.0321 (8)0.0349 (9)0.0361 (8)0.0006 (7)0.0058 (6)0.0010 (6)
C30.0334 (9)0.0337 (9)0.0367 (8)0.0020 (7)0.0100 (6)0.0031 (6)
C40.0342 (9)0.0282 (8)0.0299 (7)0.0015 (6)0.0069 (6)0.0038 (6)
C50.0332 (8)0.0354 (8)0.0303 (8)0.0013 (7)0.0073 (6)0.0003 (6)
C60.0333 (8)0.0324 (8)0.0306 (7)0.0024 (7)0.0068 (6)0.0039 (6)
C70.0382 (9)0.0434 (10)0.0372 (8)0.0010 (7)0.0070 (7)0.0041 (7)
C80.0399 (10)0.0557 (11)0.0386 (9)0.0008 (8)0.0012 (7)0.0013 (8)
C90.0350 (10)0.0525 (11)0.0496 (10)0.0065 (8)0.0063 (8)0.0144 (8)
C100.0476 (11)0.0480 (11)0.0518 (10)0.0119 (9)0.0204 (8)0.0050 (8)
C110.0431 (10)0.0425 (10)0.0364 (8)0.0032 (8)0.0097 (7)0.0027 (7)
C120.0371 (9)0.0361 (9)0.0320 (8)0.0022 (7)0.0062 (6)0.0017 (6)
C130.0469 (10)0.0386 (9)0.0326 (8)0.0038 (8)0.0081 (7)0.0025 (7)
C140.0484 (11)0.0502 (11)0.0321 (8)0.0099 (9)0.0105 (7)0.0071 (7)
C150.0431 (9)0.0387 (9)0.0276 (7)0.0021 (7)0.0091 (7)0.0022 (6)
C160.0662 (13)0.0414 (10)0.0380 (9)0.0068 (9)0.0163 (8)0.0044 (7)
C170.0989 (18)0.0518 (12)0.0534 (11)0.0250 (12)0.0265 (11)0.0160 (9)
C180.0451 (11)0.0524 (11)0.0554 (11)0.0005 (8)0.0185 (8)0.0122 (9)
N10.0356 (7)0.0310 (7)0.0287 (6)0.0000 (5)0.0075 (5)0.0001 (5)
N20.0670 (11)0.0572 (11)0.0521 (9)0.0020 (9)0.0258 (9)0.0113 (8)
N30.0545 (11)0.0899 (14)0.0562 (10)0.0296 (10)0.0130 (8)0.0229 (9)
Geometric parameters (Å, º) top
C1—C21.412 (2)C10—H100.9300
C1—C51.414 (2)C11—H110.9300
C1—C121.417 (2)C12—C131.414 (2)
C2—C31.371 (2)C12—C141.415 (2)
C2—H20.9300C13—N21.154 (2)
C3—N11.369 (2)C14—N31.151 (2)
C3—C181.502 (2)C15—N11.4852 (18)
C4—C51.361 (2)C15—C161.511 (2)
C4—N11.3801 (19)C15—H15A0.9700
C4—C61.494 (2)C15—H15B0.9700
C5—H50.9300C16—C171.527 (2)
C6—C111.384 (2)C16—H16A0.9700
C6—C71.396 (2)C16—H16B0.9700
C7—C81.380 (2)C17—H17A0.9600
C7—H70.9300C17—H17B0.9600
C8—C91.380 (3)C17—H17C0.9600
C8—H80.9300C18—H18A0.9600
C9—C101.371 (3)C18—H18B0.9600
C9—H90.9300C18—H18C0.9600
C10—C111.391 (2)
C2—C1—C5115.20 (13)C13—C12—C14117.32 (14)
C2—C1—C12122.45 (14)C13—C12—C1121.55 (14)
C5—C1—C12122.34 (14)C14—C12—C1121.13 (15)
C3—C2—C1122.29 (15)N2—C13—C12179.5 (2)
C3—C2—H2118.9N3—C14—C12178.88 (18)
C1—C2—H2118.9N1—C15—C16113.11 (12)
N1—C3—C2120.21 (14)N1—C15—H15A109.0
N1—C3—C18119.37 (14)C16—C15—H15A109.0
C2—C3—C18120.42 (15)N1—C15—H15B109.0
C5—C4—N1120.64 (14)C16—C15—H15B109.0
C5—C4—C6119.44 (13)H15A—C15—H15B107.8
N1—C4—C6119.92 (12)C15—C16—C17110.33 (14)
C4—C5—C1122.03 (14)C15—C16—H16A109.6
C4—C5—H5119.0C17—C16—H16A109.6
C1—C5—H5119.0C15—C16—H16B109.6
C11—C6—C7118.97 (15)C17—C16—H16B109.6
C11—C6—C4119.92 (14)H16A—C16—H16B108.1
C7—C6—C4120.90 (14)C16—C17—H17A109.5
C8—C7—C6120.24 (16)C16—C17—H17B109.5
C8—C7—H7119.9H17A—C17—H17B109.5
C6—C7—H7119.9C16—C17—H17C109.5
C7—C8—C9120.04 (16)H17A—C17—H17C109.5
C7—C8—H8120.0H17B—C17—H17C109.5
C9—C8—H8120.0C3—C18—H18A109.5
C10—C9—C8120.53 (17)C3—C18—H18B109.5
C10—C9—H9119.7H18A—C18—H18B109.5
C8—C9—H9119.7C3—C18—H18C109.5
C9—C10—C11119.70 (16)H18A—C18—H18C109.5
C9—C10—H10120.1H18B—C18—H18C109.5
C11—C10—H10120.1C3—N1—C4119.59 (12)
C6—C11—C10120.52 (15)C3—N1—C15120.88 (13)
C6—C11—H11119.7C4—N1—C15119.51 (13)
C10—C11—H11119.7
C5—C1—C2—C31.1 (2)C4—C6—C11—C10175.04 (15)
C12—C1—C2—C3177.93 (14)C9—C10—C11—C60.6 (3)
C1—C2—C3—N10.6 (2)C2—C1—C12—C13176.88 (15)
C1—C2—C3—C18179.35 (15)C5—C1—C12—C134.2 (2)
N1—C4—C5—C12.5 (2)C2—C1—C12—C143.7 (2)
C6—C4—C5—C1176.43 (14)C5—C1—C12—C14175.28 (15)
C2—C1—C5—C42.6 (2)N1—C15—C16—C17174.92 (16)
C12—C1—C5—C4176.36 (14)C2—C3—N1—C40.9 (2)
C5—C4—C6—C1169.6 (2)C18—C3—N1—C4179.09 (15)
N1—C4—C6—C11111.43 (17)C2—C3—N1—C15179.15 (14)
C5—C4—C6—C7105.08 (17)C18—C3—N1—C150.8 (2)
N1—C4—C6—C773.9 (2)C5—C4—N1—C30.7 (2)
C11—C6—C7—C80.6 (2)C6—C4—N1—C3178.28 (13)
C4—C6—C7—C8174.15 (15)C5—C4—N1—C15177.62 (13)
C6—C7—C8—C91.1 (3)C6—C4—N1—C153.4 (2)
C7—C8—C9—C100.7 (3)C16—C15—N1—C393.10 (18)
C8—C9—C10—C110.1 (3)C16—C15—N1—C485.16 (18)
C7—C6—C11—C100.2 (2)

Experimental details

Crystal data
Chemical formulaC18H17N3
Mr275.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)11.5580 (7), 9.9179 (6), 13.9268 (7)
β (°) 105.707 (2)
V3)1536.83 (15)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.5 × 0.4 × 0.2
Data collection
DiffractometerRigaku R-AXIS RAPID II-S
diffractometer
Absorption correctionMulti-scan
(RAPID-AUTO; Rigaku, 2008)
Tmin, Tmax0.966, 0.986
No. of measured, independent and
observed [I > 2σ(I)] reflections
13505, 3185, 2321
Rint0.077
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.134, 1.07
No. of reflections3185
No. of parameters193
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.20

Computer programs: RAPID-AUTO (Rigaku, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), WinGX (Farrugia, 1999).

 

Acknowledgements

This study was supported financially by Chonnam National University. CHK thanks the RIC, Sunchon National University, for financial support.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHa, K., Heo, J. & Kim, H. J. (2009). Acta Cryst. E65, o3131.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2008). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTolmachev, A. I., Kachkovskii, A. D., Kudinova, M. A., Kurdiukov, V. V., Ksenzov, S. & Schrader, S. (2006). Dyes Pigm. 74, 348–356.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds