organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-(3-oxo-3,4-di­hydro-2H-1,4-benzo­thia­zin-4-yl)acetate

aLaboratoire de Chimie Organique et Etudes Physico-chimiques ENS Takaddoum, Rabat, Morocco, bLaboratoire de Chimie Physique et Minérale, Service de Cristallographie, Université Victor Ségalen Bordeaux 2, Bordeaux Cedex, France, cLaboratoire de Biochimie, Environnement et Agroalimentaire (URAC 36), Faculté des Sciences et Techniques Mohammedia, Université Hassan II Mohammedia–Casablana, BP 146, 20800 Mohammedia, Morocco, dLaboratoire de Chimie Organique Hétérocyclique, Faculté des Sciences de Rabat, Morocco, and eLaboratoires de Diffraction des Rayons X, Centre Nationale pour la Recherche Scientifique et Technique, Rabat, Morocco
*Correspondence e-mail: lazar_said@yahoo.fr

(Received 11 February 2011; accepted 20 February 2011; online 26 February 2011)

In the crystal structure of the title compound, C11H11NO3S, the mol­ecules are linked by inter­molecular C—H⋯O hydrogen-bond inter­actions. The heterocyclic thia­zine ring adopts a conformation inter­mediate between twist and boat.

Related literature

For general background to the synthesis of benzothia­zines, see: Harmata et al. (2005[Harmata, M. & Hong, X. (2005). Org. Lett. 7, 3581-3583.]). For the pharmacological activity of benzothia­zine derivatives, see: Lopatina et al. (1982[Lopatina, K. I., Artemenko, G. N., Sokolova, T. V., Avdulov, N. A. & Zagorevskii, V. A. (1982). Pharm. Chem. J. 16, 110-113.]). For related structures, see: Saeed et al. (2010[Saeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, o2289-o2290.]); Aouine et al. (2010[Aouine, Y., Alami, A., El Hallaoui, A., Elachqar, A. & Zouihri, H. (2010). Acta Cryst. E66, o2830.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11NO3S

  • Mr = 237.27

  • Monoclinic, P 21 /c

  • a = 17.347 (5) Å

  • b = 8.724 (2) Å

  • c = 7.274 (1) Å

  • β = 98.71 (2)°

  • V = 1088.1 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.59 mm−1

  • T = 296 K

  • 0.20 × 0.15 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.625, Tmax = 0.697

  • 1852 measured reflections

  • 1852 independent reflections

  • 1654 reflections with I > 2σ(I)

  • 2 standard reflections every 90 min intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.03

  • 1852 reflections

  • 147 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4⋯O14 0.93 2.51 3.411 (3) 164

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Several derivatives of benzothiazines, particularly those carrying a keto group on the thiazine part of the molecule, show stimulant and antidepressant activity. [Lopatina et al. 1982].

The goal of the present work was the synthesis, the crystal structure determination and the biological teste of the methyl (3-oxo-2,3-dihydro-4H-1,4-benzothiazin-4-yl)acetate. [Harmata et al. 2005].

In the crystal structure of the title compound (Fig. 1), the molecules exhibit C···H—O intermolecular H-bonds interactions (Fig. 2). The heterocyclic thiazine ring adopt half-chair conformation with the S and N atoms displaced by 0.357 (5) and 0.304 (15) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The methyl acetate group, which is almost planar with the r. m.s deviaton of 0.042 (14) Å, is iclined at dihedral angle of 88.31 (9)° and 74.67 (9)° with respect to the thiazine and benzene ring respectively.

The dihedral angle between the aromatic benzene ring C1–C6 and thiazine ring C5/C6/N7/C8/C9/S10 is 17.02 (9)° while the methyl acetate group C12/C13/O14/O15/C16 is oriented at dihedral angle of 81.30 (8)° with respect to the benzothiazine ring.

In the title compound (Fig. 1), the bond distances and angles agree with the cortresponding bond distances and angles reported in related compounds [Saeed et al. 2010 and Aouine et al. 2010].

Related literature top

For general background to the synthesis of benzothiazines, see: Harmata et al. (2005). For the pharmacological activity of benzothiazine derivatives, see: Lopatina et al. (1982). For related structures, see: Saeed et al. (2010); Aouine et al. (2010).

Experimental top

To 1,4-benzithiazin-3-one (0.25 g, 1.5 mmol), potassium carbonate (0.41 g, 3 mmol), in ketone (15 ml) was added methyl chloroacetate (0.32 g, 3 mmol). The mixture was heated to reflux for 48 h. The salts were removed by filtration and the filtrate concentrated under reduced pressure. The residue was separated by chromatography on a column of silica gel with dichloromethane/diethyl ether (9/1) as eluent. Crystals were isolated when the solvent was allowed to evaporate.

Refinement top

All H atoms were fixed geometrically and treated as riding with C—H = 0.97 Å (methyne) and 0.93Å (aromatic) with U iso (H) = 1.2Ueq(C).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: CAD-4 Software (Enraf–Nonius, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular view of the title compound showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the chain formed by C—H···O hydrogen bondings. H atoms not involved in hydrogen bonds have been omitted for clarity.
Methyl 2-(3-oxo-3,4-dihydro-2H-1,4-benzothiazin-4-yl)acetate top
Crystal data top
C11H11NO3SF(000) = 496
Mr = 237.27Dx = 1.448 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 17.347 (5) Åθ = 25.0–35.0°
b = 8.724 (2) ŵ = 2.59 mm1
c = 7.274 (1) ÅT = 296 K
β = 98.71 (2)°Prism, colourless
V = 1088.1 (4) Å30.20 × 0.15 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 64.9°, θmin = 2.6°
ω–2θ scansh = 2020
Absorption correction: ψ scan
(North et al., 1968)
k = 010
Tmin = 0.625, Tmax = 0.697l = 08
1852 measured reflections2 standard reflections every 90 min
1852 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0891P)2 + 0.2952P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1852 reflectionsΔρmax = 0.31 e Å3
147 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.025 (2)
Crystal data top
C11H11NO3SV = 1088.1 (4) Å3
Mr = 237.27Z = 4
Monoclinic, P21/cCu Kα radiation
a = 17.347 (5) ŵ = 2.59 mm1
b = 8.724 (2) ÅT = 296 K
c = 7.274 (1) Å0.20 × 0.15 × 0.15 mm
β = 98.71 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1654 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.000
Tmin = 0.625, Tmax = 0.6972 standard reflections every 90 min
1852 measured reflections intensity decay: none
1852 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
1852 reflectionsΔρmin = 0.28 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.06412 (11)1.0010 (2)0.1876 (3)0.0408 (5)
C120.34845 (11)0.9981 (2)0.1202 (3)0.0425 (5)
C130.38184 (11)1.1551 (2)0.0708 (3)0.0385 (5)
C160.48971 (13)1.3152 (3)0.0896 (3)0.0523 (6)
C20.06020 (13)1.0995 (2)0.3366 (3)0.0462 (5)
C30.12837 (14)1.1575 (2)0.3843 (3)0.0477 (5)
C40.19978 (12)1.1181 (2)0.2852 (3)0.0411 (5)
C50.13542 (10)0.9596 (2)0.0860 (2)0.0342 (4)
C60.20474 (10)1.0183 (2)0.1350 (2)0.0325 (4)
C80.29001 (11)0.9244 (2)0.1449 (3)0.0424 (5)
C90.22014 (12)0.9212 (3)0.2432 (3)0.0480 (5)
H10.01830.96150.15450.049*
H12A0.33630.98890.25440.051*
H12B0.38700.92070.07610.051*
H16A0.45701.39050.15890.078*
H16B0.53941.31280.13250.078*
H16C0.49701.34130.04010.078*
H20.01221.12650.40410.055*
H30.12621.22420.48470.057*
H40.24511.15880.31920.049*
H9A0.20641.02510.27300.058*
H9B0.23270.86490.35890.058*
N70.27801 (9)0.97159 (18)0.0378 (2)0.0371 (4)
O110.35438 (9)0.8896 (2)0.2240 (2)0.0645 (5)
O140.34929 (8)1.25486 (18)0.0003 (2)0.0561 (5)
O150.45320 (8)1.16608 (16)0.1160 (2)0.0454 (4)
S100.13827 (3)0.83215 (6)0.10137 (7)0.0470 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0361 (10)0.0407 (10)0.0462 (11)0.0021 (8)0.0082 (8)0.0077 (8)
C20.0487 (11)0.0415 (11)0.0450 (11)0.0044 (9)0.0043 (9)0.0055 (9)
C30.0651 (14)0.0391 (11)0.0370 (10)0.0035 (9)0.0012 (9)0.0033 (8)
C40.0502 (11)0.0370 (10)0.0385 (10)0.0082 (9)0.0144 (8)0.0011 (8)
C50.0378 (9)0.0294 (9)0.0373 (10)0.0026 (7)0.0121 (7)0.0040 (7)
C60.0359 (9)0.0287 (9)0.0343 (9)0.0022 (7)0.0098 (7)0.0042 (7)
N70.0312 (8)0.0376 (8)0.0447 (9)0.0005 (6)0.0128 (6)0.0019 (7)
C80.0408 (10)0.0393 (10)0.0471 (11)0.0024 (8)0.0071 (8)0.0026 (8)
C90.0509 (11)0.0567 (13)0.0379 (10)0.0024 (10)0.0116 (9)0.0121 (9)
S100.0442 (4)0.0470 (4)0.0529 (4)0.0048 (2)0.0170 (2)0.0152 (2)
O110.0449 (9)0.0783 (12)0.0667 (11)0.0108 (8)0.0030 (7)0.0096 (9)
C120.0334 (9)0.0418 (11)0.0560 (12)0.0009 (8)0.0185 (8)0.0028 (9)
C130.0295 (9)0.0454 (11)0.0419 (10)0.0017 (8)0.0098 (7)0.0010 (8)
O140.0455 (9)0.0543 (10)0.0735 (11)0.0063 (7)0.0257 (8)0.0220 (8)
O150.0317 (7)0.0491 (8)0.0579 (9)0.0035 (5)0.0147 (6)0.0000 (6)
C160.0405 (11)0.0562 (13)0.0605 (13)0.0111 (9)0.0085 (10)0.0037 (11)
Geometric parameters (Å, º) top
S10—C51.7538 (17)C5—C61.402 (2)
S10—C91.800 (2)C8—C91.498 (3)
O11—C81.215 (3)C12—C131.509 (3)
O14—C131.195 (2)C1—H10.9300
O15—C131.332 (2)C2—H20.9300
O15—C161.447 (3)C3—H30.9300
N7—C61.418 (2)C4—H40.9300
N7—C81.377 (3)C9—H9A0.9700
N7—C121.459 (3)C9—H9B0.9700
C1—C21.377 (3)C12—H12A0.9700
C1—C51.389 (3)C12—H12B0.9700
C2—C31.378 (3)C16—H16A0.9600
C3—C41.379 (3)C16—H16B0.9600
C4—C61.390 (3)C16—H16C0.9600
C5—S10—C995.67 (10)C5—C1—H1120.00
C13—O15—C16115.88 (16)C1—C2—H2120.00
C6—N7—C8124.10 (15)C3—C2—H2121.00
C6—N7—C12119.55 (15)C2—C3—H3120.00
C8—N7—C12115.50 (16)C4—C3—H3120.00
C2—C1—C5121.00 (18)C3—C4—H4120.00
C1—C2—C3119.0 (2)C6—C4—H4120.00
C2—C3—C4120.93 (19)S10—C9—H9A109.00
C3—C4—C6120.73 (19)S10—C9—H9B109.00
S10—C5—C1119.76 (14)C8—C9—H9A109.00
S10—C5—C6120.32 (13)C8—C9—H9B109.00
C1—C5—C6119.92 (15)H9A—C9—H9B108.00
N7—C6—C4121.09 (16)N7—C12—H12A109.00
N7—C6—C5120.47 (14)N7—C12—H12B109.00
C4—C6—C5118.39 (16)C13—C12—H12A109.00
O11—C8—N7121.72 (18)C13—C12—H12B109.00
O11—C8—C9121.43 (19)H12A—C12—H12B108.00
N7—C8—C9116.83 (17)O15—C16—H16A109.00
S10—C9—C8111.08 (15)O15—C16—H16B109.00
N7—C12—C13111.18 (16)O15—C16—H16C109.00
O14—C13—O15124.83 (17)H16A—C16—H16B109.00
O14—C13—C12125.04 (18)H16A—C16—H16C109.00
O15—C13—C12110.13 (16)H16B—C16—H16C109.00
C2—C1—H1119.00
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O140.932.513.411 (3)164

Experimental details

Crystal data
Chemical formulaC11H11NO3S
Mr237.27
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)17.347 (5), 8.724 (2), 7.274 (1)
β (°) 98.71 (2)
V3)1088.1 (4)
Z4
Radiation typeCu Kα
µ (mm1)2.59
Crystal size (mm)0.20 × 0.15 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.625, 0.697
No. of measured, independent and
observed [I > 2σ(I)] reflections
1852, 1852, 1654
Rint0.000
(sin θ/λ)max1)0.587
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.123, 1.03
No. of reflections1852
No. of parameters147
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.28

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O140.932.513.411 (3)164
 

References

First citationAouine, Y., Alami, A., El Hallaoui, A., Elachqar, A. & Zouihri, H. (2010). Acta Cryst. E66, o2830.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarmata, M. & Hong, X. (2005). Org. Lett. 7, 3581–3583.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLopatina, K. I., Artemenko, G. N., Sokolova, T. V., Avdulov, N. A. & Zagorevskii, V. A. (1982). Pharm. Chem. J. 16, 110–113.  CrossRef Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSaeed, A., Mahmood, Z., Yang, S., Ahmad, S. & Salim, M. (2010). Acta Cryst. E66, o2289–o2290.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds