organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(4-but­­oxy­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDepartment of Image Science and Engineering, Pukyong National University, Busan 608 737, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 9 February 2011; accepted 10 February 2011; online 16 February 2011)

In the title compound, C28H37NO3, a crystallographic mirror plane bis­ects the mol­ecule (one half-mol­ecule in the asymmetric unit). The title compound exists in a twin-chair conformation with an equatorial orientation of the 4-but­oxy­phenyl groups. Both sides of the secondary amino group carry the 4-but­oxy­phenyl groups at an angle of 38.54 (3)° with respect to one another.

Related literature

For the synthesis and biological activity of 3-aza­bicyclo­[3.3.1] nonan-9-ones, see: Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); Barker et al. (2005[Barker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]); Parthiban et al. (2009a[Parthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981-6985.], 2010b[Parthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79-93.],c[Parthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642-1647.]); Cox et al. (1985[Cox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). J. Chem. Soc. Chem. Commun. pp. 626-628.]). For related structures, see: Parthiban et al. (2009b[Parthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1356.],c[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383.], 2010a[Parthiban, P., Ramkumar, V. & Jeong, Y. T. (2010a). Acta Cryst. E66, o48-o49.]); Smith-Verdier et al. (1983[Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101-103.]); Padegimas & Kovacic (1972[Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.]). For ring puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Nardelli (1983[Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.]).

[Scheme 1]

Experimental

Crystal data
  • C28H37NO3

  • Mr = 435.59

  • Orthorhombic, P n m a

  • a = 7.7780 (5) Å

  • b = 31.457 (2) Å

  • c = 9.9560 (6) Å

  • V = 2436.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.35 × 0.28 × 0.25 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.974, Tmax = 0.981

  • 10360 measured reflections

  • 2991 independent reflections

  • 1900 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.163

  • S = 1.02

  • 2991 reflections

  • 155 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Naturally abundant diterpenoid/norditerpenoid alkaloids contain the 3-azabicyclononane nucleus, which is an important class of pharmacophore due to its broad spectrum of biological activities such as antibacterial, antimycobacterial, antifungal, anticancer, antitussive, anti-inflammatory, sedative, antipyretic and calcium antagonistic activity (Jeyaraman & Avila, 1981; Barker et al., 2005; Parthiban et al., 2009a, 2010b, 2010c). Its biological significant prompted the medicinal chemists to synthesize some structural analogs. Since the stereochemistry plays an important role in biological actions, it is important to establish the stereochemistry of the synthesized bio-potent molecules. For the synthesized title compound, several stereomers are possible with conformations such as chair-chair (Parthiban et al., 2009b, 2009c, 2010a; Cox et al., 1985), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972). Hence, the title crystal was undertaken for this study to explore its stereochemistry, unambiguously.

The analysis of torsion angles, asymmetry parameters and puckering parameters calculated for the title compound shows that the piperidine ring adopts a near ideal chair conformation. According to Cremer & Pople, the total puckering amplitude, QT is -0.613 (2) Å and the phase angle θ is 178.67 (19)° (Cremer & Pople, 1975). The smallest displacement asymmetry parameters q2 and q3 are 0.005 (2) and -0.612 (2)°, respectively (Nardelli, 1983). However, the cyclohexane ring deviates from the ideal chair conformation according to Cremer and Pople by QT = 0.573 (2) and θ = 16.1 (2)° (Cremer & Pople, 1975) as well as Nardelli by q2 = 0.158 (2) and q3 = 0.550 (2)° (Nardelli, 1983). Hence, the title compound C28H37NO3, exists in a twin-chair conformation with equatorial orientation of the 4-butoxyphenyl groups on both sides of the secondary amino group on the heterocycle. The aryl groups are orientated at an angle of 38.54 (3)° to each other. The torsion angle of C3—C2—C1—C6 and its mirror image is 176.03 (4)°. The crystal packing is stabilized by weak van der Waals interactions.

Related literature top

For the synthesis and biological activity of 3-azabicyclo[3.3.1] nonan-9-ones, see: Jeyaraman & Avila (1981); Barker et al. (2005); Parthiban et al. (2009a, 2010b,c); Cox et al. (1985)). For related structures, see: Parthiban et al. (2009b,c, 2010a); Smith-Verdier et al. (1983); Padegimas & Kovacic (1972). For ring puckering parameters, see: Cremer & Pople (1975); Nardelli (1983).

Experimental top

The title compound was synthesized by a modified and an optimized Mannich condensation in one-pot, using 4-butoxybenzaldehyde (0.1 mol, 17.82 g/17.29 ml), cyclohexanone (0.05 mol, 4.90 g/5.18 ml) and ammonium acetate (0.075 mol, 5.78 g) in a 50 ml of absolute ethanol. The mixture was gently warmed on a hot plate at 303–308 K (30–35° C) with moderate stirring till the complete consumption of the starting materials, which was monitored by TLC. At the end, the crude azabicyclic ketone was separated by filtration and gently washed with 1:5 cold ethanol-ether mixture. X-ray diffraction quality crystals of the title compound were obtained by slow evaporation from ethanol.

Refinement top

The nitrogen H atom was located in a difference Fourier map and refined isotropically. Other hydrogen atoms were fixed geometrically and allowed to ride on the parent carbon atoms with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98Å and methylene C—H = 0.97 Å. The displacement parameters were set for phenyl, methylene and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Anisotropic displacement representation of the molecule with 30% probability ellipsoids. Symmetry code: (i) x, -y+1/2, z.
2,4-Bis(4-butoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C28H37NO3F(000) = 944
Mr = 435.59Dx = 1.188 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 4431 reflections
a = 7.7780 (5) Åθ = 3.3–26.9°
b = 31.457 (2) ŵ = 0.08 mm1
c = 9.9560 (6) ÅT = 298 K
V = 2436.0 (3) Å3Block, colorless
Z = 40.35 × 0.28 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2991 independent reflections
Radiation source: fine-focus sealed tube1900 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 28.3°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 109
Tmin = 0.974, Tmax = 0.981k = 2141
10360 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0606P)2 + 1.2024P]
where P = (Fo2 + 2Fc2)/3
2991 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C28H37NO3V = 2436.0 (3) Å3
Mr = 435.59Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.7780 (5) ŵ = 0.08 mm1
b = 31.457 (2) ÅT = 298 K
c = 9.9560 (6) Å0.35 × 0.28 × 0.25 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2991 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1900 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.981Rint = 0.025
10360 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.163H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.32 e Å3
2991 reflectionsΔρmin = 0.18 e Å3
155 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1848 (3)0.71161 (6)0.10972 (19)0.0455 (5)
H11.22390.71360.20310.055*
C21.3471 (3)0.71050 (6)0.0188 (2)0.0487 (5)
H21.41650.68570.04320.058*
C31.4496 (4)0.75000.0466 (3)0.0494 (7)
C41.3130 (3)0.70937 (6)0.1338 (2)0.0523 (5)
H4A1.42080.70440.18010.063*
H4B1.23720.68570.15360.063*
C51.2325 (4)0.75000.1884 (3)0.0547 (7)
H5A1.11090.75000.16670.066*
H5B1.24290.75000.28550.066*
C61.0781 (3)0.67181 (6)0.09708 (18)0.0440 (4)
C70.9491 (3)0.66660 (6)0.0020 (2)0.0542 (5)
H70.92130.68910.05440.065*
C80.8618 (3)0.62882 (7)0.0105 (2)0.0560 (5)
H80.77650.62600.07530.067*
C90.9001 (3)0.59496 (6)0.0730 (2)0.0495 (5)
C101.0237 (3)0.59983 (6)0.1706 (2)0.0530 (5)
H101.04870.57750.22880.064*
C111.1108 (3)0.63806 (6)0.1821 (2)0.0500 (5)
H111.19360.64110.24890.060*
C120.8378 (3)0.52285 (6)0.1337 (2)0.0601 (6)
H12A0.81540.52960.22710.072*
H12B0.95670.51390.12530.072*
C130.7190 (3)0.48792 (7)0.0868 (3)0.0663 (6)
H13A0.60130.49780.09450.080*
H13B0.74130.48250.00750.080*
C140.7355 (4)0.44743 (7)0.1615 (3)0.0752 (7)
H14A0.70820.45230.25530.090*
H14B0.85380.43770.15660.090*
C150.6187 (4)0.41318 (8)0.1070 (3)0.0882 (9)
H15A0.50200.42310.10800.132*
H15B0.62830.38820.16180.132*
H15C0.65170.40650.01650.132*
N11.0856 (3)0.75000.0803 (2)0.0456 (5)
O11.5979 (3)0.75000.0826 (2)0.0692 (6)
O20.8061 (2)0.55880 (5)0.05158 (16)0.0662 (5)
H1N0.991 (4)0.75000.127 (3)0.052 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0549 (11)0.0463 (10)0.0354 (10)0.0017 (9)0.0014 (8)0.0015 (8)
C20.0523 (11)0.0457 (10)0.0480 (11)0.0066 (9)0.0010 (9)0.0022 (8)
C30.0480 (16)0.0612 (17)0.0392 (15)0.0000.0013 (13)0.000
C40.0609 (12)0.0500 (11)0.0459 (11)0.0011 (9)0.0079 (10)0.0064 (9)
C50.0652 (19)0.0616 (18)0.0374 (15)0.0000.0012 (14)0.000
C60.0516 (10)0.0444 (10)0.0360 (10)0.0038 (8)0.0046 (8)0.0018 (8)
C70.0670 (13)0.0523 (12)0.0434 (11)0.0004 (10)0.0066 (10)0.0120 (9)
C80.0617 (12)0.0598 (13)0.0465 (12)0.0056 (10)0.0106 (10)0.0068 (9)
C90.0540 (11)0.0458 (10)0.0487 (12)0.0017 (9)0.0047 (9)0.0021 (9)
C100.0566 (12)0.0458 (11)0.0565 (13)0.0079 (9)0.0016 (10)0.0125 (9)
C110.0534 (11)0.0511 (11)0.0456 (11)0.0063 (9)0.0059 (9)0.0055 (9)
C120.0604 (13)0.0494 (12)0.0704 (15)0.0043 (10)0.0027 (12)0.0078 (10)
C130.0629 (13)0.0600 (14)0.0761 (17)0.0033 (11)0.0005 (12)0.0103 (12)
C140.0776 (16)0.0589 (14)0.0893 (19)0.0063 (12)0.0013 (15)0.0050 (13)
C150.104 (2)0.0565 (14)0.104 (2)0.0075 (14)0.0128 (18)0.0072 (14)
N10.0490 (13)0.0441 (12)0.0439 (13)0.0000.0054 (11)0.000
O10.0563 (13)0.0787 (15)0.0725 (16)0.0000.0153 (12)0.000
O20.0762 (10)0.0504 (8)0.0721 (11)0.0099 (8)0.0117 (9)0.0099 (7)
Geometric parameters (Å, º) top
C1—N11.463 (2)C9—O21.369 (2)
C1—C61.507 (3)C9—C101.376 (3)
C1—C21.554 (3)C10—C111.385 (3)
C1—H10.9800C10—H100.9300
C2—C31.502 (2)C11—H110.9300
C2—C41.543 (3)C12—O21.417 (2)
C2—H20.9800C12—C131.510 (3)
C3—O11.208 (3)C12—H12A0.9700
C3—C2i1.502 (2)C12—H12B0.9700
C4—C51.523 (3)C13—C141.481 (3)
C4—H4A0.9700C13—H13A0.9700
C4—H4B0.9700C13—H13B0.9700
C5—C4i1.523 (3)C14—C151.510 (4)
C5—H5A0.9700C14—H14A0.9700
C5—H5B0.9700C14—H14B0.9700
C6—C111.382 (3)C15—H15A0.9600
C6—C71.390 (3)C15—H15B0.9600
C7—C81.374 (3)C15—H15C0.9600
C7—H70.9300N1—C1i1.463 (2)
C8—C91.384 (3)N1—H1N0.87 (3)
C8—H80.9300
N1—C1—C6112.25 (17)O2—C9—C8115.55 (18)
N1—C1—C2109.31 (16)C10—C9—C8119.29 (19)
C6—C1—C2112.33 (15)C9—C10—C11119.77 (18)
N1—C1—H1107.6C9—C10—H10120.1
C6—C1—H1107.6C11—C10—H10120.1
C2—C1—H1107.6C6—C11—C10121.80 (19)
C3—C2—C4106.96 (18)C6—C11—H11119.1
C3—C2—C1107.76 (17)C10—C11—H11119.1
C4—C2—C1115.76 (17)O2—C12—C13107.21 (19)
C3—C2—H2108.7O2—C12—H12A110.3
C4—C2—H2108.7C13—C12—H12A110.3
C1—C2—H2108.7O2—C12—H12B110.3
O1—C3—C2124.15 (12)C13—C12—H12B110.3
O1—C3—C2i124.15 (12)H12A—C12—H12B108.5
C2—C3—C2i111.7 (2)C14—C13—C12114.7 (2)
C5—C4—C2113.74 (17)C14—C13—H13A108.6
C5—C4—H4A108.8C12—C13—H13A108.6
C2—C4—H4A108.8C14—C13—H13B108.6
C5—C4—H4B108.8C12—C13—H13B108.6
C2—C4—H4B108.8H13A—C13—H13B107.6
H4A—C4—H4B107.7C13—C14—C15112.4 (2)
C4—C5—C4i114.1 (2)C13—C14—H14A109.1
C4—C5—H5A108.7C15—C14—H14A109.1
C4i—C5—H5A108.7C13—C14—H14B109.1
C4—C5—H5B108.7C15—C14—H14B109.1
C4i—C5—H5B108.7H14A—C14—H14B107.9
H5A—C5—H5B107.6C14—C15—H15A109.5
C11—C6—C7117.37 (18)C14—C15—H15B109.5
C11—C6—C1119.07 (18)H15A—C15—H15B109.5
C7—C6—C1123.54 (17)C14—C15—H15C109.5
C8—C7—C6121.36 (18)H15A—C15—H15C109.5
C8—C7—H7119.3H15B—C15—H15C109.5
C6—C7—H7119.3C1—N1—C1i111.3 (2)
C7—C8—C9120.3 (2)C1—N1—H1N109.8 (9)
C7—C8—H8119.8C1i—N1—H1N109.8 (9)
C9—C8—H8119.8C9—O2—C12118.72 (17)
O2—C9—C10125.15 (18)
N1—C1—C2—C358.7 (2)C1—C6—C7—C8176.3 (2)
C6—C1—C2—C3176.04 (17)C6—C7—C8—C90.5 (3)
N1—C1—C2—C461.0 (2)C7—C8—C9—O2179.7 (2)
C6—C1—C2—C464.3 (2)C7—C8—C9—C101.5 (3)
C4—C2—C3—O1111.7 (3)O2—C9—C10—C11179.82 (19)
C1—C2—C3—O1123.2 (3)C8—C9—C10—C111.6 (3)
C4—C2—C3—C2i66.0 (3)C7—C6—C11—C102.4 (3)
C1—C2—C3—C2i59.1 (3)C1—C6—C11—C10176.39 (18)
C3—C2—C4—C552.9 (2)C9—C10—C11—C60.4 (3)
C1—C2—C4—C567.2 (2)O2—C12—C13—C14179.6 (2)
C2—C4—C5—C4i43.6 (3)C12—C13—C14—C15177.8 (2)
N1—C1—C6—C11145.94 (19)C6—C1—N1—C1i172.73 (12)
C2—C1—C6—C1190.4 (2)C2—C1—N1—C1i61.9 (2)
N1—C1—C6—C735.4 (3)C10—C9—O2—C121.0 (3)
C2—C1—C6—C788.3 (2)C8—C9—O2—C12179.72 (19)
C11—C6—C7—C82.4 (3)C13—C12—O2—C9179.18 (19)
Symmetry code: (i) x, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC28H37NO3
Mr435.59
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)298
a, b, c (Å)7.7780 (5), 31.457 (2), 9.9560 (6)
V3)2436.0 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.35 × 0.28 × 0.25
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.974, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
10360, 2991, 1900
Rint0.025
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.163, 1.02
No. of reflections2991
No. of parameters155
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.18

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

This research was supported by the Industrial Technology Development program, which was conducted by the Ministry of Knowledge Economy of the Korean Government. The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBarker, D., Lin, D. H. S., Carland, J. E., Chu, C. P. Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2004). APEX2, XPREP, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). J. Chem. Soc. Chem. Commun. pp. 626–628.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationNardelli, M. (1983). Acta Cryst. C39, 1141–1142.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPadegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Aridoss, G., Rathika, P., Ramkumar, V. & Kabilan, S. (2009a). Bioorg. Med. Chem. Lett. 19, 6981–6985.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationParthiban, P., Ramkumar, V., Amirthaganesan, S. & Jeong, Y. T. (2009b). Acta Cryst. E65, o1356.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V. & Jeong, Y. T. (2010a). Acta Cryst. E66, o48–o49.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2009c). Acta Cryst. E65, o1383.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Rathika, P., Park, K. S. & Jeong, Y. T. (2010b). Monatsh. Chem. 141, 79–93.  Web of Science CrossRef CAS Google Scholar
First citationParthiban, P., Rathika, P., Ramkumar, V., Son, S. M. & Jeong, Y. T. (2010c). Bioorg. Med. Chem. Lett. 20, 1642–1647.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds