organic compounds
2-Azaniumylcarba-closo-dodecaborate ethanol monosolvate
aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: maik.finze@uni-duesseldorf.de
Two formula units of the title compound, 2-H3N-closo-1-CB11H11·CH3CH2OH or CH14B11N·C2H5OH, form a ring motif of R42(8) type in the solid state that surrounds a crystallographic center of symmetry. The ring motif is a result of N—H⋯O hydrogen bonds. In contrast to many structures of {closo-1-CB11} clusters, the assignment of the position of the cluster C atom in the structure of the title compound is unambigious. The relatively long B—N bond length [1.5396 (10) Å] documents the absence of any B—N π-interaction in the title compound although this was observed for a related 2-aminocarba-closo-dodecaborate.
Related literature
For a general overview on monocarba-closo-dodecaborates, see: Körbe et al. (2006). For the synthesis and properties of 2-amino- and 2-azaniumylcarba-closo-dodecaboron clusters, see: Finze (2009). For structures and properties of related {closo-1-CB11} clusters with NH2 and NH3 groups, see: Jelínek et al. (1986); Finze (2007); Finze et al. (2007); Finze & Sprenger (2010). For hydrogen-bond motifs, see: Etter (1990).
Experimental
Crystal data
|
Data collection
Refinement
|
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536811006222/br2161sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536811006222/br2161Isup2.hkl
2-H3N-closo-1-CB11H11 was synthesized according to a published procedure that also includes the spectroscopic data (Finze, 2009). The title compound was dissolved in a minimum amount of diethyl ether, ethanol, and chloroform (20:1:1). The clear colorless solution was stored at 3 °C in a refrigerator resulting in colorless crystals within two days.
A single crystal suitable for
was harvested under a dry nitrogen atmosphere and was directly transferred into the cooling stream of an Oxford-Xcalibur diffractometer equipped with an EOS-CCD detector.All hydrogen atoms were located from difference Fourier synthesis. The H atoms of the 2-aminocarba-closo-dodecaborane and the H atom of the hydroxy group of the ethanol molecule were refined without any restraints. For the H atoms of the CH2 and CH3 group a riding model was employed and for each group a common Uiso value was refined.
Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell
CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).CH14B11N·C2H6O | F(000) = 432 |
Mr = 205.11 | Dx = 1.115 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 48838 reflections |
a = 9.5753 (2) Å | θ = 3.0–35.4° |
b = 9.2549 (2) Å | µ = 0.06 mm−1 |
c = 13.9095 (5) Å | T = 120 K |
β = 97.519 (3)° | Block, colourless |
V = 1222.04 (6) Å3 | 0.28 × 0.26 × 0.20 mm |
Z = 4 |
Oxford Diffraction Xcalibur Eos diffractometer | 3199 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.030 |
Graphite monochromator | θmax = 30.0°, θmin = 4.3° |
ω scans | h = −13→13 |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | k = −13→13 |
Tmin = 0.729, Tmax = 1.000 | l = −19→19 |
61096 measured reflections | 3 standard reflections every 60 min |
3561 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.029 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | w = 1/[σ2(Fo2) + 0.6P] where P = (Fo2 + 2Fc2)/3 |
3561 reflections | (Δ/σ)max < 0.001 |
208 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.22 e Å−3 |
CH14B11N·C2H6O | V = 1222.04 (6) Å3 |
Mr = 205.11 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.5753 (2) Å | µ = 0.06 mm−1 |
b = 9.2549 (2) Å | T = 120 K |
c = 13.9095 (5) Å | 0.28 × 0.26 × 0.20 mm |
β = 97.519 (3)° |
Oxford Diffraction Xcalibur Eos diffractometer | 3199 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) | Rint = 0.030 |
Tmin = 0.729, Tmax = 1.000 | 3 standard reflections every 60 min |
61096 measured reflections | intensity decay: none |
3561 independent reflections |
R[F2 > 2σ(F2)] = 0.029 | 0 restraints |
wR(F2) = 0.069 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.02 | Δρmax = 0.31 e Å−3 |
3561 reflections | Δρmin = −0.22 e Å−3 |
208 parameters |
Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06–11-2009). Numerical absorption correction based on Gaussian integration over a multifaceted crystal model.. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.64079 (8) | 0.84830 (8) | 0.78113 (5) | 0.01344 (14) | |
H1 | 0.5827 (11) | 0.9122 (12) | 0.8122 (7) | 0.018 (3)* | |
B2 | 0.80596 (8) | 0.81753 (9) | 0.83584 (6) | 0.01164 (14) | |
N1 | 0.85434 (7) | 0.89268 (8) | 0.93327 (5) | 0.01414 (13) | |
H1A | 0.9385 (13) | 0.8604 (13) | 0.9609 (8) | 0.027 (3)* | |
H1B | 0.8607 (12) | 0.9893 (14) | 0.9280 (8) | 0.026 (3)* | |
H1C | 0.7976 (12) | 0.8764 (13) | 0.9748 (8) | 0.024 (3)* | |
B3 | 0.67585 (9) | 0.68137 (9) | 0.83322 (6) | 0.01329 (15) | |
H3 | 0.6339 (11) | 0.6570 (11) | 0.8994 (7) | 0.018 (3)* | |
B4 | 0.56348 (9) | 0.70103 (10) | 0.72203 (6) | 0.01463 (16) | |
H4 | 0.4514 (11) | 0.6832 (12) | 0.7204 (8) | 0.022 (3)* | |
B5 | 0.62540 (9) | 0.85015 (9) | 0.65759 (6) | 0.01452 (16) | |
H5 | 0.5509 (11) | 0.9214 (12) | 0.6171 (7) | 0.019 (3)* | |
B6 | 0.77708 (9) | 0.92320 (9) | 0.72901 (6) | 0.01289 (15) | |
H6 | 0.7950 (11) | 1.0393 (11) | 0.7353 (7) | 0.019 (3)* | |
B7 | 0.84826 (8) | 0.63822 (9) | 0.80794 (6) | 0.01176 (14) | |
H7 | 0.9196 (11) | 0.5751 (12) | 0.8583 (7) | 0.019 (3)* | |
B8 | 0.69640 (9) | 0.56516 (9) | 0.73553 (6) | 0.01280 (15) | |
H8 | 0.6694 (11) | 0.4511 (12) | 0.7382 (7) | 0.020 (3)* | |
B9 | 0.66519 (9) | 0.66986 (9) | 0.62665 (6) | 0.01348 (15) | |
H9 | 0.6180 (11) | 0.6216 (12) | 0.5578 (7) | 0.019 (3)* | |
B10 | 0.79711 (9) | 0.80728 (9) | 0.63111 (6) | 0.01288 (15) | |
H10 | 0.8360 (11) | 0.8478 (11) | 0.5659 (7) | 0.018 (3)* | |
B11 | 0.91068 (8) | 0.78779 (9) | 0.74285 (6) | 0.01167 (15) | |
H11 | 1.0217 (11) | 0.8179 (11) | 0.7508 (8) | 0.019 (3)* | |
B12 | 0.84085 (8) | 0.63102 (9) | 0.67959 (6) | 0.01164 (14) | |
H12 | 0.9092 (11) | 0.5566 (11) | 0.6440 (7) | 0.017 (2)* | |
O1 | 0.88753 (6) | 1.20322 (7) | 0.94495 (5) | 0.01863 (12) | |
H1O | 0.9206 (15) | 1.2323 (16) | 0.9014 (10) | 0.045 (4)* | |
C2 | 0.78862 (9) | 1.30879 (9) | 0.97377 (6) | 0.02120 (17) | |
H2A | 0.7249 | 1.3401 | 0.9176 | 0.035 (2)* | |
H2B | 0.8390 | 1.3926 | 1.0021 | 0.035 (2)* | |
C3 | 0.70730 (10) | 1.23985 (10) | 1.04632 (7) | 0.02545 (19) | |
H3A | 0.7713 | 1.2070 | 1.1008 | 0.043 (2)* | |
H3B | 0.6550 | 1.1592 | 1.0170 | 0.043 (2)* | |
H3C | 0.6435 | 1.3092 | 1.0677 | 0.043 (2)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0119 (3) | 0.0125 (3) | 0.0161 (3) | 0.0009 (3) | 0.0025 (3) | −0.0011 (3) |
B2 | 0.0120 (3) | 0.0121 (3) | 0.0109 (3) | −0.0006 (3) | 0.0020 (3) | −0.0010 (3) |
N1 | 0.0162 (3) | 0.0148 (3) | 0.0116 (3) | −0.0014 (2) | 0.0026 (2) | −0.0018 (2) |
B3 | 0.0134 (3) | 0.0129 (4) | 0.0140 (3) | −0.0008 (3) | 0.0036 (3) | −0.0005 (3) |
B4 | 0.0116 (3) | 0.0141 (4) | 0.0181 (4) | −0.0007 (3) | 0.0016 (3) | −0.0019 (3) |
B5 | 0.0141 (4) | 0.0135 (4) | 0.0153 (4) | 0.0017 (3) | −0.0007 (3) | −0.0001 (3) |
B6 | 0.0140 (3) | 0.0113 (3) | 0.0134 (3) | −0.0001 (3) | 0.0021 (3) | 0.0003 (3) |
B7 | 0.0123 (3) | 0.0114 (3) | 0.0118 (3) | 0.0001 (3) | 0.0022 (3) | 0.0007 (3) |
B8 | 0.0130 (3) | 0.0117 (3) | 0.0139 (3) | −0.0011 (3) | 0.0026 (3) | −0.0005 (3) |
B9 | 0.0139 (3) | 0.0128 (4) | 0.0133 (3) | 0.0002 (3) | 0.0002 (3) | −0.0010 (3) |
B10 | 0.0151 (4) | 0.0119 (3) | 0.0116 (3) | 0.0003 (3) | 0.0016 (3) | 0.0005 (3) |
B11 | 0.0118 (3) | 0.0117 (3) | 0.0117 (3) | −0.0005 (3) | 0.0024 (3) | 0.0000 (3) |
B12 | 0.0124 (3) | 0.0111 (3) | 0.0115 (3) | 0.0004 (3) | 0.0022 (3) | 0.0000 (3) |
O1 | 0.0193 (3) | 0.0187 (3) | 0.0190 (3) | 0.0011 (2) | 0.0069 (2) | 0.0008 (2) |
C2 | 0.0232 (4) | 0.0159 (4) | 0.0251 (4) | 0.0040 (3) | 0.0055 (3) | 0.0024 (3) |
C3 | 0.0242 (4) | 0.0254 (4) | 0.0286 (4) | 0.0045 (3) | 0.0108 (3) | 0.0023 (4) |
C1—B2 | 1.6872 (11) | B5—B6 | 1.7821 (12) |
C1—B3 | 1.7207 (12) | B5—H5 | 1.075 (10) |
C1—B4 | 1.7094 (12) | B6—B10 | 1.7636 (12) |
C1—B5 | 1.7055 (12) | B6—B11 | 1.7832 (12) |
C1—B6 | 1.7196 (11) | B6—H6 | 1.090 (11) |
C1—H1 | 0.953 (10) | B7—B12 | 1.7787 (11) |
B2—N1 | 1.5396 (10) | B7—B8 | 1.7896 (12) |
B2—B11 | 1.7589 (11) | B7—B11 | 1.7985 (12) |
B2—B7 | 1.7634 (12) | B7—H7 | 1.083 (10) |
B2—B3 | 1.7691 (12) | B8—B12 | 1.7809 (12) |
B2—B6 | 1.7702 (12) | B8—B9 | 1.7898 (12) |
N1—H1A | 0.898 (12) | B8—H8 | 1.088 (11) |
N1—H1B | 0.900 (12) | B9—B12 | 1.7822 (12) |
N1—H1C | 0.857 (12) | B9—B10 | 1.7878 (12) |
B3—B8 | 1.7641 (12) | B9—H9 | 1.099 (10) |
B3—B4 | 1.7742 (12) | B10—B11 | 1.7856 (12) |
B3—B7 | 1.7777 (12) | B10—B12 | 1.7937 (12) |
B3—H3 | 1.075 (10) | B10—H10 | 1.091 (10) |
B4—B9 | 1.7692 (12) | B11—B12 | 1.7811 (12) |
B4—B8 | 1.7816 (12) | B11—H11 | 1.091 (10) |
B4—B5 | 1.7885 (13) | B12—H12 | 1.110 (10) |
B4—H4 | 1.083 (11) | O1—C2 | 1.4532 (10) |
B5—B10 | 1.7761 (12) | O1—H1O | 0.768 (15) |
B5—B9 | 1.7770 (12) | C2—C3 | 1.4958 (12) |
B2—C1—B5 | 114.11 (6) | B11—B6—H6 | 125.5 (6) |
B2—C1—B4 | 113.81 (6) | B5—B6—H6 | 121.8 (5) |
B5—C1—B4 | 63.16 (5) | B2—B7—B3 | 59.94 (5) |
B2—C1—B6 | 62.60 (5) | B2—B7—B12 | 106.02 (6) |
B5—C1—B6 | 62.71 (5) | B3—B7—B12 | 106.91 (6) |
B4—C1—B6 | 115.05 (6) | B2—B7—B8 | 106.64 (6) |
B2—C1—B3 | 62.53 (5) | B3—B7—B8 | 59.27 (5) |
B5—C1—B3 | 114.82 (6) | B12—B7—B8 | 59.88 (5) |
B4—C1—B3 | 62.29 (5) | B2—B7—B11 | 59.17 (4) |
B6—C1—B3 | 114.99 (6) | B3—B7—B11 | 107.76 (6) |
B2—C1—H1 | 117.9 (6) | B12—B7—B11 | 59.72 (5) |
B5—C1—H1 | 118.2 (6) | B8—B7—B11 | 107.85 (6) |
B4—C1—H1 | 118.1 (6) | B2—B7—H7 | 120.6 (6) |
B6—C1—H1 | 117.5 (6) | B3—B7—H7 | 121.1 (5) |
B3—C1—H1 | 117.3 (6) | B12—B7—H7 | 124.6 (5) |
N1—B2—C1 | 118.49 (6) | B8—B7—H7 | 123.9 (6) |
N1—B2—B11 | 125.67 (6) | B11—B7—H7 | 121.2 (6) |
C1—B2—B11 | 106.60 (6) | B3—B8—B12 | 107.41 (6) |
N1—B2—B7 | 124.58 (6) | B3—B8—B4 | 60.05 (5) |
C1—B2—B7 | 106.76 (6) | B12—B8—B4 | 107.30 (6) |
B11—B2—B7 | 61.41 (5) | B3—B8—B9 | 107.38 (6) |
N1—B2—B3 | 118.02 (6) | B12—B8—B9 | 59.88 (5) |
C1—B2—B3 | 59.66 (5) | B4—B8—B9 | 59.39 (5) |
B11—B2—B3 | 109.94 (6) | B3—B8—B7 | 60.03 (5) |
B7—B2—B3 | 60.43 (5) | B12—B8—B7 | 59.76 (5) |
N1—B2—B6 | 119.03 (6) | B4—B8—B7 | 108.02 (6) |
C1—B2—B6 | 59.59 (5) | B9—B8—B7 | 107.76 (6) |
B11—B2—B6 | 60.70 (5) | B3—B8—H8 | 120.9 (5) |
B7—B2—B6 | 110.51 (6) | B12—B8—H8 | 123.2 (5) |
B3—B2—B6 | 110.12 (6) | B4—B8—H8 | 121.2 (6) |
B2—N1—H1A | 112.1 (7) | B9—B8—H8 | 122.7 (6) |
B2—N1—H1B | 113.1 (7) | B7—B8—H8 | 121.8 (6) |
H1A—N1—H1B | 107.4 (10) | B4—B9—B5 | 60.58 (5) |
B2—N1—H1C | 111.7 (8) | B4—B9—B12 | 107.78 (6) |
H1A—N1—H1C | 105.5 (10) | B5—B9—B12 | 108.06 (6) |
H1B—N1—H1C | 106.6 (10) | B4—B9—B10 | 108.28 (6) |
C1—B3—B8 | 104.97 (6) | B5—B9—B10 | 59.77 (5) |
C1—B3—B2 | 57.81 (5) | B12—B9—B10 | 60.32 (5) |
B8—B3—B2 | 107.51 (6) | B4—B9—B8 | 60.07 (5) |
C1—B3—B4 | 58.54 (5) | B5—B9—B8 | 108.71 (6) |
B8—B3—B4 | 60.47 (5) | B12—B9—B8 | 59.81 (5) |
B2—B3—B4 | 106.86 (6) | B10—B9—B8 | 108.47 (6) |
C1—B3—B7 | 104.68 (6) | B4—B9—H9 | 121.0 (5) |
B8—B3—B7 | 60.70 (5) | B5—B9—H9 | 121.0 (6) |
B2—B3—B7 | 59.63 (5) | B12—B9—H9 | 122.5 (5) |
B4—B3—B7 | 108.88 (6) | B10—B9—H9 | 121.8 (5) |
C1—B3—H3 | 118.3 (6) | B8—B9—H9 | 121.4 (6) |
B8—B3—H3 | 128.6 (6) | B6—B10—B5 | 60.46 (5) |
B2—B3—H3 | 118.2 (6) | B6—B10—B11 | 60.32 (5) |
B4—B3—H3 | 121.0 (5) | B5—B10—B11 | 108.48 (6) |
B7—B3—H3 | 125.7 (5) | B6—B10—B9 | 108.17 (6) |
C1—B4—B9 | 104.15 (6) | B5—B10—B9 | 59.81 (5) |
C1—B4—B3 | 59.17 (5) | B11—B10—B9 | 107.78 (6) |
B9—B4—B3 | 107.84 (6) | B6—B10—B12 | 107.86 (6) |
C1—B4—B8 | 104.69 (6) | B5—B10—B12 | 107.59 (6) |
B9—B4—B8 | 60.54 (5) | B11—B10—B12 | 59.68 (5) |
B3—B4—B8 | 59.49 (5) | B9—B10—B12 | 59.69 (5) |
C1—B4—B5 | 58.31 (5) | B6—B10—H10 | 121.1 (6) |
B9—B4—B5 | 59.93 (5) | B5—B10—H10 | 121.5 (5) |
B3—B4—B5 | 108.24 (6) | B11—B10—H10 | 121.5 (5) |
B8—B4—B5 | 108.57 (6) | B9—B10—H10 | 122.2 (6) |
C1—B4—H4 | 119.8 (6) | B12—B10—H10 | 122.4 (6) |
B9—B4—H4 | 126.9 (6) | B2—B11—B12 | 106.11 (6) |
B3—B4—H4 | 119.3 (6) | B2—B11—B6 | 59.96 (5) |
B8—B4—H4 | 125.9 (6) | B12—B11—B6 | 107.55 (6) |
B5—B4—H4 | 120.0 (6) | B2—B11—B10 | 106.46 (6) |
C1—B5—B10 | 104.26 (6) | B12—B11—B10 | 60.38 (5) |
C1—B5—B9 | 103.98 (6) | B6—B11—B10 | 59.23 (5) |
B10—B5—B9 | 60.42 (5) | B2—B11—B7 | 59.42 (5) |
C1—B5—B6 | 59.03 (5) | B12—B11—B7 | 59.59 (4) |
B10—B5—B6 | 59.42 (5) | B6—B11—B7 | 108.32 (6) |
B9—B5—B6 | 107.84 (6) | B10—B11—B7 | 108.14 (6) |
C1—B5—B4 | 58.52 (5) | B2—B11—H11 | 121.8 (6) |
B10—B5—B4 | 107.94 (6) | B12—B11—H11 | 123.8 (6) |
B9—B5—B4 | 59.50 (5) | B6—B11—H11 | 120.5 (6) |
B6—B5—B4 | 108.23 (6) | B10—B11—H11 | 122.5 (6) |
C1—B5—H5 | 119.9 (6) | B7—B11—H11 | 122.0 (6) |
B10—B5—H5 | 126.7 (6) | B7—B12—B8 | 60.37 (5) |
B9—B5—H5 | 126.7 (6) | B7—B12—B11 | 60.69 (5) |
B6—B5—H5 | 119.7 (6) | B8—B12—B11 | 109.01 (6) |
B4—B5—H5 | 119.7 (6) | B7—B12—B9 | 108.58 (6) |
C1—B6—B10 | 104.21 (6) | B8—B12—B9 | 60.31 (5) |
C1—B6—B2 | 57.80 (4) | B11—B12—B9 | 108.23 (6) |
B10—B6—B2 | 106.93 (6) | B7—B12—B10 | 108.66 (6) |
C1—B6—B11 | 104.15 (6) | B8—B12—B10 | 108.60 (6) |
B10—B6—B11 | 60.45 (5) | B11—B12—B10 | 59.93 (5) |
B2—B6—B11 | 59.34 (5) | B9—B12—B10 | 59.99 (5) |
C1—B6—B5 | 58.26 (5) | B7—B12—H12 | 121.5 (5) |
B10—B6—B5 | 60.12 (5) | B8—B12—H12 | 121.3 (5) |
B2—B6—B5 | 106.55 (6) | B11—B12—H12 | 121.4 (5) |
B11—B6—B5 | 108.32 (6) | B9—B12—H12 | 121.4 (5) |
C1—B6—H6 | 118.9 (5) | B10—B12—H12 | 121.3 (5) |
B10—B6—H6 | 129.1 (5) | C2—O1—H1O | 109.4 (11) |
B2—B6—H6 | 118.1 (5) | O1—C2—C3 | 108.36 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1 | 0.900 (12) | 2.006 (12) | 2.8937 (9) | 168.5 (10) |
N1—H1A···O1i | 0.898 (12) | 2.065 (12) | 2.9446 (9) | 166.1 (10) |
Symmetry code: (i) −x+2, −y+2, −z+2. |
Experimental details
Crystal data | |
Chemical formula | CH14B11N·C2H6O |
Mr | 205.11 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 120 |
a, b, c (Å) | 9.5753 (2), 9.2549 (2), 13.9095 (5) |
β (°) | 97.519 (3) |
V (Å3) | 1222.04 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.06 |
Crystal size (mm) | 0.28 × 0.26 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur Eos diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) |
Tmin, Tmax | 0.729, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 61096, 3561, 3199 |
Rint | 0.030 |
(sin θ/λ)max (Å−1) | 0.703 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.029, 0.069, 1.02 |
No. of reflections | 3561 |
No. of parameters | 208 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.31, −0.22 |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O1 | 0.900 (12) | 2.006 (12) | 2.8937 (9) | 168.5 (10) |
N1—H1A···O1i | 0.898 (12) | 2.065 (12) | 2.9446 (9) | 166.1 (10) |
Symmetry code: (i) −x+2, −y+2, −z+2. |
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and by the Fonds der Chemischen Industrie (FCI).
References
Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Etter, M. C. (1990). Acc. Chem. Res. 23, 120–126. CrossRef CAS Web of Science Google Scholar
Finze, M. (2007). Angew. Chem. Int. Ed. 46, 8880–8882. Web of Science CSD CrossRef CAS Google Scholar
Finze, M. (2009). Chem. Eur. J. 15, 947–962. Web of Science CSD CrossRef PubMed CAS Google Scholar
Finze, M., Reiss, G. J. & Zähres, M. (2007). Inorg. Chem. 46, 9873–9883. Web of Science CSD CrossRef PubMed CAS Google Scholar
Finze, M. & Sprenger, J. A. P. (2010). Z. Anorg. Allg. Chem. 636, 1518–1542. Web of Science CSD CrossRef Google Scholar
Jelínek, T., Plešek, J., Heřmánek, S. & Štíbr, B. (1986). Collect. Czech. Chem. Commun. 51, 819–829. Google Scholar
Körbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev. 106, 5208–5249. Web of Science PubMed Google Scholar
Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Icosahedral monocarba-closo-dodecaborates with functional groups, for example amino or ammonio that are bonded to the cluster atoms are building blocks for a broad range of applications (Körbe et al., 2006). The properties and the reactivity of the amino groups depend on (i) the further substituents of the {closo-1-CB11} cluster and (ii) the type of the cluster atom, either carbon or boron that it is bonded to. The influence of the substituents is evident from a comparison of the properties of [1-H2N-closo-1-CB11X11]- with X equal to either H or F. The non-fluorinated anion is indefinitely stable in concentrated aqueous bases and acids whereas the fluorinated anion decomposes in acidic aqueous solutions and undergoes substituent exchange reactions in basic aqueous solutions (Finze et al., 2007). Furthermore, [1-H2N-closo-1-CB11F11]- reacts with strong non-nucleophilic bases under aprotic conditions to result in a cluster rearrangement that so far was observed for highly fluorinated aminocarba-closo-dodecaborates only (Finze, 2007). The difference in the properties of amino groups that are either bonded to the cluster carbon atom or to one of the boron atoms is demonstrated by a comparison of the pKavalue of 1-H3N-closo-CB11H11 6.0 (Jelínek et al., 1986) and of 2-H3N-closo-CB11H11 >10.5 (Finze, 2009).
The inner salt 2-H3N-closo-1-CB11H11 crystallizes as ethanol solvate in the monoclinic space group P21/c with one complete molecule and one ethanol molecule in the asymmetric unit. The cluster carbon atom is unambiguously assigned as evident from comparative refinements (Figure 1). Furthermore, the experimental inner cluster carbon-boron and boron-boron bond lengths are in excellent agreement to values derived from DFT calculations at the B3LYP/6–311++G(d,p) and at the MP2/6–311++G(d,p) level of theory, which were reported earlier (Finze, 2009). In this earlier contribution it was concluded on the basis of experimental inner-cluster d(C—B) and d(B—B) of the related {closo-1-CB11} species [1-Ph-2-H2N-closo-1-CB11H10]- and 1-Ph-2-Me3N-closo-1-CB11H10 in conjunction with theoretical bond lengths of [2-H2N-closo-1-CB11H11]- and 2-H3N-closo-1-CB11H11 that there is a small amount of B—N π-interaction for the amino derivatives whereas for the ammonio derivatives this π-interaction was not observed. The d(B2—N1) of 1.5396 (10) Å in the structure of the title compound supports these previous results. As a consequence of this weakened B2—N1 bond the inner-cluster C1—B2 bond is strengthened as documented by d(C1—B2) of 1.6872 (11) Å.
The title compound 2-H3N-closo-1-CB11H11.CH3CH2OH forms dimers in the solid state (Table 1, Figure 2). The hydrogen-bonded ring consists of two ammonio derivatives and two ethanol molecules and has to be described as R24(8) (Etter, 1990). A very similar hydrogen-bonded system was previously found for the related ammonio substituted carborane 1-H3N-2-F-closo-1-CB11H10 in the structure of its acetone solvate (Finze & Sprenger, 2010).