metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2-amino-6-methyl­pyridinium) tris­­(pyridine-2,6-di­carboxyl­ato)zirconate(IV) dihydrate

aDepartment of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran, and bDepartment of Chemistry, Shahid Beheshti University, G. C., Evin, Tehran 1983963113, Iran
*Correspondence e-mail: hodapass@gmail.com

(Received 17 January 2011; accepted 24 January 2011; online 2 February 2011)

In the title compound, (C6H9N2)2[Zr(C7H3NO4)3]·2H2O, the ZrIV atom is nine-coordinated by three pyridine-2,6-dicarboxyl­ate ligands in a distorted tricapped trigonal–prismatic ZrN3O6 environment. The crystal packing is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For background to proton-transfer compounds, see: Aghabozorg et al. (2008[Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184-227.]). For related structures, see: Aghabozorg et al. (2005[Aghabozorg, H., Moghimi, A., Manteghi, F. & Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909-913.]); Daneshvar et al. (2008[Daneshvar, S., Aghabozorg, H. & Manteghi, F. (2008). Acta Cryst. E64, m1308-m1309.]); Willey et al. (1998[Willey, G. R., Woodman, T. J. & Fisher, M. (1998). Transition Met. Chem. 23, 467-471.]); Pasdar et al. (2010[Pasdar, H., Heidari, S., Aghabozorg, H. & Notash, B. (2010). Acta Cryst. E66, m1581.], 2011[Pasdar, H., Sadat Kashani, S., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m193-m194.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H9N2)2[Zr(C7H3NO4)3]·2H2O

  • Mr = 840.87

  • Monoclinic, C 2/c

  • a = 18.719 (4) Å

  • b = 10.536 (2) Å

  • c = 18.781 (4) Å

  • β = 108.58 (3)°

  • V = 3511.0 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical [shape of crystal determined optically (X-SHAPE and X-RED32; Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.])] Tmin = 0.870, Tmax = 0.903

  • 12273 measured reflections

  • 4705 independent reflections

  • 4284 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.023

  • wR(F2) = 0.060

  • S = 1.03

  • 4705 reflections

  • 271 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7B⋯O3 0.87 (4) 2.09 (4) 2.938 (2) 164 (3)
O7—H7A⋯O6i 0.82 (3) 2.14 (3) 2.9568 (19) 173 (3)
N4—H4B⋯O1ii 0.86 (2) 2.57 (2) 3.1755 (18) 127.6 (17)
N4—H4B⋯O7 0.86 (2) 2.28 (2) 3.027 (3) 144.1 (18)
N4—H4A⋯O4iii 0.82 (2) 2.05 (2) 2.861 (2) 168 (2)
N3—H3A⋯O2ii 0.91 (2) 1.91 (2) 2.8194 (18) 175.1 (18)
Symmetry codes: (i) [x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) [-x+1, y, -z+{\script{3\over 2}}]; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: X-AREA (Stoe & Cie, 2005[Stoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyridine-2,6-dicarboxylic acid (pydcH2) was commonly used as an acid in proton transfer systems (Aghabozorg et al., 2008). Continuing the path to synthesize proton transfer compounds, our group has focused on forming ion pairs between 2,6-pydcH2 and various organic bases (Pasdar et al., 2010; Pasdar et al., 2011). The structures of two proton transfer compounds containing [ZrIV(2,6-pydc)3]2- moiety were reported with the counter cationic part of 2,6-pyridinediamine (Aghabozorg et al., 2005) and 2,4,6-triamino-1,3,5-triazine (Daneshvar et al., 2008), respectively. The structure of K4[ZrIV(2,6-pydc)3]2 has been reported by Willey et al. (1998).

We report herein the synthesis and crystal structure of (2a6mpH)2[Zr(2,6-pydc)3].2H2O by the reaction of ZrCl4, 2-amino-6-methylpyridine and 2,6-pyridinedicarboxylic acid in aqueous media. The molecular structure of the title compound is shown in Fig.1. The zirconium(IV) ion is coordinated by three pydc2- ligands in a distorted tricapped trigonal prismatic geometry. The geometry around the zirconium(IV) centre in the title compound is shown in Fig. 2. The Zr—N and Zr—O bond lengths and angles are comprable with those previously reported (Aghabozorg et al., 2005; Daneshvar et al., 2008). The crystal packing diagram of (2a6mpH)2[Zr(2,6-pydc)3].2H2O is presented in Fig. 3. There are several intermolecular N—H···O, O—H···O hydrogen bonds which stabilize crystal structure of the compound (Table 1 and Fig. 3).

Related literature top

For background to proton-transfer compounds, see: Aghabozorg et al. (2008). For related structures, see: Aghabozorg et al. (2005); Daneshvar et al. (2008); Willey et al. (1998); Pasdar et al. (2010, 2011).

Experimental top

A solution of ZrCl4 (0.114 mg,0.5 mmol) in water (15 ml) was added to an aqueous solution of 2-amino-6-methylpyridine (0.114,1 mmol) and 2,6-pyridinedicarboxylic acid (0.504 mg, 3 mmol) in water (15 ml). Crystals of the title compound suitable for X-ray characterization were obtained after a few weeks at room temperature (m.p: 145 °C).

Refinement top

The hydrogen atoms bonded to N and O were found in difference Fourier map and refined isotropically without restraint. The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H and C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA (Stoe & Cie, 2005); data reduction: X-AREA (Stoe & Cie, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (2a6mpH)2[Zr(2,6-pydc)3].2H2O with displacement ellipsoids drawn at 30% probability level.Symmetry code: (a) -x + 1, y, -z + 3/2.
[Figure 2] Fig. 2. The coordination environment around ZrIV ion in the title compound. Symmetry code: (a) -x + 1, y, -z + 3/2.
[Figure 3] Fig. 3. The packing diagram of (2a6mpH)2[Zr(2,6-pydc)3].2H2O. The intermolecular N—H···O, O—H···O hydrogen bonds are shown as blue dashed lines.
Bis(2-amino-6-methylpyridinium) tris(pyridine-2,6-dicarboxylato)zirconate(IV) dihydrate top
Crystal data top
(C6H9N2)2[Zr(C7H3NO4)3]·2H2OF(000) = 1720
Mr = 840.87Dx = 1.591 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 4705 reflections
a = 18.719 (4) Åθ = 2.3–29.2°
b = 10.536 (2) ŵ = 0.39 mm1
c = 18.781 (4) ÅT = 298 K
β = 108.58 (3)°Prism, colorless
V = 3511.0 (14) Å30.35 × 0.3 × 0.25 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
4705 independent reflections
Radiation source: fine-focus sealed tube4284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
Detector resolution: 0.15 mm pixels mm-1θmax = 29.2°, θmin = 2.3°
rotation method scansh = 2525
Absorption correction: numerical
[shape of crystal determined optically (X-SHAPE and X-RED32; Stoe& Cie, 2005)]
k = 1214
Tmin = 0.870, Tmax = 0.903l = 2525
12273 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.023Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0339P)2 + 1.0948P]
where P = (Fo2 + 2Fc2)/3
4705 reflections(Δ/σ)max = 0.001
271 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
(C6H9N2)2[Zr(C7H3NO4)3]·2H2OV = 3511.0 (14) Å3
Mr = 840.87Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.719 (4) ŵ = 0.39 mm1
b = 10.536 (2) ÅT = 298 K
c = 18.781 (4) Å0.35 × 0.3 × 0.25 mm
β = 108.58 (3)°
Data collection top
Stoe IPDS II
diffractometer
4705 independent reflections
Absorption correction: numerical
[shape of crystal determined optically (X-SHAPE and X-RED32; Stoe& Cie, 2005)]
4284 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.903Rint = 0.025
12273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0230 restraints
wR(F2) = 0.060H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.33 e Å3
4705 reflectionsΔρmin = 0.27 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C170.61732 (13)0.9817 (2)0.98635 (13)0.0731 (5)
H17A0.61301.06291.00790.110*
H17B0.63970.92201.02580.110*
H17C0.56810.95240.95710.110*
Zr10.50000.572850 (14)0.75000.02355 (5)
N10.48851 (5)0.45657 (9)0.63879 (6)0.02849 (19)
C50.53457 (7)0.35957 (11)0.64083 (7)0.0320 (2)
C10.43464 (7)0.48587 (12)0.57517 (7)0.0322 (2)
C20.42369 (9)0.41586 (14)0.51009 (8)0.0426 (3)
H20.38560.43690.46610.051*
C40.52766 (9)0.28548 (14)0.57799 (8)0.0449 (3)
H40.56040.21820.58000.054*
C30.47076 (10)0.31419 (15)0.51223 (9)0.0502 (4)
H30.46430.26500.46950.060*
N30.68745 (7)0.88262 (13)0.91339 (7)0.0443 (3)
N40.74780 (9)0.76062 (17)0.84880 (10)0.0600 (4)
C120.73020 (8)0.87419 (17)0.86785 (9)0.0468 (3)
C160.66558 (9)0.99384 (17)0.93708 (10)0.0539 (4)
C130.75373 (9)0.98893 (19)0.84391 (10)0.0580 (4)
H130.78330.98790.81240.070*
C150.68835 (12)1.10440 (19)0.91395 (13)0.0694 (5)
H150.67431.18190.92920.083*
C140.73318 (11)1.10031 (19)0.86693 (12)0.0675 (5)
H140.74911.17590.85130.081*
O10.40841 (5)0.64343 (9)0.65095 (5)0.03362 (18)
O20.34539 (6)0.65095 (11)0.52861 (6)0.0505 (3)
C60.39137 (7)0.60152 (12)0.58346 (7)0.0333 (2)
N20.50000.79516 (13)0.75000.0288 (3)
O50.42116 (5)0.65285 (9)0.80434 (5)0.03414 (18)
C80.45374 (7)0.85771 (12)0.77872 (7)0.0326 (2)
C110.40782 (7)0.77095 (12)0.81082 (7)0.0332 (2)
O60.36459 (7)0.81504 (11)0.84149 (7)0.0520 (3)
C90.45124 (9)0.98904 (14)0.77885 (10)0.0483 (3)
H90.41781.03210.79770.058*
C100.50001.0542 (2)0.75000.0603 (7)
H100.50001.14250.75000.072*
O40.64121 (6)0.25978 (10)0.72642 (6)0.0482 (2)
C70.59251 (7)0.34202 (12)0.71639 (7)0.0324 (2)
O30.58564 (5)0.41882 (9)0.76672 (5)0.03380 (18)
O70.74136 (9)0.47442 (18)0.85925 (12)0.0865 (6)
H3A0.6742 (11)0.810 (2)0.9320 (12)0.064 (6)*
H4B0.7294 (12)0.690 (2)0.8587 (12)0.066 (6)*
H4A0.7747 (12)0.755 (2)0.8218 (12)0.068 (6)*
H7A0.7728 (18)0.425 (3)0.8528 (17)0.105 (10)*
H7B0.6993 (19)0.445 (3)0.8293 (19)0.121 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C170.0748 (13)0.0714 (13)0.0801 (14)0.0028 (11)0.0344 (11)0.0088 (11)
Zr10.02282 (7)0.02414 (7)0.02305 (8)0.0000.00640 (5)0.000
N10.0303 (4)0.0279 (4)0.0274 (5)0.0010 (3)0.0094 (4)0.0011 (4)
C50.0370 (6)0.0285 (5)0.0338 (6)0.0001 (4)0.0158 (5)0.0007 (5)
C10.0338 (5)0.0335 (6)0.0279 (6)0.0029 (5)0.0080 (4)0.0008 (5)
C20.0499 (7)0.0455 (7)0.0289 (6)0.0053 (6)0.0077 (5)0.0046 (6)
C40.0597 (8)0.0364 (7)0.0426 (7)0.0051 (6)0.0222 (7)0.0067 (6)
C30.0703 (10)0.0455 (8)0.0366 (7)0.0022 (7)0.0196 (7)0.0127 (6)
N30.0399 (6)0.0458 (6)0.0432 (7)0.0095 (5)0.0077 (5)0.0018 (5)
N40.0627 (9)0.0603 (9)0.0665 (10)0.0172 (7)0.0342 (8)0.0101 (8)
C120.0372 (6)0.0571 (9)0.0406 (7)0.0126 (6)0.0048 (6)0.0019 (7)
C160.0480 (8)0.0519 (9)0.0550 (9)0.0017 (7)0.0069 (7)0.0012 (8)
C130.0472 (8)0.0668 (11)0.0538 (10)0.0144 (8)0.0073 (7)0.0165 (8)
C150.0661 (11)0.0478 (9)0.0845 (14)0.0016 (8)0.0102 (10)0.0063 (9)
C140.0571 (10)0.0577 (11)0.0746 (13)0.0119 (8)0.0026 (9)0.0254 (9)
O10.0330 (4)0.0357 (4)0.0283 (4)0.0059 (3)0.0044 (3)0.0009 (3)
O20.0530 (6)0.0550 (6)0.0322 (5)0.0155 (5)0.0024 (4)0.0022 (5)
C60.0307 (5)0.0356 (6)0.0296 (6)0.0004 (4)0.0041 (4)0.0018 (5)
N20.0306 (6)0.0285 (6)0.0260 (6)0.0000.0072 (5)0.000
O50.0361 (4)0.0330 (4)0.0374 (5)0.0024 (3)0.0174 (4)0.0019 (4)
C80.0353 (6)0.0304 (6)0.0308 (6)0.0035 (5)0.0089 (5)0.0012 (5)
C110.0331 (5)0.0368 (6)0.0306 (6)0.0051 (5)0.0112 (5)0.0002 (5)
O60.0572 (6)0.0494 (6)0.0625 (7)0.0113 (5)0.0375 (6)0.0011 (5)
C90.0575 (8)0.0322 (6)0.0612 (10)0.0056 (6)0.0273 (8)0.0039 (6)
C100.0776 (16)0.0267 (9)0.0865 (19)0.0000.0399 (15)0.000
O40.0482 (5)0.0431 (5)0.0556 (6)0.0190 (4)0.0197 (5)0.0058 (5)
C70.0320 (5)0.0292 (5)0.0389 (6)0.0022 (4)0.0154 (5)0.0037 (5)
O30.0314 (4)0.0355 (4)0.0324 (4)0.0060 (3)0.0072 (3)0.0000 (4)
O70.0527 (8)0.0816 (11)0.1081 (13)0.0094 (8)0.0016 (8)0.0399 (10)
Geometric parameters (Å, º) top
C17—C161.491 (3)N4—C121.320 (2)
C17—H17A0.9600N4—H4B0.86 (2)
C17—H17B0.9600N4—H4A0.82 (2)
C17—H17C0.9600C12—C131.409 (2)
Zr1—O52.2113 (9)C16—C151.358 (3)
Zr1—O5i2.2113 (9)C13—C141.348 (3)
Zr1—O1i2.2183 (11)C13—H130.9300
Zr1—O12.2183 (11)C15—C141.399 (3)
Zr1—O3i2.2320 (9)C15—H150.9300
Zr1—O32.2320 (9)C14—H140.9300
Zr1—N22.3422 (15)O1—C61.2828 (15)
Zr1—N12.3713 (10)O2—C61.2280 (16)
Zr1—N1i2.3713 (11)N2—C81.3314 (14)
N1—C51.3297 (15)N2—C8i1.3314 (14)
N1—C11.3313 (16)O5—C111.2824 (16)
C5—C41.3863 (18)C8—C91.3845 (19)
C5—C71.4979 (19)C8—C111.5062 (18)
C1—C21.3857 (18)C11—O61.2246 (15)
C1—C61.4986 (18)C9—C101.3834 (19)
C2—C31.379 (2)C9—H90.9300
C2—H20.9300C10—C9i1.3834 (19)
C4—C31.383 (2)C10—H100.9300
C4—H40.9300O4—C71.2279 (15)
C3—H30.9300C7—O31.2814 (15)
N3—C121.348 (2)O7—H7A0.82 (3)
N3—C161.362 (2)O7—H7B0.87 (4)
N3—H3A0.91 (2)
C16—C17—H17A109.5C1—C2—H2120.9
C16—C17—H17B109.5C3—C4—C5118.26 (13)
H17A—C17—H17B109.5C3—C4—H4120.9
C16—C17—H17C109.5C5—C4—H4120.9
H17A—C17—H17C109.5C2—C3—C4119.92 (13)
H17B—C17—H17C109.5C2—C3—H3120.0
O5—Zr1—O5i135.19 (5)C4—C3—H3120.0
O5—Zr1—O1i86.35 (4)C12—N3—C16124.41 (15)
O5i—Zr1—O1i78.94 (4)C12—N3—H3A118.6 (13)
O5—Zr1—O178.94 (4)C16—N3—H3A116.9 (13)
O5i—Zr1—O186.35 (4)C12—N4—H4B124.6 (14)
O1i—Zr1—O1140.83 (5)C12—N4—H4A118.8 (16)
O5—Zr1—O3i77.70 (4)H4B—N4—H4A116 (2)
O5i—Zr1—O3i140.11 (3)N4—C12—N3118.80 (15)
O1i—Zr1—O3i133.65 (3)N4—C12—C13124.11 (16)
O1—Zr1—O3i78.30 (4)N3—C12—C13117.09 (17)
O5—Zr1—O3140.11 (3)C15—C16—N3118.41 (18)
O5i—Zr1—O377.70 (4)C15—C16—C17125.88 (19)
O1i—Zr1—O378.30 (4)N3—C16—C17115.71 (16)
O1—Zr1—O3133.65 (3)C14—C13—C12119.64 (17)
O3i—Zr1—O386.71 (5)C14—C13—H13120.2
O5—Zr1—N267.59 (2)C12—C13—H13120.2
O5i—Zr1—N267.59 (2)C16—C15—C14119.2 (2)
O1i—Zr1—N270.41 (3)C16—C15—H15120.4
O1—Zr1—N270.41 (3)C14—C15—H15120.4
O3i—Zr1—N2136.64 (2)C13—C14—C15121.26 (17)
O3—Zr1—N2136.64 (2)C13—C14—H14119.4
O5—Zr1—N1135.80 (4)C15—C14—H14119.4
O5i—Zr1—N171.15 (4)C6—O1—Zr1126.56 (8)
O1i—Zr1—N1137.80 (3)O2—C6—O1124.76 (12)
O1—Zr1—N166.77 (4)O2—C6—C1121.01 (12)
O3i—Zr1—N168.96 (4)O1—C6—C1114.21 (11)
O3—Zr1—N166.91 (4)C8—N2—C8i120.65 (15)
N2—Zr1—N1121.11 (2)C8—N2—Zr1119.67 (8)
O5—Zr1—N1i71.15 (4)C8i—N2—Zr1119.67 (8)
O5i—Zr1—N1i135.80 (4)C11—O5—Zr1126.32 (8)
O1i—Zr1—N1i66.77 (4)N2—C8—C9121.48 (12)
O1—Zr1—N1i137.80 (3)N2—C8—C11112.92 (11)
O3i—Zr1—N1i66.91 (4)C9—C8—C11125.59 (11)
O3—Zr1—N1i68.96 (4)O6—C11—O5126.19 (12)
N2—Zr1—N1i121.11 (3)O6—C11—C8120.34 (12)
N1—Zr1—N1i117.79 (5)O5—C11—C8113.43 (10)
C5—N1—C1120.19 (11)C10—C9—C8117.95 (14)
C5—N1—Zr1119.72 (8)C10—C9—H9121.0
C1—N1—Zr1120.07 (8)C8—C9—H9121.0
N1—C5—C4121.64 (13)C9—C10—C9i120.45 (19)
N1—C5—C7112.91 (10)C9—C10—H10119.8
C4—C5—C7125.46 (12)C9i—C10—H10119.8
N1—C1—C2121.68 (12)O4—C7—O3125.20 (13)
N1—C1—C6112.04 (10)O4—C7—C5120.70 (12)
C2—C1—C6126.27 (12)O3—C7—C5114.10 (10)
C3—C2—C1118.30 (14)C7—O3—Zr1126.28 (8)
C3—C2—H2120.9H7A—O7—H7B103 (3)
O5—Zr1—N1—C5137.47 (8)C2—C1—C6—O1174.88 (12)
O5i—Zr1—N1—C586.13 (9)O5—Zr1—N2—C82.02 (7)
O1i—Zr1—N1—C538.83 (11)O5i—Zr1—N2—C8177.98 (7)
O1—Zr1—N1—C5179.67 (9)O1i—Zr1—N2—C896.24 (7)
O3i—Zr1—N1—C593.76 (9)O1—Zr1—N2—C883.76 (7)
O3—Zr1—N1—C51.82 (8)O3i—Zr1—N2—C837.42 (7)
N2—Zr1—N1—C5133.57 (8)O3—Zr1—N2—C8142.58 (7)
N1i—Zr1—N1—C546.43 (8)N1—Zr1—N2—C8129.04 (7)
O5—Zr1—N1—C140.43 (11)N1i—Zr1—N2—C850.96 (7)
O5i—Zr1—N1—C195.97 (9)O5—Zr1—N2—C8i177.98 (7)
O1i—Zr1—N1—C1143.27 (8)O5i—Zr1—N2—C8i2.02 (7)
O1—Zr1—N1—C11.77 (8)O1i—Zr1—N2—C8i83.76 (7)
O3i—Zr1—N1—C184.14 (9)O1—Zr1—N2—C8i96.24 (7)
O3—Zr1—N1—C1179.72 (10)O3i—Zr1—N2—C8i142.58 (7)
N2—Zr1—N1—C148.53 (9)O3—Zr1—N2—C8i37.42 (7)
N1i—Zr1—N1—C1131.47 (9)N1—Zr1—N2—C8i50.96 (7)
C1—N1—C5—C40.84 (18)N1i—Zr1—N2—C8i129.04 (7)
Zr1—N1—C5—C4177.05 (10)O5i—Zr1—O5—C111.94 (9)
C1—N1—C5—C7178.88 (10)O1i—Zr1—O5—C1172.24 (10)
Zr1—N1—C5—C73.22 (13)O1—Zr1—O5—C1171.27 (10)
C5—N1—C1—C21.35 (18)O3i—Zr1—O5—C11151.55 (11)
Zr1—N1—C1—C2176.54 (10)O3—Zr1—O5—C11139.09 (10)
C5—N1—C1—C6177.21 (10)N2—Zr1—O5—C111.94 (9)
Zr1—N1—C1—C64.90 (13)N1—Zr1—O5—C11110.25 (10)
N1—C1—C2—C30.5 (2)N1i—Zr1—O5—C11138.93 (11)
C6—C1—C2—C3177.80 (13)C8i—N2—C8—C90.92 (11)
N1—C5—C4—C30.4 (2)Zr1—N2—C8—C9179.08 (11)
C7—C5—C4—C3179.87 (13)C8i—N2—C8—C11178.02 (11)
C1—C2—C3—C40.8 (2)Zr1—N2—C8—C111.98 (11)
C5—C4—C3—C21.2 (2)Zr1—O5—C11—O6179.35 (11)
C16—N3—C12—N4179.94 (16)Zr1—O5—C11—C81.59 (15)
C16—N3—C12—C130.3 (2)N2—C8—C11—O6177.52 (11)
C12—N3—C16—C150.3 (2)C9—C8—C11—O61.4 (2)
C12—N3—C16—C17179.07 (16)N2—C8—C11—O50.38 (15)
N4—C12—C13—C14179.53 (18)C9—C8—C11—O5179.28 (14)
N3—C12—C13—C140.1 (2)N2—C8—C9—C101.8 (2)
N3—C16—C15—C140.0 (3)C11—C8—C9—C10177.02 (11)
C17—C16—C15—C14179.37 (19)C8—C9—C10—C9i0.86 (10)
C12—C13—C14—C150.4 (3)N1—C5—C7—O4176.83 (11)
C16—C15—C14—C130.4 (3)C4—C5—C7—O42.9 (2)
O5—Zr1—O1—C6154.09 (10)N1—C5—C7—O33.20 (15)
O5i—Zr1—O1—C668.45 (10)C4—C5—C7—O3177.09 (12)
O1i—Zr1—O1—C6135.95 (10)O4—C7—O3—Zr1178.19 (10)
O3i—Zr1—O1—C674.53 (10)C5—C7—O3—Zr11.84 (14)
O3—Zr1—O1—C60.71 (12)O5—Zr1—O3—C7135.01 (9)
N2—Zr1—O1—C6135.95 (10)O5i—Zr1—O3—C774.37 (10)
N1—Zr1—O1—C62.60 (9)O1i—Zr1—O3—C7155.43 (10)
N1i—Zr1—O1—C6108.97 (10)O1—Zr1—O3—C71.71 (12)
Zr1—O1—C6—O2172.23 (10)O3i—Zr1—O3—C768.68 (9)
Zr1—O1—C6—C15.94 (15)N2—Zr1—O3—C7111.32 (9)
N1—C1—C6—O2171.61 (12)N1—Zr1—O3—C70.18 (9)
C2—C1—C6—O26.9 (2)N1i—Zr1—O3—C7135.18 (10)
N1—C1—C6—O16.64 (15)
Symmetry code: (i) x+1, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O30.87 (4)2.09 (4)2.938 (2)164 (3)
O7—H7A···O6ii0.82 (3)2.14 (3)2.9568 (19)173 (3)
N4—H4B···O1i0.86 (2)2.57 (2)3.1755 (18)127.6 (17)
N4—H4B···O70.86 (2)2.28 (2)3.027 (3)144.1 (18)
N4—H4A···O4iii0.82 (2)2.05 (2)2.861 (2)168 (2)
N3—H3A···O2i0.91 (2)1.91 (2)2.8194 (18)175.1 (18)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+1/2, y1/2, z; (iii) x+3/2, y+1/2, z+3/2.

Experimental details

Crystal data
Chemical formula(C6H9N2)2[Zr(C7H3NO4)3]·2H2O
Mr840.87
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)18.719 (4), 10.536 (2), 18.781 (4)
β (°) 108.58 (3)
V3)3511.0 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.35 × 0.3 × 0.25
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionNumerical
[shape of crystal determined optically (X-SHAPE and X-RED32; Stoe& Cie, 2005)]
Tmin, Tmax0.870, 0.903
No. of measured, independent and
observed [I > 2σ(I)] reflections
12273, 4705, 4284
Rint0.025
(sin θ/λ)max1)0.687
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.023, 0.060, 1.03
No. of reflections4705
No. of parameters271
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.27

Computer programs: X-AREA (Stoe & Cie, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O7—H7B···O30.87 (4)2.09 (4)2.938 (2)164 (3)
O7—H7A···O6i0.82 (3)2.14 (3)2.9568 (19)173 (3)
N4—H4B···O1ii0.86 (2)2.57 (2)3.1755 (18)127.6 (17)
N4—H4B···O70.86 (2)2.28 (2)3.027 (3)144.1 (18)
N4—H4A···O4iii0.82 (2)2.05 (2)2.861 (2)168 (2)
N3—H3A···O2ii0.91 (2)1.91 (2)2.8194 (18)175.1 (18)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z+3/2; (iii) x+3/2, y+1/2, z+3/2.
 

Acknowledgements

We are grateful to the Islamic Azad University, North Tehran Branch, for financial support.

References

First citationAghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc. 5, 184–227.  CrossRef CAS Google Scholar
First citationAghabozorg, H., Moghimi, A., Manteghi, F. & Ranjbar, M. (2005). Z. Anorg. Allg. Chem. 631, 909–913.  Web of Science CSD CrossRef CAS Google Scholar
First citationDaneshvar, S., Aghabozorg, H. & Manteghi, F. (2008). Acta Cryst. E64, m1308–m1309.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPasdar, H., Heidari, S., Aghabozorg, H. & Notash, B. (2010). Acta Cryst. E66, m1581.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPasdar, H., Sadat Kashani, S., Aghabozorg, H. & Notash, B. (2011). Acta Cryst. E67, m193–m194.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2005). X-AREA, X-SHAPE and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWilley, G. R., Woodman, T. J. & Fisher, M. (1998). Transition Met. Chem. 23, 467–471.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds