organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Aza­niumylcarba-closo-dodeca­borate ethanol monosolvate

aInstitut für Anorganische Chemie und Strukturchemie, Lehrstuhl II: Material- und Strukturforschung, Heinrich-Heine-Universität Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
*Correspondence e-mail: maik.finze@uni-duesseldorf.de

(Received 11 February 2011; accepted 18 February 2011; online 26 February 2011)

Two formula units of the title compound, 2-H3N-closo-1-CB11H11·CH3CH2OH or CH14B11N·C2H5OH, form a ring motif of R42(8) type in the solid state that surrounds a crystallographic center of symmetry. The ring motif is a result of N—H⋯O hydrogen bonds. In contrast to many structures of {closo-1-CB11} clusters, the assignment of the position of the cluster C atom in the structure of the title compound is unambigious. The relatively long B—N bond length [1.5396 (10) Å] documents the absence of any B—N π-inter­action in the title compound although this was observed for a related 2-amino­carba-closo-dodeca­borate.

Related literature

For a general overview on monocarba-closo-dodeca­borates, see: Körbe et al. (2006[Körbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev. 106, 5208-5249.]). For the synthesis and properties of 2-amino- and 2-azaniumyl­carba-closo-dodeca­boron clusters, see: Finze (2009[Finze, M. (2009). Chem. Eur. J. 15, 947-962.]). For structures and properties of related {closo-1-CB11} clusters with NH2 and NH3 groups, see: Jelínek et al. (1986[Jelínek, T., Plešek, J., Heřmánek, S. & Štíbr, B. (1986). Collect. Czech. Chem. Commun. 51, 819-829.]); Finze (2007[Finze, M. (2007). Angew. Chem. Int. Ed. 46, 8880-8882.]); Finze et al. (2007[Finze, M., Reiss, G. J. & Zähres, M. (2007). Inorg. Chem. 46, 9873-9883.]); Finze & Sprenger (2010[Finze, M. & Sprenger, J. A. P. (2010). Z. Anorg. Allg. Chem. 636, 1518-1542.]). For hydrogen-bond motifs, see: Etter (1990[Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.]).

[Scheme 1]

Experimental

Crystal data
  • CH14B11N·C2H6O

  • Mr = 205.11

  • Monoclinic, P 21 /c

  • a = 9.5753 (2) Å

  • b = 9.2549 (2) Å

  • c = 13.9095 (5) Å

  • β = 97.519 (3)°

  • V = 1222.04 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 120 K

  • 0.28 × 0.26 × 0.20 mm

Data collection
  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.729, Tmax = 1.000

  • 61096 measured reflections

  • 3561 independent reflections

  • 3199 reflections with I > 2σ(I)

  • Rint = 0.030

  • 3 standard reflections every 60 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.029

  • wR(F2) = 0.069

  • S = 1.02

  • 3561 reflections

  • 208 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯O1 0.900 (12) 2.006 (12) 2.8937 (9) 168.5 (10)
N1—H1A⋯O1i 0.898 (12) 2.065 (12) 2.9446 (9) 166.1 (10)
Symmetry code: (i) -x+2, -y+2, -z+2.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2011)[Brandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.]; software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Icosahedral monocarba-closo-dodecaborates with functional groups, for example amino or ammonio that are bonded to the cluster atoms are building blocks for a broad range of applications (Körbe et al., 2006). The properties and the reactivity of the amino groups depend on (i) the further substituents of the {closo-1-CB11} cluster and (ii) the type of the cluster atom, either carbon or boron that it is bonded to. The influence of the substituents is evident from a comparison of the properties of [1-H2N-closo-1-CB11X11]- with X equal to either H or F. The non-fluorinated anion is indefinitely stable in concentrated aqueous bases and acids whereas the fluorinated anion decomposes in acidic aqueous solutions and undergoes substituent exchange reactions in basic aqueous solutions (Finze et al., 2007). Furthermore, [1-H2N-closo-1-CB11F11]- reacts with strong non-nucleophilic bases under aprotic conditions to result in a cluster rearrangement that so far was observed for highly fluorinated aminocarba-closo-dodecaborates only (Finze, 2007). The difference in the properties of amino groups that are either bonded to the cluster carbon atom or to one of the boron atoms is demonstrated by a comparison of the pKavalue of 1-H3N-closo-CB11H11 6.0 (Jelínek et al., 1986) and of 2-H3N-closo-CB11H11 >10.5 (Finze, 2009).

The inner salt 2-H3N-closo-1-CB11H11 crystallizes as ethanol solvate in the monoclinic space group P21/c with one complete molecule and one ethanol molecule in the asymmetric unit. The cluster carbon atom is unambiguously assigned as evident from comparative refinements (Figure 1). Furthermore, the experimental inner cluster carbon-boron and boron-boron bond lengths are in excellent agreement to values derived from DFT calculations at the B3LYP/6–311++G(d,p) and at the MP2/6–311++G(d,p) level of theory, which were reported earlier (Finze, 2009). In this earlier contribution it was concluded on the basis of experimental inner-cluster d(C—B) and d(B—B) of the related {closo-1-CB11} species [1-Ph-2-H2N-closo-1-CB11H10]- and 1-Ph-2-Me3N-closo-1-CB11H10 in conjunction with theoretical bond lengths of [2-H2N-closo-1-CB11H11]- and 2-H3N-closo-1-CB11H11 that there is a small amount of B—N π-interaction for the amino derivatives whereas for the ammonio derivatives this π-interaction was not observed. The d(B2—N1) of 1.5396 (10) Å in the structure of the title compound supports these previous results. As a consequence of this weakened B2—N1 bond the inner-cluster C1—B2 bond is strengthened as documented by d(C1—B2) of 1.6872 (11) Å.

The title compound 2-H3N-closo-1-CB11H11.CH3CH2OH forms dimers in the solid state (Table 1, Figure 2). The hydrogen-bonded ring consists of two ammonio derivatives and two ethanol molecules and has to be described as R24(8) (Etter, 1990). A very similar hydrogen-bonded system was previously found for the related ammonio substituted carborane 1-H3N-2-F-closo-1-CB11H10 in the structure of its acetone solvate (Finze & Sprenger, 2010).

Related literature top

For a general overview on monocarba-closo-dodecaborates, see: Körbe et al. (2006). For the synthesis and properties of 2-amino- and 2-ammoniocarba-closo-dodecaboron clusters, see: Finze (2009). For structures and properties of related {closo-1-CB11} clusters with NH2 and NH3 groups, see: Jelínek et al. (1986); Finze (2007); Finze et al. (2007); Finze & Sprenger (2010). For hydrogen-bond motifs, see: Etter (1990).

Experimental top

2-H3N-closo-1-CB11H11 was synthesized according to a published procedure that also includes the spectroscopic data (Finze, 2009). The title compound was dissolved in a minimum amount of diethyl ether, ethanol, and chloroform (20:1:1). The clear colorless solution was stored at 3 °C in a refrigerator resulting in colorless crystals within two days.

A single crystal suitable for structure determination was harvested under a dry nitrogen atmosphere and was directly transferred into the cooling stream of an Oxford-Xcalibur diffractometer equipped with an EOS-CCD detector.

Refinement top

All hydrogen atoms were located from difference Fourier synthesis. The H atoms of the 2-aminocarba-closo-dodecaborane and the H atom of the hydroxy group of the ethanol molecule were refined without any restraints. For the H atoms of the CH2 and CH3 group a riding model was employed and for each group a common Uiso value was refined.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2011); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. In the carborane 2-H3N-closo-1-CB11H11 the hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 50% probability level.
[Figure 2] Fig. 2. Hydrogen-bonded motif formed by 2-H3N-closo-1-CB11H11.CH3CH2OH (Symmetry code: ' = -x + 2, -y + 2, -z + 2; hydrogen atoms are drawn with an arbitrary radius and the displacement ellipsoids are shown at the 50% probability level).
2-Azaniumylcarba-closo-dodecaborate ethanol monosolvate top
Crystal data top
CH14B11N·C2H6OF(000) = 432
Mr = 205.11Dx = 1.115 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 48838 reflections
a = 9.5753 (2) Åθ = 3.0–35.4°
b = 9.2549 (2) ŵ = 0.06 mm1
c = 13.9095 (5) ÅT = 120 K
β = 97.519 (3)°Block, colourless
V = 1222.04 (6) Å30.28 × 0.26 × 0.20 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3199 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 30.0°, θmin = 4.3°
ω scansh = 1313
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
k = 1313
Tmin = 0.729, Tmax = 1.000l = 1919
61096 measured reflections3 standard reflections every 60 min
3561 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: difference Fourier map
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + 0.6P]
where P = (Fo2 + 2Fc2)/3
3561 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
CH14B11N·C2H6OV = 1222.04 (6) Å3
Mr = 205.11Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.5753 (2) ŵ = 0.06 mm1
b = 9.2549 (2) ÅT = 120 K
c = 13.9095 (5) Å0.28 × 0.26 × 0.20 mm
β = 97.519 (3)°
Data collection top
Oxford Diffraction Xcalibur Eos
diffractometer
3199 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Rint = 0.030
Tmin = 0.729, Tmax = 1.0003 standard reflections every 60 min
61096 measured reflections intensity decay: none
3561 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.31 e Å3
3561 reflectionsΔρmin = 0.22 e Å3
208 parameters
Special details top

Experimental. CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.52 (release 06–11-2009). Numerical absorption correction based on Gaussian integration over a multifaceted crystal model..

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.64079 (8)0.84830 (8)0.78113 (5)0.01344 (14)
H10.5827 (11)0.9122 (12)0.8122 (7)0.018 (3)*
B20.80596 (8)0.81753 (9)0.83584 (6)0.01164 (14)
N10.85434 (7)0.89268 (8)0.93327 (5)0.01414 (13)
H1A0.9385 (13)0.8604 (13)0.9609 (8)0.027 (3)*
H1B0.8607 (12)0.9893 (14)0.9280 (8)0.026 (3)*
H1C0.7976 (12)0.8764 (13)0.9748 (8)0.024 (3)*
B30.67585 (9)0.68137 (9)0.83322 (6)0.01329 (15)
H30.6339 (11)0.6570 (11)0.8994 (7)0.018 (3)*
B40.56348 (9)0.70103 (10)0.72203 (6)0.01463 (16)
H40.4514 (11)0.6832 (12)0.7204 (8)0.022 (3)*
B50.62540 (9)0.85015 (9)0.65759 (6)0.01452 (16)
H50.5509 (11)0.9214 (12)0.6171 (7)0.019 (3)*
B60.77708 (9)0.92320 (9)0.72901 (6)0.01289 (15)
H60.7950 (11)1.0393 (11)0.7353 (7)0.019 (3)*
B70.84826 (8)0.63822 (9)0.80794 (6)0.01176 (14)
H70.9196 (11)0.5751 (12)0.8583 (7)0.019 (3)*
B80.69640 (9)0.56516 (9)0.73553 (6)0.01280 (15)
H80.6694 (11)0.4511 (12)0.7382 (7)0.020 (3)*
B90.66519 (9)0.66986 (9)0.62665 (6)0.01348 (15)
H90.6180 (11)0.6216 (12)0.5578 (7)0.019 (3)*
B100.79711 (9)0.80728 (9)0.63111 (6)0.01288 (15)
H100.8360 (11)0.8478 (11)0.5659 (7)0.018 (3)*
B110.91068 (8)0.78779 (9)0.74285 (6)0.01167 (15)
H111.0217 (11)0.8179 (11)0.7508 (8)0.019 (3)*
B120.84085 (8)0.63102 (9)0.67959 (6)0.01164 (14)
H120.9092 (11)0.5566 (11)0.6440 (7)0.017 (2)*
O10.88753 (6)1.20322 (7)0.94495 (5)0.01863 (12)
H1O0.9206 (15)1.2323 (16)0.9014 (10)0.045 (4)*
C20.78862 (9)1.30879 (9)0.97377 (6)0.02120 (17)
H2A0.72491.34010.91760.035 (2)*
H2B0.83901.39261.00210.035 (2)*
C30.70730 (10)1.23985 (10)1.04632 (7)0.02545 (19)
H3A0.77131.20701.10080.043 (2)*
H3B0.65501.15921.01700.043 (2)*
H3C0.64351.30921.06770.043 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0119 (3)0.0125 (3)0.0161 (3)0.0009 (3)0.0025 (3)0.0011 (3)
B20.0120 (3)0.0121 (3)0.0109 (3)0.0006 (3)0.0020 (3)0.0010 (3)
N10.0162 (3)0.0148 (3)0.0116 (3)0.0014 (2)0.0026 (2)0.0018 (2)
B30.0134 (3)0.0129 (4)0.0140 (3)0.0008 (3)0.0036 (3)0.0005 (3)
B40.0116 (3)0.0141 (4)0.0181 (4)0.0007 (3)0.0016 (3)0.0019 (3)
B50.0141 (4)0.0135 (4)0.0153 (4)0.0017 (3)0.0007 (3)0.0001 (3)
B60.0140 (3)0.0113 (3)0.0134 (3)0.0001 (3)0.0021 (3)0.0003 (3)
B70.0123 (3)0.0114 (3)0.0118 (3)0.0001 (3)0.0022 (3)0.0007 (3)
B80.0130 (3)0.0117 (3)0.0139 (3)0.0011 (3)0.0026 (3)0.0005 (3)
B90.0139 (3)0.0128 (4)0.0133 (3)0.0002 (3)0.0002 (3)0.0010 (3)
B100.0151 (4)0.0119 (3)0.0116 (3)0.0003 (3)0.0016 (3)0.0005 (3)
B110.0118 (3)0.0117 (3)0.0117 (3)0.0005 (3)0.0024 (3)0.0000 (3)
B120.0124 (3)0.0111 (3)0.0115 (3)0.0004 (3)0.0022 (3)0.0000 (3)
O10.0193 (3)0.0187 (3)0.0190 (3)0.0011 (2)0.0069 (2)0.0008 (2)
C20.0232 (4)0.0159 (4)0.0251 (4)0.0040 (3)0.0055 (3)0.0024 (3)
C30.0242 (4)0.0254 (4)0.0286 (4)0.0045 (3)0.0108 (3)0.0023 (4)
Geometric parameters (Å, º) top
C1—B21.6872 (11)B5—B61.7821 (12)
C1—B31.7207 (12)B5—H51.075 (10)
C1—B41.7094 (12)B6—B101.7636 (12)
C1—B51.7055 (12)B6—B111.7832 (12)
C1—B61.7196 (11)B6—H61.090 (11)
C1—H10.953 (10)B7—B121.7787 (11)
B2—N11.5396 (10)B7—B81.7896 (12)
B2—B111.7589 (11)B7—B111.7985 (12)
B2—B71.7634 (12)B7—H71.083 (10)
B2—B31.7691 (12)B8—B121.7809 (12)
B2—B61.7702 (12)B8—B91.7898 (12)
N1—H1A0.898 (12)B8—H81.088 (11)
N1—H1B0.900 (12)B9—B121.7822 (12)
N1—H1C0.857 (12)B9—B101.7878 (12)
B3—B81.7641 (12)B9—H91.099 (10)
B3—B41.7742 (12)B10—B111.7856 (12)
B3—B71.7777 (12)B10—B121.7937 (12)
B3—H31.075 (10)B10—H101.091 (10)
B4—B91.7692 (12)B11—B121.7811 (12)
B4—B81.7816 (12)B11—H111.091 (10)
B4—B51.7885 (13)B12—H121.110 (10)
B4—H41.083 (11)O1—C21.4532 (10)
B5—B101.7761 (12)O1—H1O0.768 (15)
B5—B91.7770 (12)C2—C31.4958 (12)
B2—C1—B5114.11 (6)B11—B6—H6125.5 (6)
B2—C1—B4113.81 (6)B5—B6—H6121.8 (5)
B5—C1—B463.16 (5)B2—B7—B359.94 (5)
B2—C1—B662.60 (5)B2—B7—B12106.02 (6)
B5—C1—B662.71 (5)B3—B7—B12106.91 (6)
B4—C1—B6115.05 (6)B2—B7—B8106.64 (6)
B2—C1—B362.53 (5)B3—B7—B859.27 (5)
B5—C1—B3114.82 (6)B12—B7—B859.88 (5)
B4—C1—B362.29 (5)B2—B7—B1159.17 (4)
B6—C1—B3114.99 (6)B3—B7—B11107.76 (6)
B2—C1—H1117.9 (6)B12—B7—B1159.72 (5)
B5—C1—H1118.2 (6)B8—B7—B11107.85 (6)
B4—C1—H1118.1 (6)B2—B7—H7120.6 (6)
B6—C1—H1117.5 (6)B3—B7—H7121.1 (5)
B3—C1—H1117.3 (6)B12—B7—H7124.6 (5)
N1—B2—C1118.49 (6)B8—B7—H7123.9 (6)
N1—B2—B11125.67 (6)B11—B7—H7121.2 (6)
C1—B2—B11106.60 (6)B3—B8—B12107.41 (6)
N1—B2—B7124.58 (6)B3—B8—B460.05 (5)
C1—B2—B7106.76 (6)B12—B8—B4107.30 (6)
B11—B2—B761.41 (5)B3—B8—B9107.38 (6)
N1—B2—B3118.02 (6)B12—B8—B959.88 (5)
C1—B2—B359.66 (5)B4—B8—B959.39 (5)
B11—B2—B3109.94 (6)B3—B8—B760.03 (5)
B7—B2—B360.43 (5)B12—B8—B759.76 (5)
N1—B2—B6119.03 (6)B4—B8—B7108.02 (6)
C1—B2—B659.59 (5)B9—B8—B7107.76 (6)
B11—B2—B660.70 (5)B3—B8—H8120.9 (5)
B7—B2—B6110.51 (6)B12—B8—H8123.2 (5)
B3—B2—B6110.12 (6)B4—B8—H8121.2 (6)
B2—N1—H1A112.1 (7)B9—B8—H8122.7 (6)
B2—N1—H1B113.1 (7)B7—B8—H8121.8 (6)
H1A—N1—H1B107.4 (10)B4—B9—B560.58 (5)
B2—N1—H1C111.7 (8)B4—B9—B12107.78 (6)
H1A—N1—H1C105.5 (10)B5—B9—B12108.06 (6)
H1B—N1—H1C106.6 (10)B4—B9—B10108.28 (6)
C1—B3—B8104.97 (6)B5—B9—B1059.77 (5)
C1—B3—B257.81 (5)B12—B9—B1060.32 (5)
B8—B3—B2107.51 (6)B4—B9—B860.07 (5)
C1—B3—B458.54 (5)B5—B9—B8108.71 (6)
B8—B3—B460.47 (5)B12—B9—B859.81 (5)
B2—B3—B4106.86 (6)B10—B9—B8108.47 (6)
C1—B3—B7104.68 (6)B4—B9—H9121.0 (5)
B8—B3—B760.70 (5)B5—B9—H9121.0 (6)
B2—B3—B759.63 (5)B12—B9—H9122.5 (5)
B4—B3—B7108.88 (6)B10—B9—H9121.8 (5)
C1—B3—H3118.3 (6)B8—B9—H9121.4 (6)
B8—B3—H3128.6 (6)B6—B10—B560.46 (5)
B2—B3—H3118.2 (6)B6—B10—B1160.32 (5)
B4—B3—H3121.0 (5)B5—B10—B11108.48 (6)
B7—B3—H3125.7 (5)B6—B10—B9108.17 (6)
C1—B4—B9104.15 (6)B5—B10—B959.81 (5)
C1—B4—B359.17 (5)B11—B10—B9107.78 (6)
B9—B4—B3107.84 (6)B6—B10—B12107.86 (6)
C1—B4—B8104.69 (6)B5—B10—B12107.59 (6)
B9—B4—B860.54 (5)B11—B10—B1259.68 (5)
B3—B4—B859.49 (5)B9—B10—B1259.69 (5)
C1—B4—B558.31 (5)B6—B10—H10121.1 (6)
B9—B4—B559.93 (5)B5—B10—H10121.5 (5)
B3—B4—B5108.24 (6)B11—B10—H10121.5 (5)
B8—B4—B5108.57 (6)B9—B10—H10122.2 (6)
C1—B4—H4119.8 (6)B12—B10—H10122.4 (6)
B9—B4—H4126.9 (6)B2—B11—B12106.11 (6)
B3—B4—H4119.3 (6)B2—B11—B659.96 (5)
B8—B4—H4125.9 (6)B12—B11—B6107.55 (6)
B5—B4—H4120.0 (6)B2—B11—B10106.46 (6)
C1—B5—B10104.26 (6)B12—B11—B1060.38 (5)
C1—B5—B9103.98 (6)B6—B11—B1059.23 (5)
B10—B5—B960.42 (5)B2—B11—B759.42 (5)
C1—B5—B659.03 (5)B12—B11—B759.59 (4)
B10—B5—B659.42 (5)B6—B11—B7108.32 (6)
B9—B5—B6107.84 (6)B10—B11—B7108.14 (6)
C1—B5—B458.52 (5)B2—B11—H11121.8 (6)
B10—B5—B4107.94 (6)B12—B11—H11123.8 (6)
B9—B5—B459.50 (5)B6—B11—H11120.5 (6)
B6—B5—B4108.23 (6)B10—B11—H11122.5 (6)
C1—B5—H5119.9 (6)B7—B11—H11122.0 (6)
B10—B5—H5126.7 (6)B7—B12—B860.37 (5)
B9—B5—H5126.7 (6)B7—B12—B1160.69 (5)
B6—B5—H5119.7 (6)B8—B12—B11109.01 (6)
B4—B5—H5119.7 (6)B7—B12—B9108.58 (6)
C1—B6—B10104.21 (6)B8—B12—B960.31 (5)
C1—B6—B257.80 (4)B11—B12—B9108.23 (6)
B10—B6—B2106.93 (6)B7—B12—B10108.66 (6)
C1—B6—B11104.15 (6)B8—B12—B10108.60 (6)
B10—B6—B1160.45 (5)B11—B12—B1059.93 (5)
B2—B6—B1159.34 (5)B9—B12—B1059.99 (5)
C1—B6—B558.26 (5)B7—B12—H12121.5 (5)
B10—B6—B560.12 (5)B8—B12—H12121.3 (5)
B2—B6—B5106.55 (6)B11—B12—H12121.4 (5)
B11—B6—B5108.32 (6)B9—B12—H12121.4 (5)
C1—B6—H6118.9 (5)B10—B12—H12121.3 (5)
B10—B6—H6129.1 (5)C2—O1—H1O109.4 (11)
B2—B6—H6118.1 (5)O1—C2—C3108.36 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.900 (12)2.006 (12)2.8937 (9)168.5 (10)
N1—H1A···O1i0.898 (12)2.065 (12)2.9446 (9)166.1 (10)
Symmetry code: (i) x+2, y+2, z+2.

Experimental details

Crystal data
Chemical formulaCH14B11N·C2H6O
Mr205.11
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)9.5753 (2), 9.2549 (2), 13.9095 (5)
β (°) 97.519 (3)
V3)1222.04 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.06
Crystal size (mm)0.28 × 0.26 × 0.20
Data collection
DiffractometerOxford Diffraction Xcalibur Eos
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2009)
Tmin, Tmax0.729, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
61096, 3561, 3199
Rint0.030
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.069, 1.02
No. of reflections3561
No. of parameters208
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.22

Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2011).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O10.900 (12)2.006 (12)2.8937 (9)168.5 (10)
N1—H1A···O1i0.898 (12)2.065 (12)2.9446 (9)166.1 (10)
Symmetry code: (i) x+2, y+2, z+2.
 

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) and by the Fonds der Chemischen Industrie (FCI).

References

First citationBrandenburg, K. (2011). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationEtter, M. C. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFinze, M. (2007). Angew. Chem. Int. Ed. 46, 8880–8882.  Web of Science CSD CrossRef CAS Google Scholar
First citationFinze, M. (2009). Chem. Eur. J. 15, 947–962.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFinze, M., Reiss, G. J. & Zähres, M. (2007). Inorg. Chem. 46, 9873–9883.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFinze, M. & Sprenger, J. A. P. (2010). Z. Anorg. Allg. Chem. 636, 1518–1542.  Web of Science CSD CrossRef Google Scholar
First citationJelínek, T., Plešek, J., Heřmánek, S. & Štíbr, B. (1986). Collect. Czech. Chem. Commun. 51, 819–829.  Google Scholar
First citationKörbe, S., Schreiber, P. J. & Michl, J. (2006). Chem. Rev. 106, 5208–5249.  Web of Science PubMed Google Scholar
First citationOxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds