organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(1R,2R)-2-(Pyridin-4-yl­methyl­amino)­cyclo­hexa­naminium chloride

aDepartment of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: cep02chl@yahoo.com.cn

(Received 11 February 2011; accepted 15 February 2011; online 19 February 2011)

In the crystal structure of the title compound, C12H20N3+·Cl, the protonated (1R,2R)-(pyridin-4-ylmeth­yl)cyclo­hexane-1,2-diamine cations and chloride anions are linked via N—H⋯N and N—H⋯Cl hydrogen bonds into a three-dimensional network.

Related literature

For coordination polymers, see: He et al. (2010[He, R., Song, H. H., Wei, Z., Zhang, J. J. & Gao, Y. Z. (2010). J. Solid State Chem. 183, 2021-2026.]). For related structures, see: Gou et al. (2010[Gou, S. H. & Tong, T. F. (2010). Faming Zhuanli Shenqing (P. R. China), p. 16.]).

[Scheme 1]

Experimental

Crystal data
  • C12H20N3+·Cl

  • Mr = 241.76

  • Orthorhombic, P 21 21 21

  • a = 5.5256 (10) Å

  • b = 13.928 (2) Å

  • c = 16.685 (3) Å

  • V = 1284.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 291 K

  • 0.25 × 0.20 × 0.18 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1995[Sheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.]) Tmin = 0.934, Tmax = 0.952

  • 5296 measured reflections

  • 2516 independent reflections

  • 2259 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.102

  • S = 1.06

  • 2516 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.24 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1031 Friedel pairs

  • Flack parameter: −0.04 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1B⋯N3i 0.89 2.13 2.926 (2) 148
N1—H1C⋯Cl1 0.89 2.32 3.201 (2) 172
N1—H1D⋯Cl1ii 0.89 2.28 3.1583 (19) 170
N2—H2C⋯Cl1iii 0.89 2.72 3.5538 (19) 157
Symmetry codes: (i) [x-{\script{1\over 2}}, -y-{\script{3\over 2}}, -z-1]; (ii) x-1, y, z; (iii) [-x+1, y-{\script{1\over 2}}, -z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2000[Bruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996[Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Recent years have witnessed an explosion of great interest in chiral coordination polymers because of their potential utility in enantiomerically selective catalysis and separations, second-order nonlinearoptical (NLO) applications and magnetism (He et al. 2010). We tried to synthesize such polymers by use of chiral (1R,2R)-(pyridin-4-ylmethyl)cyclohexane-1,2-diamine ligand and zinc chloride. However, Zn(II) ions weren't ligated to the chiral ligands and the hydrochloride of the ligand has been obtained in the reaction conditions. Herein, we report the structure of this hydrochloride, 1.HCl [1 = (1R,2R)-(pyridin-4-ylmethyl)cyclohexane-1,2-diamine].

The asymmetric unit of the title compound contains a protonated (1R,2R)-(pyridin-4-ylmethyl)cyclohexane-1,2-diamine and a chloride ion. In the molecule, the distances of the C—N bonds of the pyridine ring are 1.331 (3) and 1.338 (3) Å, which are shorter than those of C—N bonds (1.452 (3), 1.478 (2) and 1.498 (2) Å) of cyclohexane-1,2-diamine. The protonated (1R,2R)-(pyridin-4-ylmethyl)cyclohexane-1,2-diamine cations and chloride anions are linked to each other, via N—H···N (N1···N3a 2.926 (2) Å, symmetry code: a, -1/2 + x, -3/2 - y, -1 - z) and N—H···Cl (N1···Cl1 3.201 (2) Å, N1···Cl1b 3.158 (2) Å, symmetry code: b, -1 + x, y, z) hydrogen bonds between the N atoms of aminium and the N atoms of adjacent pyridine rings, as well as the N atoms of aminium and chloride anions into a one-dimensional hydrogen bonding chain along the a axis (Fig.2), which are further constructed into a three-dimensional supramolecular network by interchain N—H···Cl hydrogen-bonds (N2···Cl1c 3.554 (2) Å, symmetry code: c, 1 - x, -1/2 + y, -1/2 - z) between secondary amines and chloride anions.

Related literature top

For coordination polymers, see: He et al. (2010). For related structures, see: Gou et al. (2010).

Experimental top

1R,2R)-(pyridin-4-ylmethyl)cyclohexane-1,2-diamine (0.021 g, 0.1 mmol) dissolved in water (5 ml) was added to a methanol solution (10 ml) ZnCl2 (0.019 g, 0.1 mmol). The mixture solution was stirred for 2 h at room temperature and then filtered. The filtrate was allowed to evaporate slowly at room temperature. After 2 weeks, colorless block crystals were obtained in 33.1% yield (0.008 g).

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93–0.97 Å with Uiso(H) = 1.2 Ueq(C). H atoms attached to N atoms were located in difference Fourier maps and included in the subsequent refinement using restraints (N—H= 0.89 (1) Å) with Uiso(H) = 1.5 Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compoundcompound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the one-dimesional hydrogen bonding chain along the a axis.
[Figure 3] Fig. 3. View of the three-dimensional supramolecular network along the bc plane.
(1R,2R)-2-(Pyridin-4-ylmethylamino)cyclohexanaminium chloride top
Crystal data top
C12H20N3+·ClF(000) = 520
Mr = 241.76Dx = 1.251 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 780 reflections
a = 5.5256 (10) Åθ = 2.5–28.0°
b = 13.928 (2) ŵ = 0.28 mm1
c = 16.685 (3) ÅT = 291 K
V = 1284.1 (4) Å3Block, colorless
Z = 40.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2516 independent reflections
Radiation source: fine-focus sealed tube2259 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
h = 66
Tmin = 0.934, Tmax = 0.952k = 1716
5296 measured reflectionsl = 620
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0552P)2 + 0.1405P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2516 reflectionsΔρmax = 0.26 e Å3
145 parametersΔρmin = 0.24 e Å3
0 restraintsAbsolute structure: Flack (1983), 1031 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.04 (8)
Crystal data top
C12H20N3+·ClV = 1284.1 (4) Å3
Mr = 241.76Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.5256 (10) ŵ = 0.28 mm1
b = 13.928 (2) ÅT = 291 K
c = 16.685 (3) Å0.25 × 0.20 × 0.18 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2516 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1995)
2259 reflections with I > 2σ(I)
Tmin = 0.934, Tmax = 0.952Rint = 0.019
5296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.26 e Å3
S = 1.06Δρmin = 0.24 e Å3
2516 reflectionsAbsolute structure: Flack (1983), 1031 Friedel pairs
145 parametersAbsolute structure parameter: 0.04 (8)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.80278 (10)0.57398 (4)0.18879 (4)0.05595 (19)
C10.2910 (4)0.76369 (13)0.19230 (10)0.0334 (4)
H1A0.14130.79750.20630.040*
C20.2862 (4)0.74096 (15)0.10296 (10)0.0411 (5)
H2A0.42490.70150.08940.049*
H2B0.14100.70480.09050.049*
C30.2912 (5)0.83212 (16)0.05335 (12)0.0500 (6)
H3A0.29450.81580.00320.060*
H3B0.14590.86920.06360.060*
C40.5108 (5)0.89136 (16)0.07397 (12)0.0489 (6)
H4A0.50900.95020.04290.059*
H4B0.65590.85600.05990.059*
C50.5163 (5)0.91576 (15)0.16282 (12)0.0464 (5)
H5A0.38030.95710.17540.056*
H5B0.66360.95090.17460.056*
C60.5051 (4)0.82635 (13)0.21600 (10)0.0341 (4)
H6A0.65310.78920.20670.041*
C70.7097 (5)0.89100 (19)0.33387 (12)0.0534 (6)
H7A0.71630.95750.31680.064*
H7B0.84930.85830.31160.064*
C80.7219 (4)0.88678 (13)0.42405 (11)0.0371 (5)
C90.9147 (4)0.84386 (15)0.46266 (14)0.0439 (5)
H9A1.04370.81980.43300.053*
C100.9160 (5)0.83668 (16)0.54485 (14)0.0476 (6)
H10A1.04950.80840.56930.057*
C110.5538 (4)0.91212 (16)0.55406 (12)0.0447 (5)
H11A0.42880.93670.58520.054*
C120.5397 (4)0.92329 (16)0.47230 (12)0.0432 (5)
H12A0.40870.95510.44950.052*
N10.2983 (3)0.67078 (11)0.23746 (9)0.0377 (4)
H1B0.30110.68270.28990.057*
H1C0.43050.63820.22370.057*
H1D0.16760.63620.22560.057*
N20.4907 (3)0.84717 (12)0.30272 (9)0.0380 (4)
H2C0.37810.89270.30560.057*
N30.7369 (4)0.86795 (12)0.59140 (10)0.0447 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0377 (3)0.0491 (3)0.0811 (4)0.0058 (3)0.0025 (3)0.0005 (3)
C10.0329 (9)0.0365 (9)0.0309 (9)0.0019 (8)0.0000 (9)0.0007 (7)
C20.0437 (12)0.0489 (11)0.0308 (9)0.0119 (11)0.0016 (9)0.0052 (8)
C30.0536 (13)0.0626 (14)0.0340 (10)0.0020 (13)0.0029 (10)0.0052 (10)
C40.0653 (16)0.0475 (12)0.0340 (10)0.0102 (12)0.0032 (11)0.0073 (9)
C50.0638 (15)0.0375 (11)0.0379 (10)0.0082 (12)0.0023 (10)0.0008 (9)
C60.0363 (11)0.0359 (10)0.0301 (9)0.0041 (9)0.0018 (8)0.0026 (7)
C70.0519 (13)0.0710 (15)0.0372 (10)0.0208 (13)0.0009 (10)0.0047 (10)
C80.0406 (12)0.0354 (10)0.0353 (9)0.0088 (9)0.0034 (9)0.0056 (8)
C90.0408 (12)0.0395 (11)0.0514 (12)0.0010 (10)0.0041 (10)0.0065 (10)
C100.0457 (13)0.0437 (12)0.0532 (13)0.0009 (10)0.0117 (11)0.0075 (10)
C110.0435 (12)0.0491 (12)0.0414 (11)0.0011 (11)0.0022 (9)0.0093 (10)
C120.0382 (11)0.0475 (12)0.0439 (11)0.0031 (11)0.0072 (9)0.0033 (10)
N10.0384 (9)0.0403 (9)0.0344 (8)0.0069 (8)0.0010 (7)0.0009 (7)
N20.0415 (10)0.0421 (9)0.0304 (8)0.0065 (8)0.0013 (8)0.0049 (7)
N30.0506 (12)0.0458 (10)0.0377 (8)0.0048 (9)0.0064 (8)0.0002 (7)
Geometric parameters (Å, º) top
C1—N11.498 (2)C7—N21.452 (3)
C1—C61.523 (3)C7—C81.507 (3)
C1—C21.524 (2)C7—H7A0.9700
C1—H1A0.9800C7—H7B0.9700
C2—C31.516 (3)C8—C91.381 (3)
C2—H2A0.9700C8—C121.386 (3)
C2—H2B0.9700C9—C101.375 (3)
C3—C41.507 (3)C9—H9A0.9300
C3—H3A0.9700C10—N31.331 (3)
C3—H3B0.9700C10—H10A0.9300
C4—C51.521 (3)C11—N31.338 (3)
C4—H4A0.9700C11—C121.375 (3)
C4—H4B0.9700C11—H11A0.9300
C5—C61.530 (3)C12—H12A0.9300
C5—H5A0.9700N1—H1B0.8900
C5—H5B0.9700N1—H1C0.8900
C6—N21.478 (2)N1—H1D0.8900
C6—H6A0.9800N2—H2C0.8899
N1—C1—C6110.08 (15)C1—C6—H6A107.7
N1—C1—C2108.24 (14)C5—C6—H6A107.7
C6—C1—C2112.74 (16)N2—C7—C8112.22 (19)
N1—C1—H1A108.6N2—C7—H7A109.2
C6—C1—H1A108.6C8—C7—H7A109.2
C2—C1—H1A108.6N2—C7—H7B109.2
C3—C2—C1111.09 (16)C8—C7—H7B109.2
C3—C2—H2A109.4H7A—C7—H7B107.9
C1—C2—H2A109.4C9—C8—C12116.63 (18)
C3—C2—H2B109.4C9—C8—C7121.1 (2)
C1—C2—H2B109.4C12—C8—C7122.2 (2)
H2A—C2—H2B108.0C10—C9—C8120.1 (2)
C4—C3—C2110.41 (19)C10—C9—H9A120.0
C4—C3—H3A109.6C8—C9—H9A120.0
C2—C3—H3A109.6N3—C10—C9123.6 (2)
C4—C3—H3B109.6N3—C10—H10A118.2
C2—C3—H3B109.6C9—C10—H10A118.2
H3A—C3—H3B108.1N3—C11—C12123.8 (2)
C3—C4—C5111.15 (19)N3—C11—H11A118.1
C3—C4—H4A109.4C12—C11—H11A118.1
C5—C4—H4A109.4C11—C12—C8119.6 (2)
C3—C4—H4B109.4C11—C12—H12A120.2
C5—C4—H4B109.4C8—C12—H12A120.2
H4A—C4—H4B108.0C1—N1—H1B109.5
C4—C5—C6112.48 (16)C1—N1—H1C109.5
C4—C5—H5A109.1H1B—N1—H1C109.5
C6—C5—H5A109.1C1—N1—H1D109.5
C4—C5—H5B109.1H1B—N1—H1D109.5
C6—C5—H5B109.1H1C—N1—H1D109.5
H5A—C5—H5B107.8C7—N2—C6112.84 (16)
N2—C6—C1108.96 (15)C7—N2—H2C105.3
N2—C6—C5114.22 (15)C6—N2—H2C103.3
C1—C6—C5110.31 (16)C10—N3—C11116.16 (17)
N2—C6—H6A107.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N3i0.892.132.926 (2)148
N1—H1C···Cl10.892.323.201 (2)172
N1—H1D···Cl1ii0.892.283.1583 (19)170
N2—H2C···Cl1iii0.892.723.5538 (19)157
Symmetry codes: (i) x1/2, y3/2, z1; (ii) x1, y, z; (iii) x+1, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H20N3+·Cl
Mr241.76
Crystal system, space groupOrthorhombic, P212121
Temperature (K)291
a, b, c (Å)5.5256 (10), 13.928 (2), 16.685 (3)
V3)1284.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.25 × 0.20 × 0.18
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1995)
Tmin, Tmax0.934, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
5296, 2516, 2259
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.102, 1.06
No. of reflections2516
No. of parameters145
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.24
Absolute structureFlack (1983), 1031 Friedel pairs
Absolute structure parameter0.04 (8)

Computer programs: SMART (Bruker, 2000), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and PLATON (Spek, 2009), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···N3i0.892.132.926 (2)148
N1—H1C···Cl10.892.323.201 (2)172
N1—H1D···Cl1ii0.892.283.1583 (19)170
N2—H2C···Cl1iii0.892.723.5538 (19)157
Symmetry codes: (i) x1/2, y3/2, z1; (ii) x1, y, z; (iii) x+1, y1/2, z1/2.
 

Acknowledgements

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

References

First citationBruker (2000). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGou, S. H. & Tong, T. F. (2010). Faming Zhuanli Shenqing (P. R. China), p. 16.  Google Scholar
First citationHe, R., Song, H. H., Wei, Z., Zhang, J. J. & Gao, Y. Z. (2010). J. Solid State Chem. 183, 2021–2026.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1995). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds